
Comparison of Two Workflows for Web-based 3D
Smart Home Visualizations

Matti Pouke
Center for Ubiquitous Computing

University of Oulu
University of Oulu, P.O Box 4500

FI-90014 University of Oulu, Finland
Email: matti.pouke@oulu.fi

Juho-Pekka Virtanen
School of Engineering, Aalto University

P.O. Box 14100, FI-00076 Aalto, Finland
Email: juho-pekka.virtanen@aalto.fi

Mahmoud Badri, Timo Ojala
Center for Ubiquitous Computing

University of Oulu
University of Oulu, P.O Box 4500

FI-90014 University of Oulu, Finland
Email: mahmoud.badri@qt.io,

timo.ojala@oulu.fi

Abstract—In the built environment, the emergence of Internet

of Things and the Smart Building paradigm increase the amount

of networked systems that produce data from their environment.

3D user interfaces can help users cope with these systems. A 3D

representation of a building can operate as a starting point for

creating these interfaces. We experimented with creating a 3DUI

for sensor network data visualization in two cases, testing both

a manually created game engine model and a BIM model as a

basis. Solutions were compared in terms of performance. While

BIM model captures both the 3D geometry of a building along

with its structural properties, some limitations were encountered

in using it for online 3D application development.

I. INTRODUCTION

Internet of things (IoT) refers to the networked intercon-
nection of objects, which are often equipped with ubiquitous
intelligence. IoT aims to integrating every object for inter-
action via embedded systems, leading to a highly-distributed
network of devices communicating with human beings as well
as other devices [1].

In the built environment context, the emergence of net-
worked systems and sensors has also been acknowledged [2].
Often the adoption of IoT in construction is associated with
the term ”Smart Building”. Even though attempts have been
made to more accurately define the term, and distinguish it
from other terms (such as ”Intelligent Building”) [3], the term
remains somewhat ambiguous, with some authors using the
term ”Smart Home” in a largely similar context [4].

Commonly, smart buildings are considered to apply auto-
mated and networked systems for attaining improved energy
efficiency [4] and control of building’s operations including
heating, ventilation, air conditioning, lighting, security and
other systems. A smart building uses sensors and actuators in
order to collect data and manage it accordingly to provide its
intended function. The controls that work together to bring the
smart building to life are called building automation system
(BAS). BAS core functionality keeps building temperature
within a specified range, provides light to rooms based on
an occupancy patterns, monitors various home systems per-
formance and failures, and sends automatic alarms in case of
systems malfunctions or other faults. Depending on the fault,
alarms could be sent to the homeowner, building maintenance
staff, or other parties. Smart building infrastructure leads to

improved occupant comfort, efficient operation of building
systems, saving in energy use, optimizes how space is used,
and minimizes the environmental impact of building.

While several aspects of smart buildings remain topical
for further research [5], these networked systems are be-
ing installed in increasing numbers. The multitude of data
produced by such smart buildings presents a challenge of
information visualization. User interfaces that allow the user
to observe and control the systems of a building, preferably
from a single access point, are needed. 3D user interfaces
(3DUIs) have been seen beneficial in landscape and built
environment visualization [6], [7], and the maturity of current
WebGL technology already allows the development of web-
based commercial applications in this domain [8]. In the
context of individual buildings, 3DUIs have been utilized, for
example for visualizing patient activities for caretakers [9],
[10]. In comparison to traditional UIs however, 3DUIs provide
additional challenges for designers [11].

The advent of browser-based 3D graphics and the inherently
3-dimensional spatial nature of building data makes browser-
based 3DUIs an attractive option for smart home visualization
applications as well. However, while real-time IoT data can be
obtained relatively effortlessly, the modeling of actual building
geometry requires manual work. This makes the utilization of
Building Information Models (BIM) tempting, provided they
have already been developed for planning and construction
phase of the building that is the target of the visualization. In
addition, the semantic properties of BIM models have obvious
potential for being beneficial in smart home applications.

Several authors have suggested the use of Building infor-
mation models (BIM) for visualizing data related to buildings
[12], [13]. In other experiments, game engine technology [14],
or other 3D application development platforms [15] have been
applied. In addition, building models have been integrated with
3D city models [16]. A particular research angle has also been
the expansion of BIM applications to cover the entire lifecycle
of the building, and not just planning and construction [17].
Advantages of using 3D user interfaces utilizing a 3D model
of the building have been reported by e.g. [17], [12]. The
integration BIM and IoT is aided by the emergence of online
storage and retrieval systems for BIM [18].



Fig. 1. A BIM model of a detached house shown in FZK Viewer

For accomplishing interactive 3D visualization of building
models and associated data, different strategies have been
applied: Motamedi et. al [12] utilize existing commercial soft-
ware for 3D visualization of BIM. Hagedorn & Döllner [16]
suggest expanding interfaces commonly used in geospatial
information to operate with BIM models. Models can also
be produced with indoor 3D mapping [15]. In Virtanen et al.
[15], all data sets are converted to game engine compatible
format prior to visualization, effectively producing a separate
visualization model. Lee et al. [19] present a browser based
system with automated model processing and storage in a
database prior to visualization.

Especially for larger building complexes or multiple build-
ings, BIM datasets can become computationally heavy. In
addition, the models are not directly suitable for use in 3D
game engines due to their inherent differences: most game
engines use mesh models, whereas BIM is a parametric model.
If a BIM model is converted to a mesh, manual work is often
required for filtering out elements not needed for visualiza-
tion, defining materials, defining surface normal orientations,
creating texture coordinates and optimizing the model polygon
count. In addition, the semantic properties of BIM models are
lost, or at least severely restricted, during the conversion to
mesh model. These issues restrict direct application of BIM
in browser based 3D systems, and to some extent, in game
engines in general.

As a partial solution, BIM models can be processed auto-
matically by dedicated tools intended for the online application
(e.g. BIMServer [20]). Performance can be further improved
by utilizing models more optimized for browser based 3D
engines. However, this creates an additional process step,
potentially hindering automation.

In this study, we will present two cases of utilizing 3DUIs
in web based smart home IoT visualization. Case A utilizes a
server-hosted BIM model, ThingSpeak [21] sensor architecture
and three.js [22] WebGL library for visualization. Case B
uses a game-engine ready mesh-model and a SOAP webserver
using the Unity game engine for visualization. We will com-
pare the two cases in terms of performance and development

challenges.
The rest of the paper is organized as follows: Section 2

will explain the details of the two cases that are used for
comparison. Section 3 will introduce the results we were able
to obtain measuring and analysing both systems. Section 4 will
conclude the paper also presenting future research directions.

II. CASE DETAILS

The two cases serve as systems for visualizing sensor data
from a sensor network deployed in a smart building, utilizing
a 3DUI. In Case A, the target of the visualization is a two-
bedroom apartment hosting a heterogeneous sensor network
(the sensors are from multiple manufacturers and not originally
providing a unified interface). In Case B, the target is a
multistory hospice utilizing a homogeneous commercial sensor
network. In Case A, the apartment used was owned by a
research facility, allowing it to be utilized for experiments
as necessary. Case B was a commercially developed hospice
building by a private contractor. While various visualization
metaphors and viewport manipulation paradigms have been ex-
perimented in both cases (a study is currently in preparation),
inherently they both provide the same basic capabilities for
orbiting, zooming and exploring the visualization options. The
requirements for sensor architecture and visualization features
were agreed in co-operation with project partners consisting
of researchers as well as four local companies engaged in
building services engineering (HVAC, electric installations,
etc.) and sensor technology. Several focus group interviews
were conducted to gather specifications for 3DUI as well as
to identify general interests of the stakeholders. In this study,
we are focusing on the following particular questions that were
brought up within the focus group interview:

• ”What is the easiest way to produce a building model
for 3D visualization, and what is the simplest possible
functioning model?”

• ”Where and in which form should building sensor data
be hosted and streamed”.

In addition to the questions presented above, loose require-
ments and development ideas were presented for the 3DUIs.
Some of them were as follows:

• Browser based: The 3DUI should be accessible anywhere
with common online devices.

• Glanceability: The user should not have to perform
complex queries to read sensor data. Instead, the 3DUI
should quickly inform the user whether or not everything
is normal.

• Sensor readings should be easy to interpret according to
their meaning. I.e. the 3DUI should automatically provide
sensor readings with interpretations, such as ”good/bad”
or ”hot/cold” with corresponding easy-to-understand vi-
sualizations.

• For tenants, the system should be used primarily for
visualization and less for actually controlling the devices.

• The 3DUIs should be aesthetically pleasing enough to be
used as marketing or demonstration material.



Drawing from the results of the focus group interviews,
we decided to attempt a development of an IoT platform
consisting of sensors and actuators. Pilot studies utilizing
the platform should be conducted within multiple real-world
buildings. The heterogeneity of the sensor and actuator net-
work should be invisible for the user; IoT devices from
multiple manufacturers should be visualized and controlled
through an unified interface. Building on top of the built-in
interface provided by each device, the IoT device backend
would provide input and output capabilities to each individual
device through a single channel.

The operation of the backend would be through a 3DUI.
The principles of Information Visualization should be utilized
in displaying the sensor readings. This would mean, for
example, following the Schneiderman’s mantra ”Overview
first, zoom and filter, details-on-demand” [23]. Colours and
other metaphors would be used to provide meaning to sensor
readings besides displaying their raw data values.

A. Case A

In Case A, it was decided that the 3DUI should utilize a
BIM model examining its possibilities in a web visualization
application. The apartment in question had no existing BIM-
model available, so it was modeled using the Autodesk Revit
modeling software. The modeling was done using a floor
plan as source material and according to the 3DUI specifi-
cations, omitting roof and other details that were obstructing
or unnecessary for the visualization. However, furniture and
materials were utilized to produce an aesthetically pleasing
enough model. The BIM model was then uploaded to the Open
Source BIM server [20], in which the model could be hosted,
updated and downloaded to the client as necessary. Sensors
from multiple manufacturers were installed in the apartment;
temperature, humidity, air quality and pressure difference can
be measured from multiple locations within the apartment.

A big question at this point was how the IoT data was to
be hosted and streamed in relation to the BIM model. It was
concluded that while the BIM model can be used to fetch IoT
device locations, it is not convenient for hosting the actual
sensor data. Thus, it was decided that a separate database is
developed for the sensor data while sensor locations are added
to the BIM model as necessary; after experimenting with
various alternatives, the ThingSpeak architecture was chosen
for Case A.

For visualizing sensor readings, it was decided that different
alternatives and styles should be implemented for experi-
mentation. These alternatives utilize overlaid 2D icons (text,
columns, icons, colors, arrows) as well as 3D geometry (digital
and physical meters, fire, steam). These alternatives can be
toggled utilizing an overlaid 2D menu. As the focus group
interview data stated that ”good” and ”bad” reading values
should be provided automatically by the system, this was
taken into account within some of the visualizations. For
example, the temperature in the sauna room of the apartment
can climb much higher in comparison to other rooms without
the 3DUI interpreting it as ”bad”, see Fig. 3. The 3DUI

Fig. 2. Architecture overview for the 3DUI in Case A

is currently mostly used for visualization, however a light
control interface was also developed as a proof-of-concept.
The color of three RGB lights within the apartment can be
switched through the interface; this was used to experiment
with the principle of utilizing sensor readings from one IoT
device to control another. For example, a temperature reading
from a room can be hooked into controlling the lights. This
concept can later be taken further to do other, more meaningful
automated control operations, such as adjusting heating or air
conditioning. Finally, it was found that the easiest way to
develop an interactive 3D web scene utilizing a BIM model
was to convert the BIM data into three.js [22] format. The
overall architecture for Case A can be seen in Fig 2 while a
screenshot of the application can be seen in Figure 7

B. Case B

In Case B, the target of the visualization is a multi story
hospice building operated by a private company. As with Case
A, we had no existing 3D models available, BIM or otherwise.
This time, it was decided that instead of a BIM model, the
building architecture is represented with a non-semantic mesh
model. Using floor plans as the source material, the model
was produced with 3Ds Max software utilizing a low-poly
modeling paradigm similar to producing game assets. Instead
of utilizing WebGL libraries, as in Case A, the application
was developed with the Unity platform. The mesh model was
imported into Unity as an FBX file and used as the basis for
3DUI development.



Fig. 3. Case A: Room types having different scales for what are interpreted
as ”hot”, ”cold” and ”ok” readings

Fig. 4. A screenshot of the Case A 3DUI (company and project information
omitted)

The requirements for the 3DUI came from a company
involved in the construction project: only temperature data
was to be visualized and no possibility for the controlling
of devices was to be developed. The buildings utilized a
commercial server software that provided a SOAP interface
to sensor readings. While there was only a single data type to
be visualized, the UI contains some alternatives for the visual-
ization of the data similarly to Case A (text, bubbles, various
icons, floor-overlaid heat maps, fire and ice). A screenshot
of the Case B 3DUI can be seen in Figure 7. The building
was significantly larger than in Case A. For this reason, no
3D objects acting as sensors were placed in the scene, but
instead, the room floors were used for different visualization
options (for see Fig 5 for an example). Because the building
in question has several floors, the UI also contains a slider to
switch between floors that are the target of the visualization.
An overview of the architecture of Case B can be seen in
Figure 6.

Fig. 5. Red and blue colors displaying too hot or too cold room temperatures
in Case B. The stronger the hue, the further the temperature is deviating from
optimal

Fig. 6. Architecture overview for the 3DUI in Case B

C. Case architectures and their differences

While both cases provide the same basic functionality,
their architectures have differences. The following section
summarizes the architectures. The architectures comprise of
the following components:

• Sensor Nodes: Each sensor node represents a physical
sensor deployed at a certain location within the smart
apartment. A sensor node is responsible for capturing
the environmental parameters that the sensor can capture
within its sensing range and submitting it to the cloud
server. In Case A, the sensors were developed and man-
ufactured by two different sources to test the system’s



Fig. 7. A screenshot of the Case B 3DUI with randomized sensor data for
demonstration

capability to utilize a heterogeneous sensor network. In
Case B, the existing sensors of the building were utilized.

• Cloud server: The server acts as the centralized cloud
that connects the real environments with the visualization
application. The server receives data from the sensor
nodes and persists them to the database. The visualization
application requests the sensors’ data from the server
to build the visualizations based on them. The sensors’
network transmits the collected data periodically to a
centralized database deployed on a webserver. In Case
A, the cloud server was deployed on a ThingSpeak IoT
platform. The server exposes an API for the visualization
application to use to request the sensors’ data in JSON
format. In Case B, a commercial server was utilized. The
webserver utilizes Web Services Description Language
(WSDL) and Simple Object Access Protocol (SOAP)
to enable the visualization frontend application to fetch
and create the sensor visualizations. SOAP protocol uses
XML based data format to serialize and transmit the data.

• Database: this is the data storage for the sensors’ data
collected by the sensor nodes network. For security rea-
sons, the cloud server is the only entity that can connect
to the database to read and write data.

• Data Parser: This component is responsible for loading
the data from the server and parsing it into unified data
structures that can be used by the rest of the application
using a standard format and API.

• 3D scene: this component is where the 3D environment is
constructed. By this stage, the 3D model must be loaded
and ready to be positioned in the 3D scene. Materials,
lighting, camera, renderers, and the rest of 3D scene
construction components are initialized in this stage.

• Building model: This is the model that defines the phys-
ical appearance and the properties of the building that is
visualized. In Case A, the model was in the BIM format

TABLE I
THE RELEVANT DIFFERENCES BETWEEN CASE A AND CASE B

Case A Case B

IDE three.js Unity
Data format JSON XML
Programming

language

JavaScript C#

Data source ThingSpeak SOAP web ser-
vice

Building model BIM Mesh
Building type apartment multi-story
Sensor data temperature, hu-

midity, air qual-
ity, air pressure

temperature

(IFC) hosted in a BIM server. In Case B, a game-engine
ready mesh model was utilized (FBX). 2D visualizer:
2D visualizations show the value of the environmental
parameters at the location of the sensor using icons or
text. 3D visualizer: This component works is a similar
manner to the 2D visualizer, but instead of utilizing icons,
it creates visualizations laid on the building’s physical
properties, such as walls or floors.

• Rendering/game engine: In Case A, three.js [22] was
utilized to render the final 3D scene for the user. three.js
[22] is an open-source JavaScript library used to create
computer graphics simulation running in a WebGL canvas
in a web browser. In Case B, Unity game engine was
utilized and the client application was programmed using
the C# language. The application was converted to a
WebGL browser application using Unity WebGL player.

Finally, the relevant differences between the two cases can bee
seen in Table I.

III. RESULTS AND DISCUSSION

The cases were compared according to performance mea-
surements of each 3DUI application. In addition, interesting
findings were found in the experiences gained during the
development of both UIs.

A. Measurements

To compare the performance of both 3DUIs, we ran a small
experiment in which we started each project and experimented
with all visualizations and controls. We monitored the frames
per second (FPS) count during the experiment. Both 3DUIs
were ran on the same computer having the following speci-
fications: Intel Core i7 6700HQ CPU, 16GB RAM, NVIDIA
GeForce GTX 960M, memory 4MB GDDR5 GPU. Results
showed that Case A kept a steady frame rate of 59-60 fps
with all visualizations enabled. Case B kept a steady 59 fps.
Both applications had occasional drops at or below 55 fps;
Case A with very fast viewport manipulation and Case B when
switching between visualizations or floors. According to this
experiment, the 3DUIs did not have significant differences in
performance.



TABLE II
DATA TRANSFER RATES FOR DATA REQUESTS IN BOTH CASES

Request time Response size Speed

Case A 0.15s 17.8 KB 118.7 KB/s
Case B 0.04s 0.42 KB 10.5 KB/s

1) Model sizes: Case A utilized a BIM model for the
building architecture while Case B utilized a mesh model. As
BIM models contain semantic data besides architecture, the
file sizes tend to be larger in comparison to mesh models. The
ifc file defining the Case A building data was 27.4 MB while
the FBX defining the architecturally more complex building in
Case B was 3.74 MB. As the 3DUI in Case A utilized three.js
[22] and WebGL for rendering, the ifc model was converted
to json before loading the scene. The converted json file was
10.3 MB in size.

2) Sensor architecture: To measure the performance of
each system in terms of sensor data requests, we measured the
periods between the issued requests and successfully returned
results. In project A, a GET request with the authentication key
as a parameter is required to fetch sensor data. The webserver
returns the results in JSON format and contains recent readings
from all sensors, 100 records in total. The result was typically
fetched between 0.1 to 0.3 seconds, 0.15 seconds in average.
The result file is 17.8 KB in size. In Case B, a POST request
is sent to a SOAP web service separately for each sensor
node. A request parameter contains the sensor’s unique ID.
The request takes between 0.03 to 0.05 seconds to return a
result. While this is a shorter period than in Case A, it should
be noted that the request in Case A returns readings for all
sensors while in Case B the requests have to be issued for
each sensor separately. Dividing the response size by request
time we can approximate the data transfer speeds for Case A
as 118.7 KB/s and Case B as 10.5 KB/s. The results of the
tests are summarized in the Table II.

Examining the responses further, it can be seen that the
sensor architecture in Case B is disadvantageous in comparison
to Case A. While SOAP format is language and platform inde-
pendent and utilizes human-readable XML, the response sizes
are bloated. Text delimiters and extra XML tags generated by
the SOAP standard results in large file sizes, and eventually,
slower transfer speeds. An actual response for reading a single
sensor value can be seen below:

<soap : Envelopexmlns : x s i = h t t p : / / www. w3 . org
/ 2 0 0 1 / XMLSchema�i n s t a n c e

xmlns : xsd= h t t p : / / www. w3 . org / 2 0 0 1 /
XMLSchema

xmlns : soap =” h t t p : / / schemas . xmlsoap . o rg /
soap / e n v e l o p e /”>

<soap : Body>
<g e t P o i n t D a t a R e s p o n s e xmlns =” h t t p : / /

OMITTED .XX/ webVis ion /”>
<g e t P o i n t D a t a R e s u l t >23.673</

g e t P o i n t D a t a R e s u l t >

</ g e t P o i n t D a t a R e s p o n s e>
</ soap : Body>

</ soap : Envelope>

In Case A, the responses are obtained in JSON format,
which can be formatted in a less verbose manner. In principle,
a simple key-value pair, such as {”data”: 23.673} could be
used to transmit the same information as the multi-line SOAP
response seen above.

B. Experiences

In Case A, the hypothesis was that the semantic properties
of the BIM model can be easily leveraged for the 3DUI.
However, as the project progressed, it became evident that
the semantic properties will remain largely unused. The only
semantic BIM property utilized was the ”IfcSpace” property
that was used to define the volumes of each room. The
property was then used to generate translucent overlays for
the rooms for color visualizations of temperature, humidity
or carbon dioxide levels (see Fig ref. ColorOverlays). During
specification gathering, it was also assumed that 3D locations
of each IoT device would be convenient to fetch from the BIM
model itself. However, as devices were placed and removed
frequently throughout the project, it became easier to simply
place visualizations in the 3DUI at room granularity according
to the ThingSpeak channel specifications prepared for the
purpose. While the Open Source BIMServer [20] provides a
rich interface for a multitude of runtime operations, it was
only necessary to utilize it for downloading the ifc file from the
server. However, later in the project, even the ifc download was
uncommon rendering the BIMServer largely unused. Because
the BIM model itself changed infrequently, it became common
to not utilize the BIM server to download the building data,
but instead to simply use a previously converted three.js [22]
json file for scene loding to save bandwidth and download
time.

In Case B, the building model was produced with 3DsMax
as a low-polygon model common among game assets. In this
way, it was possible to produce a useful 3D model of a
far more complex building while keeping the file size much
smaller in comparison to Case A.

1) Programming languages: As stated earlier, three.js [22]
and JavaScript was used to development in Case A, and
Unity with C# programming language in Case B. According
to the experiences using both SDKs in the cases, Unity
was more productive and easier for development. The visual
editor provided by Unity (and game engine platforms in
general [24]) is indispensable for any non-trivial 3D project
development. Besides, C# is a strongly typed object-oriented
language that is suitable for writing extensible and maintain-
able code. JavaScript neither strongly typed nor object-oriented
language. This makes writing maintainable code with it more
challenging. In addition, Unity provides a rich framework
of component-based features that are easy to integrate with
existing code. Considering these aspects, we claim that Unity
currently provides a more productive pipeline for developing



Fig. 8. The ”IfcSpace” property used for color overlays for visualizing sensor
data in Case A

3D applications compared to three.js. However, we acknowl-
edge that this might change as tools and platforms for WebGL
development mature.

IV. CONCLUSION

While BIM models provide potential to be utilized through
building lifecycle, the disadvantages associated with BIM may
outweigh the benefits in simple smart home or IoT visual-
ization and/or control applications. BIM models might be too
complex for real-time utilization or contain elements that must
be removed for the models to be useful in visualization. The
effort needed to finalize a BIM for 3D application development
may in simple cases exceed the efforts needed for producing
the models with conventional 3D content production means.
For these workflows, existing 2D documentation (which typ-
ically is available) reduces the need for measuring activities
thus speeding up otherwise manual model building. Further,
it should be noted that BIM is not a ubiquitous solution for a
large amount of building stock erected prior to emergence of
digital workflows in AEC. The selection of the most efficient
method is therefore dependant on the available documentation
of the building, its size and complexity.

Currently BIM-models must be converted to other formats,
such as FBX to be utilized in game engines, however there
are web-tools and third-party libraries that can visualize BIM
models real-time in WebGL. However, current game-engines
provide visual editors and other additional tools that make
the development of 3D visualization applications easier in
comparison to WebGL libraries. This makes it attractive to
utilize simple mesh-models with game engines instead of
BIM. The emergence of fully browser based game engines
(e.g. Babylon.js) is reducing the effort needed in WebGL app
development. In addition, the tools allowing browsed based
application development of BIM are also being developed
(e.g. 4BIM [25]). According to our experiences so far, we can
answer the questions formulated in the focus group interviews,
”What is the easiest way to produce a building model for 3D
visualization, and what is the simplest possible functioning

model?” and ”Where and in which form should the IoT data be
hosted and streamed” as follows. A game-engine compatible
low-polygon mesh model is the simplest working model; it
can be quickly produced using floor plans by anyone familiar
with basics of 3D modeling. For hosting and streaming sensor
data, the ThingSpeak architecture was superior to the SOAP
Webserver.

In future work, it might be useful to perform a similar study
to significantly more complex apartment models to further
investigate the differences reported in this paper. Regarding
the current cases, we will be concentrating on the usability
aspects of 3DUIs presented above, for example, viewport
manipulation, mobile device usability and the performance of
the systems as Information Visualization tools. In addition, we
will be introducing Case C, which will be a suburban house.
The current 3DUIs were focusing mostly on visualization, the
simple light controls in Case A being the only way to control
the IoT devices in the buildings. However, the future work will
bring increased focus into controlling of IoT devices through a
3DUI in building systems. Finally, other web platforms besides
three.js should be included in the analysis.

ACKNOWLEDGMENTS

This work has been supported by the TEKES VIRPA-A
project, as well as the 6Aika: Open City Model as Open
Innovation Platform project (A71143) funded the ERDF and
the City of Oulu under the Six City Strategy program, and the
COMBAT project (293389) funded by the Strategic Research
Council at the Academy of Finland.

REFERENCES

[1] F. Xia, L. T. Yang, L. Wang, and A. Vinel, “Internet of things,”
International Journal of Communication Systems, vol. 25, no. 9, p. 1101,
2012.

[2] B. Firner, R. S. Moore, R. Howard, R. P. Martin, and Y. Zhang,
“Poster: Smart buildings, sensor networks, and the internet of things,”
in Proceedings of the 9th ACM Conference on Embedded Networked
Sensor Systems. ACM, 2011, pp. 337–338.

[3] A. Buckman, M. Mayfield, and S. BM Beck, “What is a smart building?”
Smart and Sustainable Built Environment, vol. 3, no. 2, pp. 92–109,
2014.

[4] D.-M. Han and J.-H. Lim, “Design and implementation of smart home
energy management systems based on zigbee,” IEEE Transactions on
Consumer Electronics, vol. 56, no. 3, 2010.

[5] F. Zafari, I. Papapanagiotou, and K. Christidis, “Microlocation for
internet-of-things-equipped smart buildings,” IEEE Internet of Things
Journal, vol. 3, no. 1, pp. 96–112, 2016.

[6] A. Lovett, K. Appleton, B. Warren-Kretzschmar, and C. Von Haaren,
“Using 3d visualization methods in landscape planning: An evaluation
of options and practical issues,” Landscape and Urban Planning, vol.
142, pp. 85–94, 2015.

[7] P. Paar, “Landscape visualizations: Applications and requirements of 3d
visualization software for environmental planning,” Computers, environ-
ment and urban systems, vol. 30, no. 6, pp. 815–839, 2006.

[8] T. Alatalo, M. Pouke, T. Koskela, T. Hurskainen, C. Florea, and T. Ojala,
“Two real-world case studies on 3d web applications for participatory
urban planning,” in Proceedings of the 22nd International Conference
on 3D Web Technology. ACM, 2017, p. 11.

[9] N. M. Boers, D. Chodos, J. Huang, P. Gburzynski, I. Nikolaidis, and
E. Stroulia, “The smart condo: Visualizing independent living environ-
ments in a virtual world,” in Pervasive Computing Technologies for
Healthcare, 2009. PervasiveHealth 2009. 3rd International Conference
on. IEEE, 2009, pp. 1–8.



[10] M. Pouke and J. Häkkilä, “Elderly healthcare monitoring using an avatar-
based 3d virtual environment,” International journal of environmental
research and public health, vol. 10, no. 12, pp. 7283–7298, 2013.

[11] M. Pakanen, L. Arhippainen, and S. Hickey, “Designing for 3d user
experience in tablet context,” Design and Early Phase User Evaluation
of Four 3D GUIs, International Journal on Advances in Intelligent
Systems, vol. 5, no. 3.

[12] A. Motamedi, A. Hammad, and Y. Asen, “Knowledge-assisted bim-
based visual analytics for failure root cause detection in facilities
management,” Automation in construction, vol. 43, pp. 73–83, 2014.

[13] J. Irizarry, E. P. Karan, and F. Jalaei, “Integrating bim and gis to im-
prove the visual monitoring of construction supply chain management,”
Automation in Construction, vol. 31, pp. 241–254, 2013.

[14] W. Yan, C. Culp, and R. Graf, “Integrating bim and gaming for real-
time interactive architectural visualization,” Automation in Construction,
vol. 20, no. 4, pp. 446–458, 2011.

[15] J.-P. Virtanen, M. Kurkela, H. Hyyppä, S. Niemi, S. Kalliokoski,
S. Vanhatalo, J. Hyyppä, H. Haggrén, S. Nenonen, J.-M. Junnonen
et al., “Visualization of building models and sensor data using open
3d platforms,” in International council for research and innovation in
building and construction conference, 2016.

[16] B. Hagedorn and J. Döllner, “High-level web service for 3d building in-
formation visualization and analysis,” in Proceedings of the 15th annual
ACM international symposium on Advances in geographic information
systems. ACM, 2007, p. 8.

[17] B. Becerik-Gerber, F. Jazizadeh, N. Li, and G. Calis, “Application areas
and data requirements for bim-enabled facilities management,” Journal
of construction engineering and management, vol. 138, no. 3, pp. 431–
442, 2011.

[18] J. Zhang, Q. Liu, F. Yu, Z. Hu, and W. Zhao, “A framework of cloud-
computing-based bim service for building lifecycle,” in Computing in
Civil and Building Engineering (2014), 2014, pp. 1514–1521.

[19] W.-L. Lee, M.-H. Tsai, C.-H. Yang, J.-R. Juang, and J.-Y. Su, “V3dm+:
Bim interactive collaboration system for facility management,” Visual-
ization in Engineering, vol. 4, no. 1, p. 5, 2016.

[20] J. Beetz, L. van Berlo, R. de Laat, and P. van den Helm, “Bimserver.
org–an open source ifc model server,” in Proceedings of the CIP W78
conference, 2010.

[21] “Thingspeak,” https://se.mathworks.com/help/thingspeak/, accessed:
2017-29-06.

[22] R. Cabello et al., “Three. js,” https://github. com/mrdoob/three.js,
year=2010.

[23] B. Shneiderman, “The eyes have it: A task by data type taxonomy for
information visualizations,” in Visual Languages, 1996. Proceedings.,
IEEE Symposium on. IEEE, 1996, pp. 336–343.

[24] J. Gregory, Game engine architecture. crc Press, 2009.
[25] “4bim,” http://www.openbim.org/case-studies/4-bim, accessed: 2017-29-

06.


