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Abstract— This paper summarises the Facial Micro-
Expression Grand Challenge (MEGC 2018) held in conjunction
with the 13th IEEE Conference on Automatic Face and Gesture
Recognition (FG) 2018. In this workshop, we aim to stimulate
new ideas and techniques for facial micro-expression analysis
by proposing a new cross-database challenge. Two state-of-
the-art datasets, CASME II and SAMM, are used to validate
the performance of existing and new algorithms. Also, the
challenge advocates the recognition of micro-expressions based
on AU-centric objective classes rather than emotional classes.
We present a summary and analysis of the baseline results using
LBP-TOP, HOOF and 3DHOG, together with results from the
challenge submissions.

I. INTRODUCTION

Facial micro-expressions (MEs) are involuntary move-
ments of the face that occur spontaneously when a person
experiences an emotion but attempts to suppress the facial
expression, typically found in a high-stakes environment.
Computational analysis and automation of tasks on micro-
expressions is an emerging area in face research, with a
strong interest appearing as recent as 2014. Only a few
spontaneously induced facial micro-expression datasets have
provided the impetus to advance further from the compu-
tational aspect. Particularly comprehensive are two state-
of-the-art FACS coded datasets: the Chinese Academy of
Sciences Micro-Expression Database II (CASME II) [1] and
the Spontaneous Micro-Facial Movement Dataset (SAMM)
[2], there has been no attempts to introduce a more rigorous
and realistic evaluation. This is the inaugural workshop with
the aim of promoting interactions between researchers and
scholars from within this niche area of research, and also
those from broader, general areas of computer vision and
psychology research. The focus of the grand challenge is on
the CASME II-SAMM cross-database recognition of micro-
expression classes. We hope to solicit original works that
address a variety of modern challenges of ME research such
as spotting macro-/micro-expressions from long videos, and
deep learning techniques.

II. OBJECTIVE CLASSES

The emotion classes in the existing datasets were based on
both self-report and Action Units (AUs) classification. Fig 1
and Fig. 2 illustrate the happiness category from CASME
II and SAMM, but were coded with different AUs. These

inconsistencies adds further justification for the introduction
of new classes based on AUs only [3].

This challenge aims to stimulate the micro-expressions
researchers in developing new techniques for the AU-centric
objective classes. A summary of the objective classes are as
illustrated in Table I. A single composite database for this
experiment has a total of 253 micro-expressions.

TABLE I
THE TOTAL NUMBER OF MOVEMENTS ASSIGNED TO THE NEW

OBJECTIVE CLASSES FOR CASME II AND SAMM.

Class CASME II SAMM Composite
I 25 24 49
II 15 13 28
III 99 20 119
IV 26 8 34
V 20 3 23

Total 185 68 253

III. CROSS-DATABASE CHALLENGE TASKS

The following newly established protocols are proposed to
tests for the robustness in learning salient characteristics of
micro-expressions that are universal in nature.

A. Task A: Holdout-database Evaluation (HDE)

Training and testing sets are to be sampled from different
micro-expression databases (CASME II and SAMM) and
evaluated. The training and testing sets are then swapped
and the process is repeated for a second time (similar to
a 2-fold cross validation, i.e. Train on CASME II and test
on SAMM, vice versa). This protocol mimics a realistic
scenario where characteristics of micro-expressions learnt
in one system may be transferred to another system (with
another group of people enrolled).

Performance Metric: Performance of this task is to be
measured by two metrics that are typically used in cross-
database speech emotion recognition, i.e., unweighted aver-
age recall (UAR) and weighted average recall (WAR) [4].
WAR is the normal recognition accuracy (i.e. number of
correctly classified samples divided by the total number of
samples), while UAR is the ”balanced” recognition accuracy
(i.e. sum of accuracy of each class divided by the number
of classes without considerations of samples per class). It is
most desired if a method obtains a high WAR and an equally978-1-5386-2335-0/18/$31.00 c©2018 IEEE



Fig. 1. Sample frames from CASME II database showing Subject 6’s micro-expression clip ‘EP01 01’ that was coded as L14+L15 in the ‘happiness’
category.

Fig. 2. Sample frames from SAMM database showing Subject 7’s micro-expression clip ‘007 6 3’ that was coded as an R6A+R12 in the ‘happiness’
category.

high UAR. A method is also seen as favourable to certain
dominant classes only if the gap between WAR and UAR
is large. The WAR and UAR of both folds are averaged to
obtain the overall WAR and UAR scores.

B. Task B: Composite database evaluation (CDE)

All samples from both databases (CASME II and SAMM)
are combined into a single composite database, on the basis
of objective classes. Leave-One-Subject-Out (LOSO) cross-
validation is used to determine the training-testing splits (i.e.
each subject group is held out as the testing set while all re-
maining samples are used for training). There are altogether
55 subjects (26 from CASME II and 29 from SAMM) after
combining both databases. This protocol mimics a realistic
scenario where a more diverse group of people are enrolled
to a single system, with subject-independent testing.

Performance Metric: F1-Score (of F-measure) is proposed
as the metric for imbalanced databases [5]. Using the conven-
tional accuracy measure may result in a bias towards classes
with large number of samples (i.e. naive classification of
all samples to a large-sample class would result in much
higher result than random chance), hence overestimating
the capability of the method. The overall F1-score should
micro-averaged across the whole database, i.e. it should be
calculated based on the total true positives, false negatives
and false positives, across all LOSO folds.

IV. METHODOLOGY

This section summarises the methods proposed by three
submitting teams.

A. Baseline methods for MEGC 2018 by Merghani et al.

To establish some baselines for the MEGC challenge,
Merghani et al. implemented three popular feature descrip-
tors commonly used in micro-expression representation:

LBP-TOP, a local spatio-temporal descriptor which was first
introduced by Zhao et al. [6]; 3DHOG which had been used
in early works by Polikovsky et al. [7], [8] and HOOF, which
has been advocated by Lui et al. [9]. For all these descriptors,
the authors divided the image frame into 5x5 blocks, a widely
used method in micro-expressions analysis [1], [10], [11],
[12]. Finally, Sequential Minimal Optimization (SMO) [13]
was used for classification. Above the similar methods, the
authors also proposed a selective block-based feature fusion
representation method for Task B (CDE). Since not all 25
blocks correspond to facial movement, a pre-defined set of
salient blocks were used to extract all three descriptors,
which are then concatenated into a single histogram.

B. ELRCN by Khor et al.

Khor et al. proposed an enriched version of the Long-term
Recurrent Convolutional Network [14] called ELRCN, which
comprises of a deep hierarchical spatial feature extractor and
a temporal module that characterizes temporal dynamics.
Enrichment was achieved through two variety of ways;
first, by stacking the input channel with additional low-
level information, namely optical flow and optical strain [15],
[16]; secondly, by stacking deep spatially-encoded features
to enrich the temporal dynamics representation. The VGG-
Faces [17] deep CNN model was the authors’ choice of the
base spatial feature extractor. Temporal interpolation model
(TIM) was used to constrain each video sequence to a fixed
length of 10 frames due to requirements of the temporal
module. Classification was achieved using a basic linear
SVM.

C. Macro to micro transfer learning by Peng et al.

The third participating work by Peng et al. employed
a transfer-learning-based approach to applying deep CNN



on small ME datasets. Specifically, the authors first fine-
tune an ImageNet-pretrained ResNet10 [18] on four macro-
expression datasets – the Extended Cohn-Kanade (CK+)
[19], Oulu CASIA NIR & VIS [20], JAFFE [21] and
MUGFE [22]. Using a large number of images (>10k) from
these macro-expression datasets, a resampling technique was
applied to provide balance training with further alterations by
colour shift, rotation and smoothing applied. Then, the model
is further fine-tuned on the CASME II and SAMM database
using the apex frame of each sample.

V. CHALLENGE RESULTS

In this section, we report and analyze the results of the
challenge. We have received submissions from three teams
of participants. All three teams have submitted the results for
Task B: Composite Database Evaluation (CDE). Meanwhile
for Task A: Holdout-Database Evaluation (HDE), results of
two methods were received. The results reported in this
section are computed using the output result logs submitted
by the participants.

A. Task A: Holdout-Database Evaluation (HDE)

Table II summarizes the results of HDE. The overall result
shows the method based on the transferred ResNet10 model
proposed by Peng et al. performs the best with an average
WAR of 0.561 and an average UAR of 0.389. The enriched
long-term recurrent convolutional network with spatial di-
mension enrichment (SE) proposed by Khor et al. achieves
the second-best performance. The three methods using man-
ually designed features, namely LBP-TOP, 3DHOG, and
HOOF, shows inferior performance. Nevertheless, HOOF is
the best among the three, with a WAR of 0.353 and a UAR of
0.348. Moreover, HOOF surprisingly obtains the best UAR
out of all methods when training on SAMM and testing on
CASME II.

Moreover, there are two important observations. Firstly,
deep learning methods outperform handcrafted features sub-
stantially in the HDE test; Secondly, as Table II indicates,
the values of WAR and UAR may vary even for the same
method. For example, when testing on the CASMEII dataset
using SAMM as training data, the 3DHOG is ranked in the
third position in terms of WAR, while it becomes the last
one in terms of UAR. It is therefore suggested to use both
measures jointly for comprehensive comparisons.

B. Task B: Composite Database Evaluation (CDE)

Table III lists the results of the CDE task (Task B) in
terms of F1-score1 and the weighted F1-score2. LBP-TOP,
3DHOG, HOOF are the baseline methods using a block size
of 5×5. The other three methods are computed using the
output result logs submitted by the participants.

1The F1-score computed here is an average of the class-specific F1-scores
across the five classes (or macro-averaging) by stacking all results of the
LOSO evaluation.

2The class-specific F1-scores are weighted by the number of samples in
the corresponding classes before averaging.

The macro-to-micro transferred ResNet10 model proposed
by Peng et al. outperforms the other competing methods sub-
stantially, with an F1-score of 0.639 and a weighted F1-score
of 0.733. This suggests the great potential of using modern
deep learning methods for cross-dataset subject-independent
micro-expression recognition. The selective block-based fea-
ture fusion method by Merghani et al. achieves the sec-
ond best performance. When comparing its F1-score and
weighted F1-score against that of the three baseline methods,
it can be easily observed that by appropriate feature fusion
techniques, methods using handcrafted features are still able
to improve their performance and obtain highly competitive
results.

Among the three baseline methods, HOOF and LBP-TOP
outperform, by a large margin, the 3DHOG. Moreover, it
is interesting to find that their performance is marginally
better than the enriched long-term recurrent convolutional
network with spatial dimension enrichment (SE) proposed
by Khor et al., which only has an F1-score of 0.393 and
a weighted F1-score of 0.523. The inferior performance
of the recurrent network is likely due to the inability of
deep architecture in learning from small datasets alone, and
possibly also, a significantly different face pre-processing
procedure3. Moreover, unlike the method by Peng et al.,
where a pre-trained model from a large-scale dataset is
available, there is no such pre-train process for the temporal
recurrent LSTM model in the method by Khor et al. Thus,
this suggests that there is room for the recurrent network to
improve in the CDE task.

VI. CONCLUSION AND FUTURE CHALLENGE

This challenge is the first Grand Challenge on facial micro-
expressions. Three teams have taken part in the challenge.
In view of the results, the submission by Peng et al. used
a simple deep learning approach to obtain the best perfor-
mances on both Task A and Task B. Although the number
of micro-expression samples is very small and probably not
suited to use deep learning techniques, the use of transfer
learning from macro-expression samples offered a potential
solution to achieve better performances for micro-expression
recognition. Particularly, the broad availability of large-scale
facial expression databases promotes such possibilities.

This challenge focuses on the task of micro-expression
recognition. However, in practice, micro-expression spotting
is also an essentially important problem, if not more im-
portant. The task of micro-expression spotting is to find the
period of time which overlaps with the duration between
onset frame and offset frame of a micro-expression. If we are
able to spot the occurrence of micro-expressions from long
videos or live video streams in an automated manner, we can
provide assessment of whether a person is telling lies at that
opportune moment. Future challenges will focus on micro-
expression spotting. CAS(ME)2 [23] database contains 87

3Khor et al. applied TIM10 with face-cropping by Face++ API, and
alignment with DLib library for their SAMM samples. Peng et al. used
AAM for face area segmentation. Merghani et al. used the original pre-
cropped faces.



TABLE II
THE RESULTS OF HOLDOUT-DATABASE EVALUATION (TASK A).

Method WAR UAR
@SAMM @CASME II Average @SAMM @CASME II Average

LBP-TOP 0.338 0.232 0.285 0.327 0.316 0.322
3DHOG 0.353 0.373 0.363 0.269 0.187 0.228
HOOF 0.441 0.265 0.353 0.349 0.346 0.348

Peng et al. 0.544 0.578 0.561 0.440 0.337 0.389
Khor et al. 0.485 0.384 0.435 0.382 0.322 0.352

TABLE III
THE RESULTS OF COMPOSITE DATABASE EVALUATION (TASK B ) BASED ON LOSO CROSS VALIDATION.

Method F1-Score Weighted F1-score
LBP-TOP 0.400 0.524
3DHOG 0.271 0.436
HOOF 0.404 0.527

Peng at al. 0.639 0.733
Merghani et al. 0.454 0.579

Khor et al. 0.393 0.523

long videos that contain both macro- and micro-expressions.
This provides an interesting challenge for future work in
computational analysis of facial micro-expression.
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