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Abstract—Micro-expressions are difficult to be observed by
human beings due to its low intensity and short duration. Re-
cently, several works have been developed to resolve the problems
of micro-expression recognition caused by subtle intensity and
short duration. One of them, Local binary pattern from three
orthogonal planes (LBP-TOP) is primarily used to recognize
micro-expression from the video recorded by high-speed camera.
Several variances of LBP-TOP have also been developed to
promisingly improve the performance of LBP-TOP for micro-
expression recognition. However, these variances of LBP-TOP
including LBP-TOP cannot well extract the subtle movements
of micro-expression so that they have the low performance.
In this paper, we propose spontaneous local radon-based bi-
nary pattern to analyze micro-expressions with subtle facial
movements. Firstly, it extracts the sparse information by using
robust principal component analysis since micro-expression data
are sparse in both temporal and spatial domains caused by
short duration and low intensity. These sparse information can
provide much motion information to dynamic feature descriptor.
Furthermore, it employs radon transform to obtain the shape
features from three orthogonal planes, as radon transform is
robustness to the same histogram distribution of two images.
Finally, one-dimensional LBP is employed in these shape fea-
tures for constructing the spatiotemporal features for micro-
expression video. Intensive experiments are conducted on two
available published micro-expression databases including SMIC
and CASME2 databases for evaluating the performance of the
proposed method. Experimental results demonstrate that the
proposed method achieves promising performance in micro-
expression recognition.

I. INTRODUCTION

Facial expressions of emotion, especially those known as
micro-expressions, amongst nonverbal behaviors like ges-
tures and voice, have received increasing attention in recent
years [1]. A micro-expression is subtle and involuntary fa-
cial expression commonly occurring in high-stakes situations,
where people have something to lose or gain. The importance
of micro-expression study has become apparent in many poten-
tial applications, such as in the security field. However, micro-
expression are quite distinguish from regular facial expression,
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since the micro-expression generally remain less than 0.2
seconds and are very subtle since people are trying to control
and repress [2], [3]. Comparing with regular facial expression,
they are very hard for people to detect and recognize. In
order to improve the ability of people to recognize micro-
expressions, researchers in psychology made contributions to
train people to better recognize micro-expressions using train-
ing tools. However, even with these training tools, the ability of
people reading micro-expression achieves only around 40% in
recognizing micro-expressions [4]. On the other hand, manual
reading micro-expression takes people lots of time to analyze
micro-expressions. Therefore, there is a great need for a
high-quality micro-expression recognition system on assisting
people to accurately recognize them.

As spontaneous micro-expressions can reveal genuine emo-
tions in high-stake situations that people try to conceal their
emotion, spontaneous facial micro-expression has been firstly
and automatically examined by [5], [6]. As we know, there
are many appearance features developed for facial expression
recognition. Motivated by the research in facial expression
recognition, researchers attempted to exploit the existed ap-
pearance features for micro-expression recognition. Amongst
appearance-based facial expression representation, local binary
pattern (LBP) is a simple yet very efficient texture operator
which labels the pixels of an image by thresholding the
neighborhood of each pixel and considers the result as a binary
number. Due to its discriminative power and computational
simplicity, LBP texture operator has become a popular ap-
proach in various applications. It can be seen as a unifying
approach to the traditionally divergent statistical and struc-
tural models of texture analysis. Perhaps the most important
property of the LBP operator in real-world applications is
its robustness to monotonic gray-scale changes caused, for
example, by illumination variations. Another important prop-
erty is its computational simplicity, which makes it possible
to analyze images in challenging real-time settings. As far
as we know, the first automatic micro-expression recognition
system is developed by [6], which is based on the LBP,
due to its efficiency and performance in facial expression
recognition [7]. The LBP-TOP is further implemented by [8],
[9] to provide the baseline result in several micro-expression



databases, such as the second version of Chinese Academy
of Sciences Micro-expression (CASME2) database [9]. Since
then, LBP and its variants have been employed as the feature
descriptors for micro-expression recognition in many other
studies. For example, Davison et al. [10] exploited LBP-TOP
to investigate whether micro-facial movement sequences can
be differentiated from neutral face sequences.

As observed in [8] [6] [9], the primary works only exploited
the pixel-level in an image, resulting in the unstable of micro-
expression recognition. Some works attempted to develop
LBP-TOP on multi-layer architecture deriving from an image.
In [11] Ruiz-Hernandez and Pietikäinen firstly exploited sec-
ond order Gaussian jet, and then re-parametrize LBP-TOP on
these jets. Wang et al. [12] proposed to use robust principal
component analysis (RPCA) to extract the subtle motion as
the high-level layer, in which micro-expression subtle change
can be well described by RPCA. Additionally, based on this
high-level layer, Local Spatiotemporal Directional Features
is proposed to extract the spatiotemporal features for micro-
expressions. Besides multi-layer methods, some researchers
aim toward making LBP-TOP more efficient and robust. For
example, recent work in [13] used six intersection points
for LBP-TOP to reduce redundant information and achieve
a promising performance on micro-expression recognition.
As well, some static-image-based binary pattern is extent to
spatiotemporal domain for micro-expression recognition. Cen-
tralized Binary Patterns is extend to temporal domain by using
LBP-TOP framework for micro-expression recognition [14].
Riesz wavelet transform is implemented by Oh et al. [15] to
obtain multi-scale monogenic wavelets for micro-expression
recognition. Completed local quantized pattern [16], which
exploited magnitude and orientation as additional source
of LBP, has been shown a considerable result on texture
classification. Its temporal extension is further proposed to
extract the flexible and completed feature information for
micro-expression recognition [17]. Another orientation related
work is proposed by Li et al. [18] to improve LBP-TOP by
combining LBP, histograms of oriented gradient (HOG) and
histograms of image gradient (HIGO). Zhang et al. [19] extract
the movement of micro-expression by combining optical flow
orientation histogram and LBP-TOP.

It is observed that the above-mentioned approaches based
on the framework of LBP-TOP mostly consider the dynamic
texture information from three orthogonal planes to character-
ize the spatiotemporal feature of face image. However, these
existed methods used in micro-expression recognition only
consider texture information to represent face images, but
ignore the shape information of face images. As suggested
in [20], the shape information can provide useful for facial
expressions complementary to appearance features. The work
in [21] also demonstrated that the shape information can
enhance the discriminative ability of LBP for distinguishing
two different-class image but with the same LBP feature distri-
bution. Therefore, it is useful to micro-expression recognition
by exploiting shape information of micro-expression images
for dynamic texture information.

Radon transform are classical methods for pattern analysis
that is widely used in face tracking [22], [23], since they
extract face shape properties from face images and increase
discrimination of images. Houam et al. [21] exploited a simple
but effective radon transform, namely integral projection,
to enhance the discriminative ability of LBP. It firstly is
invariant to a number of image transformations like scale
and translation. It is also highly robust to white noise. Then
it preserves the principle of locality of pixels and sufficient
information in the process of projection. Recently, Huang et
al. proposed to use integral projection to describe the shape
of micro-expression and then combine LBP to boost the per-
formance of micro-expression analysis [24], [25]. Their works
demonstrated that image projection techniques can enhance the
robustness and performance of LBP. Therefore, we propose
a new spatiotemporal method based on radon transform to
improve the performance of micro-expression recognition, in
which radon transform can provide the shape property of facial
images.

To explain the concepts of our approach, the paper is
organized as follows. In Section II, we explain our method
for exploring the new spatiotemporal features based on radon
transform for micro-expressions. The results of applying our
method for recognizing micro-expressions are provided in
Section III. Finally we summarize our findings in Section IV.

II. PROPOSED METHODOLOGY

A. Extract subtle motion

Due to short duration and low intensity of micro-expression,
the micro-expression data are sparse in both temporal and
spatial domains [26]. For a frame of micro-expression I, it
can be decomposed into subject information S and the subtle
motion information M, which is implicitly represented as
I = S + M. Robust principal component analysis (RPCA)
was proposed to extract the sparse information and has been
attracting much attention in face recognition [27], [28] and
micro-expression [12], [25]. In this paper, we use RPCA to
extract the sparse motion information M of micro-expression.
Based on these sparse motion information, we further exploit
the spatiotemporal feature descriptor for micro-expression
recognition.

B. Spatiotemporal local Radon-based binary pattern (STRBP)

The radon transform [29] is the projection of the image
intensity along a radial line oriented at specific angle. It is
based on the parametrization of straight lines and the evalua-
tion of integrals of an image along these lines. Due to inherent
properties of Radon transform, it is a useful tool to capture the
directional features of an image. The radon transform has been
extensively used to extract the local features in edge detection,
texture and fingerprint classification and image retrieval in
computer tomography. Mathematically, let M(x, y) be the



Fig. 1: Performing the binary label on the central element of
a vector with 6 neighbors.

intensity of a pixel at location (x, y) in an subtle image M,
the random transformation of M(x, y) is defined as:

F(θ, s) =

∫ ∞
−∞

∫ ∞
−∞

M(x, y)δ(x cos θ + y sin θ − s)dxdy,

(1)
where δ is a Dirac function, θ is a projection angle and s is
the threshold value.

Our empirical experience on [24] shows that radon transfor-
mation with θ and θ+π/ can better extract the subtle change
of signals from two orthogonal directions. In this work, we
focus on the above two cases. Besides sampling signal along
Equation 1, the other signal can be collected by:

F(θ+ π/2, s) =

∫ ∞
−∞

M(x, y)δ(−x sin θ+ y cos θ− s)dxdy,

(2)
where we empirically set s as 0.

The low-frequency components contribute to the global
description, while the high-frequency components contribute
to the fine details. As we know, facial expression features
consists of the directional low-frequency components. It also
means that signals in low spatial frequency band plays a
dominant role in facial expression recognition. In essential,
radon transform preserves the variations in pixel intensities.
This process improves the spatial frequency components in a
direction for facial expression. Therefore, while features are
extracted using Radon transform, the variations in the spatial
frequency are not only preserved but boosted also.

Radon projection preserves the directional low-frequency
component, but they are insufficient to describe the micro-
expression accurately, due to the low intensity of micro-
expression. Amongst all appearance features, local binary
pattern has been shown to perform a promising performance
on facial expression recognition [30]. On the other hand,
the work in [21] demonstrated that LBP enhanced by shape
information can distinguish an image with different shape from
those with the same LBP feature distributions. As its efficient
computing, we implement the theoretical framework of LBP
on radon transformation. It aims to derive from the classical
descriptor used to characterize the low-intensity changes of
micro-expression images.

Given F(θ, s), we established a linear mask of size W ,
that sequentially scans the radon projection F(θ, s) with one
element step. W is an odd number ensuring the symmetric
neighborhood of each element, such as W = 7. As exampled
in Fig. 1, for each signal point gc, the number of its involved
neighbors gw is W − 1. Furthermore, each code is calculated
by thresholding the neighborhood values against the central

Fig. 2: Procedure of calculating the binary vector from two
radon signals for micro-expression image.

Fig. 3: An example that shows how to get the three
orthogonal planes.

element. The neighbors will be assigned the value 1 if they are
greater than or equal to the current element and 0 otherwise.
In specific, the comparative function is defined as followed:

fw =

{
1 if gw − gc ≥ 0
0 if gw − gc < 0,

(3)

where w = 1, . . . ,W . The each binary vector for F(θ, s) is
represented as H = [f1, f2, . . . , fW ].

Basically, for (x, y), we obtain the two binary vectors H1

and H2 for F(θ, 0) and F(θ+π/2, 0), respectively. Given H1

or H2, its binary element of the resulting vector is multiplied
by a weight depending on its position. This can be summarized
as

hW =
∑
w

fw2
w, (4)

where the result of H1 or H2 is a decimal. The histogram H1

or H2 is finally computed, in which it represents the frequency
of each number occurring. We can concatenated the histograms
H1 and H2 into one feature vector H = [H1 H2]to describe
an image. The example is illustrated in Fig. 2.

An operator based on co-occurrences of local binary pat-
terns on three orthogonal planes (LBP-TOP) was introduced
in many applications such as dynamic texture classification and
facial expression recognition [7]. It considers three orthogo-
nal planes of a video and concatenates LBP co-occurrence
statistics in these three directions. Specifically, the XY plane
appearance information, while the XT plane gives a visual
impression of one row changing in time and YT describes the
motion of one column in temporal space. The procedure of
getting three orthogonal planes is shown in Fig. 3. Following
LBP-TOP, we furthermore extend Radon-based binary pattern
into three orthogonal planes of video sequence. For each
plane, we firstly use radon transformation to obtain the radon



projections along θ and θ + π/2 by using Equations 1 and 2.
Furthermore, we implemented the comparative function to get
the binary codes over θ and θ+ π/2. Finally, we concatenate
the histograms from three orthogonal planes, namely HXY,
HXT, HYT, respectively, into one feature vector G. In such
a representation, a micro-expression video is encoded by an
appearance (XY-LBP) and two spatial temporal (XT-LBP and
YT-LBP) co-occurrence statistics.

III. EXPERIMENTS

A. Database description and experimental setup

For evaluating STRBP, we conduct the experiments on
SMIC [8] and CASME2 [9] databases for micro-expression
recognition.

The SMIC database consists of 16 subjects with 164 sponta-
neous micro-expressions, which were recorded in a controlled
scenario using 100 fps camera with resolution of 640×480.
164 spontaneous facial micro-expressions are categorized into
positive (51 samples), negative (70 samples) and surprise (43
samples) classes.

The CASME2 database includes 247 spontaneous facial
micro-expressions recorded by a 200 fps camera and spatial
resolution with 640 × 480 pixel size. In this database, they
elicited participants’ facial expressions in a well-controlled
laboratory environment and proper illumination. These sam-
ples are coded with the onset and offset frames, as well as
tagged with AUs and emotion. There are 5 classes of the
micro-expressions in this database: happiness (32 samples),
surprise (25 samples), disgust (64 samples), repression (27
samples) and others (99 samples).

We firstly use active shape model (ASM) [31] to obtain
the 68 facial landmarks for facial images of video sequence,
and align them to a canonical frame. We implement RPCA
to obtain the subtle information of micro-expressions for
SMIC and CASME2 databases. Furthermore, we employ the
temporal interpolation method (TIM) [32] to normalize these
subtle information into the same frames length (10 frames).
For SMIC database, we crop facial images into 170×139
and divide them into 4 × 7 blocks. For CASME2 database,
the face images are cropped to 308×257 pixel size, and are
divided into 6×1 blocks. We used leave-one-subject-out cross
validation protocol in the experiments, where the videos from
one subject are used for testing, the rest for training. We use
Chi-Square Kernel based support vector machine (SVM) [33]
for the classification.

B. Parameter Evaluation

As previously mentioned in Section II, it is seen that the
projection angle θ of radon transform and the size W of linear
mask are two key parameters determining the performance
of STRBP. In the following, we will discuss the influence of
two important parameters θ and W on two databases. In this
scenario, we firstly examine the recognition rate affected by θ,
where θ varies from 0o to 90o with an interval of 15o. Then,
we evaluate the performance of W across the sets of four
linear masks that have the size of 3, 5, 7 and 9, respectively.

Fig. 4: Parameter influence of W and θ on SMIC database.

Figs. 4 and 5 show the influence of θ and W to STRBP on
two micro-expression databases. As seen from both figures, in
the case of W = 3 and W = 5, θ can lead to the increasing
performance when it is increased. However, when W becomes
bigger, the increasing θ cannot make the significant result
comparing with the result using θ = 0. It is seen that STRBP
achieves the best result when θ equals to 0 with the bigger
W . It demonstrates that the signals sampled along horizontal
and vertical directions can provide the most information to
describing the structure of micro-expression images.

Furthermore, we remain θ as 0o. For SMIC2, the accuracies
of STRBP are 46.95%, 51.22%, 60.98% and 57.93% for
W = 3, 5, 7, 9, respectively. For CASME2, we obtained the
accuracies of STRBP as 50.2%, 56.68%, 64.37%, and 52.23%
for W = 3, 5, 7, 9, respectively. It is interesting to see that the
largest mask size (W = 9) cannot give the best results on two
databases. It may be explained by that the largest size may
provide redundant information and noise to one-dimensional
local binary pattern. In contrast, when W is 7, STRBP obtains
the promising results of 60.98% and 64.37% for SMIC and
CASME2 databases, respectively.

C. Algorithm comparison

1) SMIC: For SMIC database, we compare STLBP-IP with
the commonly used spatiotemporal features [7], [13] and the
state-of-the-art methods on SMIC database. In our implemen-
tation on [7], [13], we used temporal interpolation method
(TIM) to normalize each video into 10 frames. We employ
to use spatiotemporal feature descriptor (LBP-TOP and LBP-
SIP), to 4× 7 facial blocks. For convenience, we name them
as TIM10+LBP-TOP and TIM10+LBP-SIP, respectively.

The comparison results are reported in Table I. From Table I,
it is seen that STRBP increases the accuracy of 12.2% for
micro-expression recognition. Although STLBP-IP used radon
transform with θ = 0 and LBP on temporal domain for micro-
expression recognition, STRBP obtains better performance
than STLBP-IP. As well, STRBP is more simple and efficient
than STLBP-IP. Amongst the comparative algorithms, it is



Fig. 5: Parameter influence of W and θ on CASME2
database.

observed that HIGO-TOP is the best one. But our proposed
method STRBP outperforms to HIGO-TOP. On the other hand,
HIGH-TOP has many controlled parameters while STRBP
depends on two ones.

TABLE I: Performance comparison with the state-of-the-art
methods on SMIC database.

Methods Recognition rate (%)
Baseline [8] 48.78
TIM10+LBP-TOP [7] 48.17
TIM10+LBP-SIP [13] 44.51
HOG-TOP [18] 57.93
HIGO-TOP [18] 59.15
OSW-LBP-TOP [34] 53.05
OS+Wiener filter [35] 53.56
STLBP-IP [24] 57.93
STRBP 60.98

Finally, we present the confusion matrix for LBP-
TOP+SVM(linear), STLBP-IP and STRBP in Fig. 6. From
Fig. 6, it is found that STRBP improves the accuracies of each
class comparing with LBP-TOP. As well, it also boosts the
ability of recognizing negative micro-expressions comparing
with STLBP-IP.

2) CASME2 dataset: We conduct the comparative exper-
iments of STRBP with the baseline algorithm [9], LBP-
TOP [7], LBP-SIP [13] and three new spatiotemporal feature
descriptors [17], [18], [25]. According to experimental setup
of [9], we set the radius as 3 for LBP-TOP and divide
facial images into 5 × 5 blocks. For classification, we use
linear-kernel based SVM [33]. For convenience, we name this
method as Baseline. Secondly, we implement the framework
of [8] based on LBP-TOP [7] and LBP-SIP [13] as a compar-
ison. Features are extracted on 8× 8 facial blocks.

Table II shows the comparative results of STRBP with the
state-of-the-art spatiotemporal feature descriptors, where the
results of STCLQP [17], HIGO-TOP [18], HOG-TOP [18] and
STLBP-RIP [25] are directly extracted from their works. It is

(a)

(b)

(c)
Fig. 6: The confusion matrix of (a) LBP-
TOP+SVM(linear) [8], (b) STLBP-IP [24] and (c) STRBP
for three micro-expression categorizations on SMIC database.

observed that STRBP significantly outperforms the LBP-TOP.
Comparing with LBP-SIP, STRBP increases the recognition
rate by 24.29%, because STRBP preserves the shape infor-
mation of micro-expression images by using radon transform.
Amongst the state-of-the-art algorithms, it is seen that STLBP-
RIP achieves the considerable recognition rate of 62.75%.
Although STLBP-RIP and STRBP used RPCA as the first step
to extract the subtle information, STRBP obtains the better
results than STLBP-RIP. Different from STLBP-RIP, STRBP
directly extracted spatial and temporal information from radon



signals while STLBP-RIP used LBP as the post-preprocessing
step for micro-expression videos. It also demonstrates that
STRBP has a efficient computation but effective performance.

TABLE II: Comparison under micro-expression recognition
rate on CASME2 database. * means that we directly took

the results from their works.

Methods Block Number Recognition rate (%)
Baseline [9] 5× 5 38.87
LBP-TOP [7] 8× 8 39.68
LBP-SIP [13] 8× 8 40.08
STCLQP* [17] 8× 8 58.39
HIGO-TOP* [18] 8× 8 55.87
HOG-TOP* [18] 8× 8 57.49
STLBP-IP [24] 8× 9 59.51
STLBP-RIP [25] 6× 1 62.75
STRBP 6× 1 64.37

IV. CONCLUSION

This paper have demonstrated that the spatiotemporal local
Radon-based binary pattern (STRBP) obtains the consider-
able performance on two available facial micro-expression
databases. Specifically, the simple signal extraction method
based on radon transform preserves the low-frequency com-
ponents of micro-expression images while the similar way of
one dimensional LBP can further enhance these components
by using texture information. Additionally, we observed that
radon transform based on horizontal and vertical direction can
well characterize the structure of micro-expression images. As
a result, through the extensive experiment analysis, we obtain
a simple but effective spatiotemporal feature descriptor for
micro-expression recognition.
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