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Abstract— Facial Micro-expression Recognition (MER) dis-
tinguishes the underlying emotional states of spontaneous subtle
facial expressions. Automatic MER is challenging because that
the intensity of subtle facial muscle movement is extremely low
and the duration of ME is transient.

Recent works adopt motion magnification or temporal
interpolation to resolve these issues. Nevertheless, existing
works divide them into two separate modules due to their
non-linearity. Though such operation eases the difficulty in
implementation, it ignores their underlying connections and
thus results in inevitable losses in both accuracy and speed.
Instead, in this paper, we propose a consolidated Eulerian
framework to reveal the subtle facial movements. It expands
the temporal duration and amplifies the muscle movements
in micro-expressions simultaneously. Compared to existing
approaches, the proposed method can not only process ME
clips more efficiently but also make subtle ME movements more
distinguishable. Experiments on two public MER databases
indicate that our model outperforms the state-of-the-art in both
speed and accuracy.

I. INTRODUCTION

Micro-expression recognition (MER) is an emerging facial
affective analysis task to distinguish the subtle spontaneous
facial expressions. Automatic MER has many potential ap-
plications like clinical diagnosis, lie detection, and human
computer interaction (HCI). MER is challenging since people
tend to hide their emotions in case of being found. Studies
of ME in psychology indicate that even a trained human can
only achieve a MER accuracy lower than 50% [5].

Promising progresses have been made over the past
decade, in aspects such as dataset construction [15], [34],
[4], spatial-temporal descriptors either by hand-crafting [3],
[36], [14], [39], [9], [33], [7], [40], or deep learning [23],
[26], [16], [31], [32], [8], [29], etc. However, it is still far
away from satisfaction. The difficulties are two-fold : 1). The
ME related muscle movements are remarkably subtle. ME,
unlike general facial expressions, only covers a small area
of face so that the movements are too imperceptible to be
detected. 2). ME duration is quite short. Generally, ME only
lasts approximately from 1/25 to 1/3 seconds [25].

Recent works tend to employ motion magnification
(MAG) or temporal interpolation as pre-processing steps for
MER. MAG [19], [30], [35] amplifies the intensity of motion
and makes subtle motion much easier to observe. Li et
al. [14] amplified the subtle facial movements by employing
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MAG before extracting features and improved the accuracy
by around 10% on the CASMEII [34] database. Obvious
improvements are also observed in [21], [20], [22] as a result
of introducing MAG. Besides MAG, temporal interpolation
also attracts increasing attention. Pfister et al. [24] proposed
to use Time Interpolation Model (TIM) [38], [37] for MER
problem, which allows to obtain sufficient frames for feature
extraction even for very short expressions. Methods [15],
[34], [13], [18], [14], [12], [10], [11] also follow a similar
mechanism and get promising results.

Despite these progresses, MAG and TIM are usually
treated as two separate modules [34], [11], [14]. Such
assumption eases the difficulty in implementation. However,
there are several problems. Firstly, it is prone to having the
diluted problem' [13] into the succeeding process. Secondly,
the calculation of intermediate products increases the com-
putational costs. Finally, what makes it worse, ignoring the
underlying connections will inevitably result in the loss of
recognition accuracy.

To address these issues, we explore the underlying joint
formulations for MAG and TIM and propose a consolidated
framework for revealing the subtle spatial-temporal informa-
tion in ME clips.The proposed model, which is called ME-
Booster, can accomplish temporal interpolating and facial
muscle motion magnification simultaneously. Compared to
the traditional MER systems, our ME-Booster not only
avoids unnecessary separation of the two modules but also
eliminates the side effect brought by the intermediate pro-
cess. We investigate our framework on two popular sponta-
neous MER databases: SMIC [15] and CASMEII [34]. Ex-
perimental results indicate that our model is computationally
economic and substantially outperforms the state-of-the-art
approaches.

The contributions of this paper are two-fold: 1). We
propose a consolidated video motion revealing model for
MER, where TIM and MAG are, for the first time, jointly
formulated; 2). We provide fast implementations of MAG
and TIM methods by exploring their underlying linear forms.
It is thus computationally efficient.

II. METHODOLOGY

In this section, we describe a consolidated Eulerian subtle
motion revealing model, termed ME-Booster, to boost micro-
expression recognition. Suppose there is a ME video clip
V = (I(1),1(2),...,I(T)), where I(t) € R? denotes the

'A phenomenon that the facial muscle movements fall into decline.
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Fig. 1: Overview of the proposed ME-Booster. The original three-
frame input can hardly be distinguished, while ME-Booster (top)
expands it to five frames and makes it much easier to recognize by
eyes. The traditional model (bottom) treats MAG and TIM as two
parts. So there is an intermediate product: the amplified ME without
temporal extension. On the contrary, our ME-Booster model treats
these processes as an entirety.

t-th frame of the video for t = 1,--- 7. Our goal is to
produce a video V where the subtle facial movements can
be easily observed.

The model, in its general form, is formulated by a video-
specific function f with a set of parameters © as follows

V= f(V;0), (1)

where the function f : R2XT — R?*T" maps the input video
to a fixed length (7") one, where the subtle facial muscle
movements in V' are revealed.

Considering the non-linear nature of the representative
motion magnification and temporal interpolation methods,
such as the Eulerian based MAG method [30] and the graph
spectral TIM method [2], existing MER approaches [34],
[11], [14] usually treat MAG and TIM as two separate
modules and adopt them in a successive manner. On the
contrary, in this paper we will show that under certain but
reasonable circumstances, MAG and TIM can be embedded
in Eq. (1) by a scale-wise linear function. Firstly, the Eulerian
MAG model [19], [30], [35] is multi-scale and non-linear,
and thus a complicated system. However, we realize that
it is feasible to implement it as a series of scale-wise
linear functions, since in each of the scales it approximates
movements using the Taylor expansion. Secondly, we will
show that the interpolated video can be obtained without
explicitly solving the generalized eignvalue problem as the
TIM method [38] does. Thus, w.l.o.g., in the following
context, we formulate our model with a single-scale setting
and consider the f(-) as a linear function?

V=VW. 2

To obtain the parameter matrix W € RTXTl, we decouple
it as follow
W =wW"wW/', 3)

in which WM ¢ RT*T and W’ € RT*T  are the magnifi-
cation matrix and the interpolation matrix, respectively. The

2 Multi-scale analysis can be easily reached by applying the model to each
single scale.

order of the right hand side of Eq. (3) is consistent with the
one in [14].

In the following paragraphs, we will derive the solutions
of WM and W/ respectively in detail and show that both
WM and W' can be determined once the lengths of the
input and output video are given.

Solution to the magnification matrix W

In this subsection, we aim to get the solution for W,
Let W be the entry of W at (i, j) fori,j =1,--- ,T.
The magnified frame 7,,(t) can be described as

T
Ln(t) =Y 1)WY &)
=1

To get the solution of W™, we revisit the Eulerian magnifi-
cation model [30]. It regards the first frame in a video as a 1D
digital signal s(z), and every other frame as a displacement
of this signal, i.e., I(x,t) = s(xz + §(¢)), where I(x,t) is
the pixel intensity at location x of the ¢-th frame and §(¢) is
a tiny displacement function. It is then approximated by the
first-order Taylor expansion

s

ox’ ®)
where every frame in the ME video is an addition of the
base signal and the multiplication of the displacement and
the first derivative. Here, 9 = J(t) — I(t— 1) represents the
ME motion. It is fulfilled using a recursive algorithm to take
all the preceding frames into account and get the ‘historical’
motion B(t)

s(z+6(t)) = s(x) +6(¢)

B(t) = L1(t) — Lo(t). (6)
Ly(t) and Lo(t), for t = 2,--- | T are auxiliary variables

Li(t) =wI(t)+ (1 —w1)L1(t—1)
Lg(t) = ’U)QI(t) + (1 — wg)Lz(t — 1)7

where the Li(1) = I(1), L2(1) = I(1). The hyper-
parameters wy and wy are in the range (0,1) and wy > ws.
Then applying a magnification factor « to B(t), we get the
magnified frame I, (t)

Ln(t) = I(t) + aB(1). ®)

The Eulearian magnification model in Eq. (8) is clearly a
linear model. We solve out a parameter matrix operated on
the input video by expanding the recursive form in Eq. (7).
As a result, by combining Eq. (4) and Eq. (8), we get the
solution for WM

(7

a(l —wy)%wb — a(l —wy)*wh if j >
WM = ¢ a(wr —ws) + 1 if j=i (9
0 else,

where ¢ = j—i and b = min(1,i—1). As it is in Eq.
(9), WM is an upper triangular matrix since ME motion is
only related to the preceding video frames. As the parameters
are clearly independent of the input video, we thus compute
W™ in advance and store it by a look-up table (LUT) to
further improve the computational efficiency. To get a better



magnification result, one can employ W on the multi-scale
input video, where for different scales, the factor « in Eq.
(9) may be truncated.

Solution to the interpolation matrix W/

In this subsection, we will derive W to form our effi-
cient temporal interpolation module for extending V/,, to T”
frames. Just for clarification, we introduce the symbols V,,, =
(I (t)) for t = 1,2,---,T to describe the intermediate
magnification output, though they are finally eliminated by
Eq. (3) in practice. The recovered video V is

V=V,W. (10)

Applying a graph spectral method [2], the traditional TIM
approach [38] finds projection functions by which the frame
adjacency priority is kept in the low latent space. That is

]:map(lm(t)) = (M_lvTUT)(Im(t) - I;n)a (1m)

where the function F,., : R?Y ~— RT-! describes a
projection from an image to T — 1 points. Here, U is
an unitary matrix from SVD [6] on input, M and V are
graph Laplacian related diagonal matrix and eigenvectors,
respectively. I,, is the average frame of all the frames in
video V,,,. Readers may refer to [38] for more details.

In this way, every frame becomes a group of discrete
points in a latent space. According to [2], the optimal projec-
tion is a group of sine functions. Let F(t) = Frap(Im(t)).
By sampling from the latent space and projecting the points
back to image space, the input is reconstructed. According
to Eq. (11), the intermediate magnification video can be
reconstructed by

where V,,, = Vm(%lTxT), Y = []—"(%),}'(%),...,}'(1)]
are T groups of points in latent space. In [38], A =
U(V~!)TM. However, one can avoid solving generalized
problem since Y is known. We adopt the right inverse matrix
to compute A
A=V,I- %1TxT)YT(YYT)*1. (13)
So sampling T ' groups of points, say Y =
[]-’(%),]—'(%),...,]—'(1)} , the video is extended to 7"
frames. That is
V=AY +V!

m?

(14)

where V/,(t) = V;, (% 17x7). Since Y’ contains groups of
discrete points, it satisfies the requirement for a linear TIM
model. Substituting Eq. (13) into Eq. (14), we obtain the
solution for W7, that is

1 ;o1
W= (1- TlTxT)YT(YYT)_lY + il (15)

Here Eq. (15) provides a linear solution to W/ and it is
independent to the input video, which means W' also can
be computed in advance.

After obtaining WY and W/, we employ Eq. (3) to solve
the matrix W, which is the only parameter matrix used in

practice, and a consolidated model is constructed. Obviously,
ME-booster is a unique model for both video magnification
and time interpolation. The relation to the magnification and
interpolation is clear. When W is an identity matrix, the
model formulated in Eq. (2) is a MAG model; When wM
is an identity matrix, it degenerates to a TIM model.

Our ME-booster model is computationally economic and
can make the subtle ME more distinguished. These ad-
vantages are mainly contributed by the discovery of the
underlying common linear property between TIM and MAG
modules. By this way, there is no need of intermediate
process or complicated computation of graph Laplacian.
Besides, expanding recursive forms and decoupling model
parameters from the input also dedicate to these advantages.

III. EXPERIMENTS

We evaluate the proposed model on two widely used
spontaneous ME databases: SMIC [15] and CASMEII [34].
The SMIC database contains 306 ME video clips belonging
to four sub-sets, which are SMIC-HS, SMIC-VIS, SMIC-
NIR, and SMIC-subHS. There are three classes for all the
ME clips : Positive, Negative, and Surprise. The CASMEII
database contains 247 ME video clips. The baseline method
of CASMEII chooses classes Happiness, Surprise, Disgust,
Repression, and Others for training and testing.

To extensively evaluate the proposed ME-Booster, we
perform the following three experiments: A). Consolidation
versus separate; B). Comparisons to the state of the arts; and
C). Computational cost evaluation.We explore the different
values for hyper-parameters 77, a, and w; and wo. Based on
the results, which are found consistent to those in [14], [30],
the parameters are empirically set to 10, 16, 0.4, and 0.05,
respectively. For the experiments A) and B), a linear SVM [1]
is used as classifier for our model, unless further specified.
As suggested by [14], in all MER experiments, the Leave-
One-Subject-Out (LOSO) protocol is adopted. The micro-
average method [27] is employed as evaluation metrics.

A. Consolidation versus separate

We compare ME-Booster with the current best method
[14], which contains both the MAG and TIM modules as
two separate ones, as illustrated as the ’traditional model’
in Fig. 1. For fair comparison, we use the same classifier
and three mainstream temporal-spatial feature descriptors:
LBP-TOP[36], HOG-TOP[3] and HIGO-TOP [14], which
are extensively evaluated in the state of the art [14].

The comparative results are reported in Fig. 2. There
are several important observations. 1) For HIGO-TOP, the
accuracy is improved by almost 10.0% on the SMIC-NIR.
On the SMIC-subHS, our accuracy is 87.32% , while the
current best is only 80.28%. 2) For the HOG-TOP, our model
improves the accuracy by 3.0% on average. 3) For the LBP-
TOP, ME-Booster is slightly better than the baseline on the
SMIC, while it improves by almost 4.5% on the CASMEII.
4) The largest improvements in accuracy are almost 13%,
6%, and 4.5% for the HIGO-TOP, HOG-TOP, and LBP-TOP
respectively. From the results, it is safe to conclude that our
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Fig. 2: MER performance comparison using three mainstream feature descriptors: (a) HIGO-TOP, (b) HOG-TOP, and (c) LBP-TOP.

TABLE I: Experimental results of MER comparing to recent state-
of-the-art approaches on the SMIC and the CASMEII databases.

[ SMIC-HS [ CASMEII
Baseline-SMIC [15] | 488% |
Baseline-CASMEII [34] | - \
Adaptive Mag [22] -
Wang et al.[28]
Liong et al.[17]
Huang et al.[11]
DiSTLBP-RIP [10]
Deep Selective [23]
Deep Apex [16]
Li et al.[14]
Ours

63.41%

51.9%
62.3%

53.56%
60.98%
63.41%
53.60%

64.37%
64.78%
47.30%
60.64%
67.21%
70.85%

68.29%
68.90 %

TABLE II: Experimental results of MER on sub-datasets of SMIC.

[ SMIC-subHS | SMIC-VIS | SMIC-NIR

Baseline-SMIC [15] ] - [ 521% [ 38.0%
Li et al.[14] [ 80.28% [ 81.69% [ 6761%
Ours | 87.32% | 8310% | 69.01%

model achieves superior accuracy to the current best [14],
regardless of the video descriptors chosen.

B. Comparison to the state of the arts

We compare our method to ten state-of-the-art approaches,
including both the deep learning methods [23], [16] and
the conventional hand-crafting feature approaches [15], [34],
[22], [28], [17], [10], [11], [14]. The current best method
[14] provides a standard pipeline for MER tasks. As the
HIGO-TOP descriptor is recommended by [14], we also use
it as the video descriptors. The results are summarized in
Table. I and Table. II. For all the databases, our method
achieves the best accuracy against all the other methods.
More specifically, the accuracy on SMIC-HS, SMIC-subHS,
SMIC-VIS, SMIC-NIR, and CASMEII are 68.90%, 87.32%,
83.10%, 69.01%, and 70.85% respectively, while the second
best results achieved by [14] are only 68.29%, 80.28%,
81.69%, 67.61%, and 67.21% respectively. It indicates that
our ME-Booster is robust to the substantial variations in
appearance brought by different sensors.

C. Computational cost evaluation

Finally, we compare the computational cost of ME-Booster

to the current best work [14]. The experiment is conducted
on MATLAB R2017b platform, and the desktop is with an
Intel CPU i5-6500 (3.20GHz) and RAM of 8 GB. Results
indicate that our model is more efficient on both databases.
For SMIC, there are 164 video clips, the running time are
125.49 seconds (s) for Li et al. [14] and 27.42 s for our
model. For CASMEII, there are 247 video clips, our model
can be even ten times faster than the model in [14], the
running time are 420.89 s and 41.61 s, respectively.

IV. CONCLUSIONS

We explore the underlying relationship between MAG and
TIM and realize that both of them can be characterized
by a linear system. In line with this important finding, we
propose a consolidated Eulerian framework, ME-Booster,
for revealing the subtle and fleeting facial expressions. ME-
Booster boosts the performance of MER in both speed and
accuracy. On one hand, it avoids unnecessary separation
of the two modules and thus the computational cost is
reduced. On the other hand, the accuracy is further improved
since it eliminates the side effects brought by the inter-
mediate process. ME-Booster is online, training-free, and
compatible with any succeeding processing methods in the
MER pipeline. Experiments on two databases indicate that
our model outperforms the state-of-the-art approaches in an
efficient manner.
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