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Abstract— Checking the Kkinship of facial images is a dif-
ficult research topic in computer vision that has attracted
attention in recent years. The methods suggested so far are
not strong enough to predict Kinship relationships only by
facial appearance. To mitigate this problem, we propose a
new approach called Deep-Tensor+ELM to Kkinship verifica-
tion based on deep (VGG-Face descriptor) and tensor (BSIF-
Tensor & LPQ-Tensor using MSIDA method) features through
Extreme Learning Machine (ELM). While ELM aims to deal
with small size training features dimension, deep and tensor
features are proven to provide significant enhancement over
shallow features or vector-based counterparts. We evaluate our
proposed method on the largest kinship benchmark namely
FIW database using four Grandparent-Grandchild relations
(GF-GD, GF-GS, GM-GD and GM-GS). The results obtained
are positively compared with some modern methods, including
those that rely on deep learning.

I. INTRODUCTION

Kinship verification models consists in checking if two
persons are belonging to the same family or not is termed
kinship (or family) verification. Automatic kinship verifi-
cation aiming to discover computational models to decide
whether two persons are from the same family or not and
purely based on patterns such as voices, faces and gaits. The
automatic kinship verification systems define their inputs by
two faces (Face A and Face B) and the predictable output is
a decision whether Person A is with relation with a family
member (father, mother, brother, sister etc.) of Person B or
not. Many applications can be beneficial e.g. for forensics,
finding missing children, social media comprehension and
image annotation. Though a DNA test is the most precise
way for kinship verification, it regrettably cannot be used in
many situations such as in video surveillance.

The few existing works on kinship verification essentially
share similar face features as in face recognition. This
involves for instance the use of shallow features LBP (Local
Binary Patterns), LPQ (Local Phase Quantization) and HOG
(Histograms Of Gradients) features for inputs to SVMs
(Support Vector Machines) for verification of kin relation
[71, [2]. Such methods work better under some limited face
image variations (in terms of image resolution, illumina-
tion, blur etc.) but always to suffer under unconstrained
environment or to generalize to unseen data. However, the

very recently developments in machine learning suggest that
highest performance can be obtained from learned features
e.g. based on deep learning methods [13] instead of shallow
features e.g. LBP, LPQ and HOG.

In this work, we develop a novel framework to kinship
verification from face images using deep and tensor features
based extreme learning machine. Especially, we used ELM
method to fuse metrics (scores) of VGG-Face for deep fea-
tures and two tensors (BSIF-tensor and LPQ-tensor) features
extracted by Multilinear Side-Information based Discrimi-
nant Analysis (MSIDA) method, we called our framework
Deep-Tensor+ELM. We report our preliminary experimen-
tal investigations on the FIW benchmark using four re-
lations, Grandfather-Granddaughter (GF-GD), Grandfather-
Grandson (GF-GS), Grandmother-Granddaughter (GM-GD)
and Grandmother-Grandson (GM-GS) face subsets showing
very promising performance compared to state-of-the-art
methods.

II. PROPOSED FRAMEWORK

Figure 1 depicts an overview of our proposed approach.
The input is a pair of two face images e.g. a grandparent
and a grandchild. We extract features from these images
into deep and tensor features of each pair. We compute the
cosine similarities between the deep and tensor features to
encode the final metric (fused score). These similarities are
fed to an extreme learning machine (ELM) classifier. The
ELM classifier is trained to predict whether the two persons
are kin related or not.

A. Extracting Deep and Tensor Features

Many methods suggested in the literature on automatic
verification of kinship have focused mainly on analyzing
deep features only, thus ignoring tensor information. Re-
cently, tensor features have shown better performance than
their deep counterparts to verify kinship relevance (e.g.
[1]). When considering the tensor information, the problem
usually consists in learning a discriminating metric where the
classification (e.g. kinship verification in our case) becomes
more affordable compared to the deep features. As suggested
in [5], we consider the score fusion methodology for kinship
verification. Deep and tensor metrics show a complemen-

tarity which extracted by ELM method. This is in contrast
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Fig. 1: Overview of the proposed deep-tensor+ELM framework for kinship verification.

to use deep or tensor information separately. Therefore, we
extract the deep features using VGG-Face [9] method and
tensor features (LPQ-tensor & BSIF-tensor) using MSIDA
[1] method.

B. Cosine similarity metrics

The deep and tensor features extracted from each pair
of two images should be integrated into a single value.
Our experiments examine different metric measures (cosine,
Euclidean, Hamming, Manhattan, etc.) demonstrated that
cosine similarity metric [8] provides the best performance.
The cosine similarity between two feature vectors X and Y
is given by:

X"y
XY
Where ||.|| is the Euclidean norm. A high value of the

produced score means a high probability that X and Y are
same family.

cos(X,Y) = (1)

C. Classification using Extreme Learning Machine

An Extreme Learning Machine (ELM) [4] contains a
single hidden layer in their network which has been shown
to perform superior and faster than SVM classifier in some
classification problems [3]. The output of an ELM network
with L hidden neurons can be defined as:

L

Zﬁig(Wi~Xj+bi)zoj,jzl,...,N
i=1
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where [; is the weight between the hidden layer
and output layer, and g(z) is the activation function.

X; = [i,,@iy,...,x;5,,]  is the input vector with the
ground truth ¢; = [ti, ti,... t: ,]". W; and b; are
the weight and bias of the hidden layer. One key fea-
ture of ELM is to randomly set both W, and b; to
speed up the training process. The distances between the
ground truth and actual output Z;VZI lloj —t;]| should
be minimized. The output weights are optimized by
minimizing the approximation in 3:

H-p=T 3)
where H is the randomly generated hidden
layer output matrix,
H(W17'°'7WL7b17‘"7bL7X17" '7XL)
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and T is the target output:

T
Ty

y= €]

T

Ty
The optimization procedure in ELM can be reduced to
computing the Moore-Penrose inverse of I, determined at
the beginning of the training, rather than optimizing S using
gradient descent algorithm by tunning the parameters in an

iterative algorithm as in deep architectures. Thus, /5 can be
calculated as:
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Fig. 2: ROC curves of different methods (VGG-Face and Deep-Tensor+ELM) on FIW database obtained on (a) GF-GD set, (b) GF-GS set, (c¢) GM-GD set and (d) GM-GS set.

TABLE I: Averaged verification accuracy scores (%) on FIW database for GF-GD, GF-GS, GM-GD and GM-GS relations.

[ Method [ GF-GD | GF-FS | GM-GD | GM-GS | Mean |
ResNet+CF [11] 66.37 66.45 64.81 64.39 65.51
SphereFace [6] 66.07 66.36 64.58 65.40 65.60
ResNet+SDMLoss [12] 65.89 65.12 66.41 64.90 65.58
Deep-Tensor+ELM (Our) 68.36 68.18 70.14 67.77 68.61
Our proposed method is compared against some recent
f=H1'.T (5) state-of-the-art methods in Table I. Note that some of these

III. EXPERIMENTAL ANALYSIS

For experimental evaluation, we considered the largest
FIW [10] kinship database using: four relations, Grandfather-
Granddaughter (GF-GD), Grandfather-Grandson (GF-GS),
Grandmother-Granddaughter (GM-GD) and Grandmother-
Grandson (GM-GS) face subsets. In GF-GD subset, there
are 7,078 pairs of images for positive and negative relations.
In GF-GS subset, there are 4,830 pairs of images for positive
and negative relations.In GM-GD subset, there are 6,512
pairs of images for positive and negative relations.In GM-
GS subset, there are 4,614 pairs of images for positive and
negative relations.

A. Experimental Setup

The number of the positive and negative pairs used in the
experiments is the same for each relation on the four subsets.
We use five-fold cross validation strategy for the evaluation.
We report the mean accuracy over the five folds. The negative
pairs and folds are predefined for the all four relations. For
the deep and tensor features, we extracted VGG-Face, LPQ-
tensor and BSIF-tensor as this has shown to perform better
than shallow or vector-based methods [1], [9]. The tensor
features are performs by MSIDA[1] method. For LPQ-tensor,
the window size is [ {1,2,3} for each face sample.
For BSIF-tensor, we use eight filters with different sizes
w = {3,5, 7} for each face sample. For ELM, the number of
neurons in the hidden layer is an important parameter. The
number is determined empirically and set to 10.

B. Results and Analysis

We run the experiments on the four relations of the FIW
database. The results of these experiments are reported in
Table I. The ROC curves comparing Deep-Tensor+ELM and
VGG-Face are provided in Figure 2 for the four relation
from FIW database. As can be noticed from the figure, the
performance of Deep-Tensor+ELM is much better than that
of VGG-Face in all cases.

methods, such as ResNet+SDMLoss, use combination of
different features to describe a face image. Some other
methods are based on deep learning. On the four relations
of FIW database, our approach yields in the best results for
all the four kinship subsets. These results are promising and
demonstrate that our proposed approach is performs better
than the recent methods for kinship verification.

IV. CONCLUSION

In this paper, we presented an effective approach based
on deep and tensor features to the problem of kinship
verification. To achieve a low dimensional and discrimina-
tive subspace, we proposed the Deep-Tensor+ELM method.
The experimental evaluation shows the superiority of our
method. The best results of our approach are obtained by
fusing scores of three multi-view deep and tensor features
learned with the proposed Deep-Tensor+ELM method. These
results outperform the state of the art on four Grandparent-
Grandchild relations from FIW database. Furthermore, these
results point out to the need of using deep/tensor features
for kinship verification. As future work, we plan to in-
vestigate the complementarity of more features description
for face representation with the proposed method (Deep-
Tensor+ELM).
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