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Learning-Based Orchestration for Dynamic
Functional Split and Resource Allocation in vRANs

Fahri Wisnu Murti†, Samad Ali†, George Iosifidis∗, Matti Latva-aho†
†Centre for Wireless Communications, University of Oulu, Finland

∗Delft University of Technology, Netherlands

Abstract—One of the key benefits of virtualized radio access
networks (vRANs) is network management flexibility. However,
this versatility raises previously-unseen network management
challenges. In this paper, a learning-based zero-touch vRAN
orchestration framework (LOFV) is proposed to jointly select
the functional splits and allocate the virtualized resources to
minimize the long-term management cost. First, testbed mea-
surements of the behaviour between the users’ demand and the
virtualized resource utilization are collected using a centralized
RAN system. The collected data reveals that there are non-linear
and non-monotonic relationships between demand and resource
utilization. Then, a comprehensive cost model is proposed that
takes resource overprovisioning, declined demand, instantiation
and reconfiguration into account. Moreover, the proposed cost
model also captures different routing and computing costs for
each split. Motivated by our measurement insights and cost
model, LOFV is developed using a model-free reinforcement
learning paradigm. The proposed solution is constructed from
a combination of deep Q-learning and a regression-based neural
network that maps the network state and users’ demand into split
and resource control decisions. Our numerical evaluations show
that LOFV can offer cost savings by up to 69% of the optimal
static policy and 45% of the optimal fully dynamic policy.

I. INTRODUCTION
Virtualizing the radio access network (vRAN) is one of the

most promising technologies for accommodating the increased
service demands with diverse requirements at a reasonable cost
[1]. Its latest development enables the base station (BS) func-
tions to turn into virtualized components that can be executed
across cloud platforms. This paradigm brings unprecedented
flexibility to RAN operations, mitigates vendor lock-in, offers
fast deployment and potentially reduces operational expenses
[2]. Therefore, it is not surprising that many standardization
bodies adopt virtualization for Next-Generation RANs such as
Open RANs [3] and 5G+ RANs [4].

In vRANs, the virtualized BS (vBS) functions can be dis-
aggregated then hosted at virtualized distributed units (vDUs)
and central units (vCUs) through functional split. The net-
work operators can flexibly deploy their vBS functions over
vCUs and vDUs based on their resource availability and the
network load, facilitating cost-efficient and high-performance
RANs operation [5]. However, this flexibility also carries non-
trivial decisions on splitting the functions and allocating the
virtualized computing resources1 to implement these functions.
Each split induces different fronthaul/backhaul (xHaul) load
and virtualized resources. The suitability of each split also

This research has been supported by the Academy of Finland, 6G Flagship
program under Grant 346208.

1It is common in Network Function Virtualization (NFV) that Virtualized
Network Functions (VNFs) needs CPU, memory, I/O, and GPU for their
virtualized computing resources. The operators typically use these parameters
to calculate their billing units to charge the amount of monetary cost.

depends on the network properties (xHaul capacity, computing
capacity, etc.) and might change abruptly over time due to
the varying user needs. Therefore, it is not only important to
design the splits and resource allocation in vRANs carefully,
but also to update these decisions and reconfigure the system
in order to adapt to varying conditions (resource availability
and user needs). Otherwise, we risk inducing high operating
expenditures and performance degradation.

On the other hand, orchestrating the dynamic split selection
and virtualized resource allocation is also a challenging prob-
lem as the decisions take place before the actual users’ traffic is
observed. Hence, there is a risk for resource overprovisioning
(e.g., the allocated resources are higher than the actual usages
resulting in waste resources) and underprovisioning (e.g.,
insufficient allocated resources resulting in declined users’
demand). Meanwhile, reconfiguring the splits and virtualized
resources at runtime can induce additional costs, potentially
disrupts network operations during the migration of the virtual
machines (VMs) [6], and is therefore not always beneficial.
Conversely, deploying a static policy can not unleash the
potential flexibility of the vRAN system. Therefore, it is
necessary to manage and reconfigure the splits and virtualized
resources in an intelligent manner.

The authors of [6] have experimentally analyzed the mi-
gration activity of VMs in vRANs and have successfully
validated the possibility of deploying an adaptive functional
split practically, albeit have not discussed designing the cost-
efficient split reconfiguration policies. Recent work in [7] has
proposed a framework for the split that dynamically adapts
its configuration at runtime to maximize the users throughput.
Similar works have proposed flexible split selection to mini-
mize the inter-cell interference and fronthaul utilization [8] and
the network cost [5]. However, these works assume complete
knowledge models of the split performance and resource
utilization. We argue that such approaches can be inaccurate
in practice as vRANs softwarization is deployed together with
other workloads in the diverse cloud platform, which are
hardly precise in predicting its resources and behaviour.

Using Machine Learning (ML) techniques for tackling re-
source allocation problems in wireless networks is becoming
increasingly popular [9]. The authors in [10] have proposed
a learning framework that successfully manages the inter-
play between computing and radio resources. It models the
problem as a contextual bandit, then utilizes an actor-critic
neural network structure and a classifier to map contexts
into resource control decisions. The follow-up work [11]
has studied an energy-aware resource orchestration that uses
Bayesian online learning to balance performance and energy
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consumption. The authors in [12] have proposed an ML-based
predictor that learns to share the unutilized CPU resources
with the other workloads such as video analytics. Recent
works have brought the importance of ML-based optimization
[13] and dynamic selection [14] of functional splits, albeit
not discussing virtualized resource management. Although the
mentioned works have addressed complex vRANs problems,
they still did not answer how to design a framework that
intelligently decides the splits and allocates the virtualized
resources. Moreover, they also did not consider the effects
of resource reconfiguration in their vRAN problems.

Contributions. We firstly use a vBS prototype imple-
menting the srsRAN platform [15] to collect measurements
regarding the behaviour between the users’ demand and the
virtualized resource utilization (details in Sec. IV). Our find-
ings suggest that this behaviour varies with the demand and
the platform resources and, importantly, is non-linear and non-
monotonic; hence it is hard to model the underlying system
precisely. Inspired from network slicing [16], we also propose
a new cost model accounting for resource overprovisioning,
declined service demand, reconfiguration and instantiation,
representing the virtualized resource management in vRANs.
Besides, depending on the splits, the transferred load between
vCU, vDU and the radio unit (RU) induces a different cost
for reserving the xHaul link bandwidth.

Our goal is to develop a learning-based zero-touch orches-
tration framework (LOFV) that intelligently selects the splits
and allocates the virtualized resources to minimize the long-
term management cost while serving the users’ demand. We
model the vRAN operation as a time-slotted system, where
each slot has an arbitrary incoming users’ demand and network
state conditions. At every time stage, LOFV decides whether to
preserve the previous network settings or reconfigure them by
reselecting the splits and reallocating virtualized resources. We
formulate this sequential decision-making problem as Markov
Decision Process (MDP). In our solution, LOFV is tailored
from a model-free reinforcement learning paradigm that does
not make particular assumptions about the underlying system
and state transition. It is constructed from two functional
blocks based on neural network structures: i) the functional
split orchestration and ii) virtualized resource orchestration.
The functional split orchestration is a function that maps the
input state into the selected network setting and deployed split.
It is constructed from a deep Q-network (DQN) and target
network [17], and utilizes Q-learning [18] as the learning
step. The virtualized resource orchestration is a regression-
based neural network that maps the input of split selection and
users’ demand into resources at vDU and vCU. This function
utilizes α-OMC loss function [19] that considers the penalty
fee incurred from prediction errors of virtualized resources.

We conduct a battery of tests using our collected measure-
ments from container-based virtualization of srsRAN [15].
We evaluate our vBS measurements, learning convergence
of LOFV and long-term accumulated cost during the online
stages. Our evaluations show that the cost-saving of LOFV
can be as high as 69% of the optimal static policy (STAO)2

2STAO is the optimal static policy that selects the single best split and
resource allocation based on the peak traffic. Consequently, STAO only incurs
overprovisioning and xHaul costs. We use STAO to normalize all of our
monetary cost evaluations.
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Fig. 1: Virtualized Resource Management. Reconfiguration ac-
tivity occurs when the operators decide to: (a) alter the deployed
split and reallocate the virtualized resources; (b) only reallocate the
resources but keep the deployed split. Otherwise, (c) the operators
may not want to reconfigure their resources and the deployed split at
all. (d) The virtualized resource behaviour.

and 45% of the optimal fully dynamic policy (DYNO)3.
The rest of this paper is organized as follows. The back-

ground, model and trade-offs are presented in Sec. II. The
problem formulation and LOFV framework are discussed in
Sec. III. Our detailed experiments and results are in Sec. IV
and the conclusion is in Sec. V.

II. MODEL AND TRADE-OFFS

A. Background
Our model refers to the O-RAN compliant system model

[3]. We consider a vBS comprising a vCU and vDU connected
to RU, corresponds to 4G eNodeB or 5G gNodeB. The vDU
is typically hosted at a far-edge cloud and vCU is at an edge
cloud. Let suppose f0 is a function that encapsulates RF. Then,
we denote f1, f2 and f3 for the respective functions of Layer
1 (PHY), Layer 2 (MAC, RLC) and Layer 3 (PDCP, RRC,
GTP). These functions can be deployed at the vDU and vCU
(except f0) following a chain: f0→f1→f2→f3. We consider
four split options that have been well standardized [4], [20] and
experimentally validated as a prototype [6]. Split 1 (S1): All
functions are at vDU except f0 is at RU (a fully distributed-
RAN). Split 2 (S2): f3 is deployed at vCU, but f1 and f2 are
at vDU. Split 3 (S3): f2 and the higher layer are at vCU, while
f1 is at vDU. Split 4 (S4): All functions are at vCU except f0
(a fully centralized vRAN). Hence, we define the respective
split i ∈ I = {1, 2, 3, 4}. LOFV is to be executed from the
Learning Agent (LA) inside Non-Real-Time (Non-RT) RAN
Intelligent Controller (RIC).

3It knows an oracle of users’ demand and resource availability. It uses a
fully dynamic policy by always reconfiguring the vRAN settings at every time
stage to obtain the current optimal, i.e., the current best split and resources.
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B. Virtualized Resource Management
Let λn (Mbps) denote the incoming traffic demand from

multiple users at time stage n which has an interval of duration
T . At the beginning of each interval, the operators need to
decide network configuration setting on ∈ O = 0 ∪ I, select
split i ∈ I, and allocate function virtualized resources at
the vDU xn ∈ R and the vCU x̂n ∈ R. The option 0
(on= 0) is dedicated for no reconfiguration4 (Fig. 1c). Then,
a reconfiguration5 activity (on 6= 0) is any change in the
deployed split and virtualized resources (Figs. 1a and 1b).
In this sense, deciding on will directly determine split-i as:
in := on ⇐⇒ on 6= 0 and in := in−1 ⇐⇒ on = 0. Then,
the allocated resources xn and x̂n are determined through a
mapping function ω : (λn, on) 7→(xn, x̂n) (details in Sec. III).

In practice, xn and x̂n may differ to the actual resource
utilization. We hence define yn ∈ R and ŷn ∈ R as the actual
resource utilization at vDU and vCU while deploying split
in ∈ I and serving λn. The difference between the allocated
resources and actual resource utilization is the prediction error
resulting in overprovisioning or underprovisioning cost. If the
operators do not want to reconfigure their resources, they may
suffer from these costs, i.e., miss the opportunity to share
unused resources for other workloads or even have declined
demand due to insufficient capacity. Otherwise, the operators
can decide to resize their resources by βn:=|xn−xn−1| and
β̂n := |x̂n− x̂n−1| at vDU and vCU, respectively. Motivated
by network slicing management [16], we propose a new cost
model that can capture virtualized behaviour in vRANs. This
model is illustrated in Fig. 1d and described as follows.

1) Overprovisioning: The operators have to pay more ex-
pensive cost for unused resources if the allocated resources
are higher than the actual utilization. This cost is defined for
resource overprovisioning, which is denoted:

fo
(

max(0, xn − yn) + max(0, x̂n − ŷn)
)
, (1)

where fo(.) is a function cost for overprovisioning. We assume
this function is proportional with the input, e.g. fo(z) := κoz,
where κo is the estimated fee for one unit capacity ($/unit).

2) Declined service demand: The underprovisioning and
violating the split requirements can cause a disrupted or
declined demand resulting in a penalty for service level agree-
ment (SLA) violation and initializes a monetary compensation.
We define this cost as:

fd

(
1<yn(xn) ∨ 1<ŷn(x̂n) ∨ 1 6=0(Cn)

)
, (2)

where 1(.) is an indicator function that takes value 1 if the
condition is satisfied, otherwise 0. Cn = (cnp)∀p is a function
of constraint dissatisfaction that captures the penalization for
violating each p constraints in vRANs at time n. The indicator
functions in (2) are activated when the allocated resources xn
and x̂n do not meet the respective incurred resource utilization
yn and ŷn. It is also activated when there exists constraint
violations. In this case, the operator has to pay a penalty with

4The last network settings are preserved; consequently, the selected split
and virtualized resources at the current sequence same as the previous one:
on=0 ⇐⇒ (in= in−1 ∧ xn=xn−1 ∧ x̂n= x̂n−1).

5The operators may decide to alter the deployed split, but it will change
the incurred resources at vDU and vCU. Therefore, the operators have to
reallocate their virtualized resources accordingly. The operators may also
decide only to resize the virtualized resources without altering the split. In
this case, on 6=0⇐⇒(in 6= in−1∨xn 6=xn−1∨x̂n 6= x̂n−1).

a value κd ($) for any SLA violation. It complies with the
monetary fee penalty used in network slicing [19].

3) Instantiation & Reconfiguration: The operators may de-
cide to reconfigure the split and virtualized resources following
the users demand to reduce resource overprovisioning and
avoid declined demand. However, there are overhead costs as:
fi
(
βn1>xn−1(xn)+β̂n1>x̂n−1(x̂n)

)
+fr

(
(βn+β̂n)1 6=0(on)

)
.

(3)
Instantiating and reconfiguring VMs have capital expenses
in NFV [16]. The first term in (3) captures the amount of
instantiating additional resources at vDU and vCU. The second
term then captures the cost initiated from any reconfiguration
activities (on 6= 0). For instance, resizing the VMs’ resources
initiates a price of management delay [21] for load balancing
setups and migrating the resources, which may interrupt the
user sessions. We found that resizing a VM instance in CSC
cPouta cloud (https://www.csc.fi/) induces delay around 23
seconds. Modern software architecture such as Kubernetes
also needs several seconds for executing new pods [16], [21].
The seamless migration for altering the split deployment also
requires creating new vBS functions while preserving the
old migrated functions active [6]. Thus, the reconfiguration
cost is affected by the migrated resources measured from the
difference between the current and the previous virtualized
resources. In our evaluation, we assume that both costs fi(.)
and fr(.) are proportional to the input, e.g., fi(z) := κiz
and fr(z) := κrz, where κi ($/unit) is the parameter that
captures the estimated cost for instantiation and κr ($/unit)
is for reconfiguration.

xHaul cost. O-RAN has proposed an open interface be-
tween vCUs, vDUs and RUs [3]. The operators can enjoy
benefits such as computational and performance gains from a
more centralized function [22], but it incurs a higher trans-
ferred data load (δ) [5]. S1 and S2 generate λ, S3 incurs
1.02λ+1.5, while S4 transfers 2500 (Mbps) of data load [23].
We define the xHaul cost as: fh(δi) := κhδi, where δi is the
data load for selecting split i and κh is the estimated fee for
reserving a bandwidth (Mbps) of xHaul link.
C. Trade-offs and Problem Statement

Trade-offs. (i) Centralizing more functions gains a lower
computational cost, but it has tighter constraint requirements
and requires a higher xHaul load. (ii) STAO only incurs
resource overprovisioning, but the amount of underutilized
resources can be large. (iii) DYNO can reduce the overprovi-
sioning and insufficient allocated resources; however, it needs
additional costs for reconfiguration and instantiation. (iv) A
standard loss function may not capture prediction error in
virtualized resource management as the penalty fee is different
for each behaviour. (v) The relationship between the users’ de-
mand and the incurred virtualized resources is non-linear and
non-monotonic. (vi) A sequential decision for orchestrating the
split selection and the virtualized resources at vCU and vDU
is intricate problem, particularly without making assumptions
of the underlying system and state transitions.

Problem statement. Given the above trade-offs, users’
demand, and network state, what is the most suitable split
and allocated resources at each time stage to minimize the
long-term cost? Next, we present how we formulate the above
sequential decision-making problem as an MDP, then discuss
how LOFV solves the problem.
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Fig. 2: LOFV Architecture. LOFV works following a model-free
reinforcement learning and comprising of two functional blocks.

III. PROBLEM AND LEARNING FRAMEWORK
We formulate our problem in Sec. II as an MDP, which

is specified by a tuple {S,A,P(sn+1|sn, an), rn, γ}. LOFV
follows sequential decision-making based on a model-free
reinforcement learning paradigm to solve the problem. At
every time stage n, our agent observes a state from state
spaces sn ∈ S drawn from the environment, takes an action
an, and expects to receive a reward signal r(sn, an) as a
feedback, where γ ∈ (0, 1] is the discount factor. The state
may not be stationary as the network load and conditions are
changing over time with the sequence state arrival (sn)n∈N .
Then, P(sn+1|sn, an) is the state transition probability that
maps a state-action pair at time step n into the distribution of
next states. LOFV operation relies on two functional blocks:
i) functional split orchestration (σ) and ii) virtualized resource
orchestration (ω). Fig. 2 illustrates how LOFV operates.

State. Our state comprises: (i) the incoming traffic demand
at time stage n, λn; (ii) the average traffic over T period,
λ̄n := 1

T

∑T
t=1 λnt; (iii) the variance traffic for T period,

λ̃n :=
∑T
t=1(λnt−λ̄)2/T ; (iv) the previous allocated resources

at vDU xn−1 and (v) vCU x̂n−1; and (vi) the previous
deployed split in. It provides time dynamic of our variable
interests: (i) the input traffic demand that affects the split
and resources; (ii-iii) the characteristics and variation of the
users demand’ that helps to decide doing reconfiguration or
not; and network conditions regarding (iv) the availability of
resources at vDU and (v) vCU and (vi) the last deployed
split. Therefore, our agent receives an input state as a tuple
sn = {λn, λ̄n, λ̃n, xn−1, x̂n−1, in−1} ∈ S ⊆ R6.

Action. Our action space consists all pairs of o∈O, i∈I,
x∈X and x̂∈X̂ . Thus, we define the action to be taken by our
agent at the time stage n as a tuple of an={on, in, xn, x̂n}∈
A, where A = O×I×X×X̂ is our action spaces.

Reward. Our objective is to minimize the long-term accu-
mulated management cost over the time. Thereby, we define
our reward function at time stage n as:

r(an, sn) := −J(an, sn) (4)
where J(.) :=

(
fo(.) + fd(.) + fi(.) + fr(.) + fh(.)

)
is the

management cost defined in Sec. II. The long-term accumu-
lated reward starting at time step n is Gn :=

∑∞
τ=0 γ

τrτ+n.
Our goal can be redefined by maximizing the expected
long-term accumulated reward as E[Gn] =E[

∑∞
τ=0 γ

τrτ+n].
Therefore, our agent aims to learn the optimal policy that
maximizes the expected long-term accumulated reward as:
π∗ := arg maxEπ[

∑∞
τ=0 γ

τrτ+n|π], where the policy π is a
function that maps from state to action π(s) :S 7→A. To solve
this maximization problem, we decompose our agent into two
functional blocks and summarize its operation in Algorithm 1.

Algorithm 1: LOFV operation
1 Initialize: Replay memory D with capacity D,

Function ωϕ with pretaining weights ϕ, Q-network
Qθ with weight θ, Target Network Q̂θ̂ with weights
θ̂ ← θ.

2 for e = 1, .., E do
3 Initialize: s1 = {λ1, 0, 0, xmax, x̂max, 1}.
4 for n = 1, .., N do
5 Select random on with probability ε, otherwise

on := maxoQ
∗(sn, o; θ).

6 Determine in :=on ⇐⇒ on 6=0 and
in := in−1 ⇐⇒ on=0

7 Allocate resources (xn, x̂n)← ω(λn, on)
8 Execute an = {on, in, xn, x̂n} and observe

reward rn
9 Set sn+1 := sn

10 Store transision
{
sn, on, rn, sn+1

}
11 Sample random minibatch of transision{

sj , oj , rj , sj+1

}
from D.

12 Set TD target uj := rj + γmaxo′ Q̂(sj+1, o
′; θ̂)

13 Perform a gradient descent on (5) with Adam
14 Q̂θ̂ ← Qθ for every C steps.
15 end
16 end

A. Functional Split Orchestration (σ)

In this block, we design a function σ that maps the in-
put state to the selected configuration setting o and split i,
thus the long-term accumulated reward is maximized. The
reward function r is affected by the configuration o, split-
i and virtualized resources at vDU x and vCU x̂. Given
on, we can determine in directly while allocate xn and x̂n
through a deterministic orchestrator ω (the virtualized resource
orchestration). Consequently, in this block, we can treat ω as
a part of the environment. We can redefine our action for
this block with o ∈ O instead of using a ∈ A which has
a high dimensional action space. Then, the goal is to learn an
optimal function that maximizes the long-term accumulated
reward as: σ∗ := arg maxσ

∑∞
τ=0 γ

τrn+τ . This problem is
then has a high-dimensional state space but discrete action
spaces. Hence, the function σ can be designed using deep Q-
learning [17]. It utilizes a neural network to approximate the
action-value function (Q-function) while the learning step is
based on Q-learning [18].

We define the optimal action-value function as the maxi-
mum expected reward that follows some strategies based on
a function σ, after observing some sequences s, then taking
actions o as: Q∗(s, o) := maxσ E[Gn|sn = s, on = o]. If the
optimal value Q∗(s′, o′) of the sequence at the next time
step s′ for all possible action o′ is known, we can define
the optimal function σ∗, which is to select the action o′

that maximizes the expected value of r + γQ∗(s′, a′) as:
Q∗(s, o) :=Es∼E

[
r+ γmaxo′ Q

∗(s′, o′) | s′, o′
]
. Using value

iteration, the optimal action-value function can converge to
the optimality when i → ∞ [18]; however, this method is
impractical [17]. Therefore, we use a function approximator
to estimate the action-value function parameterized by weight
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θ as Q(s, o; θ) ≈ Q(s, o). A neural network can be applied
to approximate our action-value function (Q-network). The
Q-network is trained by minimizing the sequence of a loss
function that changes at iteration i:

Li(θi) := Es,o∼p(.)
[
(ui −Q(s, o; θi))

2
]
, (5)

where ui := Es′∼S
[
r + γmaxo′Q(s′, o′; θi−1|s, o)

]
is the

Temporal-Difference (TD) target and p(s, a) is the behaviour
distributions (probability distribution over s and a). Note that
the parameters from the previous iteration θi−1 is frozen
while we are optimizing Li(θi). Instead of directly calcu-
lating the full expectation of the gradient OθiLi(θi), the
loss function in (5) can be efficiently calculated using a
stochastic gradient descent method, e.g., Adam optimizer [24].
Then, our Q-network comprises of an input layer receiving
(λn, λ̄n, λ̃n, xn−1, x̂n−1, in−1), output layers activated by a
linear function with a size of dim(O), and the hidden layers
constructed from a fully connected linear layer activated
by ReLU function. This approach is a model-free and off-
policy [17]. It also learns about the greedy strategy o :=
maxoQ(s, o; θ), while follows the behaviour distribution for
exploration. In this case, we can tailor an ε-greedy strategy
by setting the probability of selecting a random action with
ε; otherwise, we can select a greedy action by probability
1 − ε. LOFV can directly determine split-i from on by
in:=on ⇐⇒ on 6=0 and in := in−1 ⇐⇒ on=0.
B. Virtualized Resource Orchestration (ω)

The virtualized resource orchestration is a function ω that
maps an input pair of selected configuration o (an output of
a function σ : s 7→ o) and the traffic demand λ into the
allocated virtualized resources at vDU x and vCU x̂. Thus,
we define ω : (o, λ) 7→ (x, x̂). This function has been simply
defined as an affine function for vRAN network design [23].
However, our measurement shows that the relations between
users’ demand and virtualized resource utilization is non-linear
and non-monotonic (Sec. IV), which is hard to predict exactly.
Therefore, we leverage a data-driven model that learns to
approximate a function ω. Our design is constructed from
a simple neural network ωϕ parameterized by weight ϕ.
The neural network consists of a single-neuron input layer
receiving λ, a single-neuron output layer activated by a linear
function and the hidden layers activated by a ReLU function.
The output of neural network ωϕ is then scaled with param-
eters ρd (vDU) and ρc (vCU) where each value depends on
the split selection. The value of both parameters are obtained
using a linear regression from [22, Fig. 6a]. Then, we leverage
α-OMC [19] loss function to train ωϕ as a regressor, where y
(vDU) and ŷ (vCU) are the ground truth. The α-OMC is able
to capture the prediction error with penalty fee incurred from
resource overprovisioning and underprovisioning. As ωϕ is a
deterministic orchestrator for σ, we can train separately and
use it as a pretraining model. If on = 0, our agent does not
reallocate the resources, hence xn := xn−1 and x̂n := x̂n−1.

IV. RESULTS AND DISCUSSION

A. Experimental Setup
Our testbed consists of the vBS, virtualized evolved packet

core (vEPC) and virtualized user equipment (vUE), where each
entity is built using an open-source srsRAN (e.g., srsENB,
srsEPC, srsUE) [15] and virtualized using a containerized
system from Docker. The radio interface of vBS and vUE are
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Fig. 3: The relationship between the users’ traffic demand to the
incurred vBS resources at vDU (left) and vCU (right).

emulated via radio samples in the Linux shared memory and
inter-process communication. We deploy all of the virtualized
entities in a general-purpose PC (AMD Ryzen 7 PRO 4750U)
and use this computing specification as a reference core (RC)6.
We can control, set a capacity limit, and isolate each container
resource through –cpus in Docker. The interval of time stage
t is a second and n is a minute with default total duration per
episode is 2 hours. Our default penalty coefficients are κo=1,
κd=2, κi=κr=0.5 and κh=0.0005. The traffic demand follows
a Poisson-generated user datagram protocol. The computing
consumption of f1, f2 and f3 yield 65%, 15% and 20% of total
vBS computing usage, respectively [23]. The vCU consumes
a twice of a lower computational processing than vDU (see
[22, Fig. 6a] with ≈10 BSs). Thus, we have scaled parameters
for deploying split-i at vDU with ρdi = {1, 0.8, 0.65, 0} and
at vCU with ρci={0, 0.1, 0.175, 0.5}. The hyperparameters of
our neural networks are set after exploratory assessments. The
neural network ωϕ is constructed from an input, an output and
three hidden layers with the sizes of 128, 64 and 16. We use
Adam optimizer [24] with learning rate is set to 5×10−5, mini-
batch with the size of 128 and α-OMC [19] loss function, then
train ωϕ with 200 epochs. In the functional split orchestration,
our Q-network consists of an input, outputs with the size of
|O| and three hidden layers with the size of 512 each. The
target network is updated every 10 time stage n. The batch
size is set with 256 and the replay buffer has a capacity of 106.
Our exploration and exploitation strategy is based on ε-greedy,
where we set εmax = 0.95 at the beginning of episode, then it
exponentially decays to εmin = 0.02. We use Adam optimizer
[24] with learning rate is set to 0.0003 and (5) for the loss
function, then train our model over 5000 episodes.
B. Measurements and Evaluation Results

Our first evaluation studies the relationship between the
users’ demand and the virtualized resource utilization of vBS
for selecting various splits. Fig. 3 illustrates that the resource
utilization at vDU and vCU for each split does not always
increase with the growth of traffic load. Instead, it is non-
linear and non-monotonic. Although the traffic load reaches
a peak (35 Mbps), the virtualized resources are still highly
underutilized with less than 25 RCs and 13 RCs of used
resources at vDU and vCU, when LOFV is not implemented.

Fig. 4 illustrates the convergence behaviour of LOFV during
the training process. We increase the penalty coefficients of

6We focus on the CPU resources as the most affected parameters; however,
it is not limited and can be extended to other virtualized computing resources.
We have 16 CPU threads in total, which translates to 100 RCs.
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Fig. 5: Performance of LOVF during the online stages with (a) var-
ious penalty coefficients and (b) over different time-horizon settings.
All of the monetary costs are normalized toward STAO.

reconfiguration and instantiation from κi=κr=0.5 (default)
to κi = κr = 5. At the beginning of learning, LOFV has a
higher probability from using a random policy for exploration,
resulting in a high variance and expensive costs for both
cases. Also, a higher penalty coefficient (κr = 5) induces a
considerably more expensive cost (almost eight times) than a
lower penalty (κr=0.5) when choosing random actions. After
some episodes, LOFV successfully learns the optimal policy
and converges to the best policy that the agent can learn, and
improves around 96.13% (κr=5) and 72.26% (κr=0.5).

We analyze the effect of penalty coefficients (reconfigu-
ration & instantiation) and the duration of time-horizon that
LOFV can achieve during the online stages. Fig. 5a depicts
that LOFV has the lowest long-term cost across all coefficient
settings compared to STAO and DYNO. It shows that LOFV
achieves the highest cost-saving (69%) compared to STAO
when the penalty fees for reconfiguration and instantiation are
low (κr = 0.05). Although having a higher penalty coefficient
(κr = 5), LOFV still outperforms STAO with 31% of cost-
saving and has a cheaper cost compared to DYNO across all
coefficients. LOFV manages to have 9% of cost-saving at a
low penalty coefficient (κr=0.05) and gains considerably cost-
saving as high as 45% of DYNO.

Fig. 5b shows the results of altering the duration of time-
horizon (up to 6 hours) during the online stages that LOFV can
achieve. It shows that the duration of the time horizon does
not significantly degrade the performance of LOFV, where
LOFV can achieve a stable cost-saving compared to our two
baselines. LOFV saves around 58% (4h) to 62% (2h & 6h)
across all time-horizon settings compared to STAO. Similarly,
LOVF also gains cost-saving to 27% (2h) of DYNO.

V. CONCLUSION

In this paper, we have proposed LOFV that jointly selects
the splits and allocates the virtualized resources to minimize

the long-term management cost. Aside from the xHaul cost,
we have also proposed a new cost model accounting for
resource overprovisioning, declined service demand, recon-
figuration and instantiation, representing the NFV behaviour
in vRANs. A model-free reinforcement learning paradigm
has been leveraged to solve this sequential decision-making
problem, constructed from deep Q-learning and a regression-
based neural network. We also have performed a battery of
tests to evaluate the effectiveness of LOFV using testbed
measurements of a containerized RAN system. The results
have shown that LOFV successfully learns the split selection
and resource allocation and saves the cost by up to 69% of
STAO and 45% of DYNO.
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