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Abstract—Efficient service placement and workload allocation
methods are necessary enablers for the actively studied topic
of edge computing. In this paper, we show that under certain
circumstances, the number of superfluous workload reallocations
from one edge server to another may grow to a significant
proportion of all user tasks — a phenomenon we present as a
reallocation storm. We showcase this phenomenon on a city-scale
edge server deployment by simulating the allocation of user task
workloads in a number of scenarios capturing likely edge comput-
ing deployments and usage patterns. The simulations are based on
a large real-world data set of city-wide Wi-Fi network connections
in 2013-2014, with more than 47M connections over ca. 800 access
points. We identify the conditions for avoiding the reallocation
storm for three common edge-based reallocation strategies, and
study the latency—workload trade-off related to each strategy. As
a result, we find that the superfluous reallocations vanish when
the edge server capacity is increased above a certain threshold,
unique for each reallocation strategy, peaking at ca. 35% of top
ES workload. Further, while a reallocation strategy aiming to
minimize reallocation distance consistently resulted in the worst
reallocation storms, the two other strategies, namely, a random
reallocation strategy, and a bottom-up strategy which always
chooses the edge server with the lowest workload as a reallocation
target, behave nearly identically in terms of latency as well as the
reallocation storm in dense edge deployments. Since the random
strategy requires much less coordination, we recommend it over
the bottom-up one in dense ES deployments.

I. INTRODUCTION

Load balancing is a mission-critical topic for any computing
service from cloud to local networking capabilities. In everyday
language known as a “rock festival phenomena”, certain events
— whether predictable or not — can cause serious lacks in the
quality of service or even exterminate the service for an amount
of time. Even though certainly studied in the cloud computing
context, it is not clear if the similar load-balancing strategies fit
for the resource-constrained edge computing world, due to many
differences related to e.g. coherence of the network topologies
and variance in server capabilities. In this paper, we highlight
how horizontal and vertical workload become the bottleneck of
edge computing services, how reallocation strategies designed
for clouds fail in the edge computing environment, and how
reallocation storms, defined in the next section, can be avoided.

Edge computing has become the de facto strategy for
bringing computational capabilities into the local environments
to reduce latency between clients and traditional cloud services
[1]. Harnessing the local computational capabilities does not
only remove networking load but also enables several real-time
applications characterized by hard time-constraints and other
critical resources. Such application areas include, among others,

augmented reality [2], vehicular computing [3], [4], connected
healthcare [5], and Industry 4.0 systems and services [6]. With
increasing interest in edge intelligence, or EdgeAl, bringing
artificial intelligence and machine learning on the edge [7], [8],
there will be a set of applications critically reliable of edge
resources and availability.

Workload management is a widely studied topic in the
context of server clusters of (cloud) data centers [9] and grid
computing [10]. In edge computing, workload management
must, however, deal with e.g. user mobility and higher variance
in server and network topologies and capacities, thus making
it a distinct research topic. Workload management on the edge
can be handled with different strategies, such as the physical
placement of edge servers [11]-[13] or reallocating services
on the software-side with different optimization algorithms [6].
Reallocation can rely on known edge server features, such as
capacity, or their current state, such as load. The simplest option
may be to reallocate workload to the nearest available edge
server, or, if a number of candidates are produced, one selected
randomly amongst these [14]. More detailed hybrid models
can combine edge server placement, resource allocation and
run-time reallocation, also optimizing for proximity [15]. Some
of these heuristic reallocation algorithms can minimize both
computing and network delay, penalizing for longer computing
times of over-capacity edge servers [16], [17].

Furthermore, cloud offloading from the edge environ-
ment [18], [19] is sometimes a viable option. In some cases,
however, cloud offloading cannot take place due to, for example,
requirements for low latency, such as on the vehicular edge [20]
or with mobile augmented reality [2], where either critical
services or user’s quality of experience cannot be compromised
by increased latency.

In this paper, we identify a phenomenon we name as real-
location storm, where reallocations trigger new reallocations,
and the number of these superfluous reallocations grows to a
significant proportion of all user tasks executed on the edge.
We discuss the circumstances where this phenomenon happens,
what are its consequences, and how it can be avoided. Our
contributions can be summarized as follows:

e We identify the phenomenon on a real-world data set of
city-wide Wi-Fi network connections with more than 47M
connections over ca. 800 access points.

e We demonstrate how popular reallocation strategies can
lead to the reallocation storm, with up to 15-20% of all
tasks reallocated needlessly.

e We show that the reallocation storm is highly linked to



the capacity of the edge servers and vanishes when the
edge server capacity is increased above a certain threshold,
unique for each reallocation strategy, peaking at ca. 35%
of top workload.

II. DEFINITIONS AND SCOPING

Workload. Workload is the computational burden on edge
servers (ES) or cloud, caused by user tasks accumulating on
those servers [11], [21]. Workload may be the result of, for
example, user applications or their components offloaded on
the edge servers [22]; by edge applications following users,
migrating from one ES to another [23], [24]; or by cloud
applications being onloaded to edge servers for low-latency
interaction with users or environment [22], [25].

Workload allocation. In offline edge server placement,
expected workload from user tasks is allocated on the edge
servers as a part of the process of finding the optimal placement
for the servers. Workload allocation designates each access point
(AP) (at least) one edge server, which acts as the default server
for the workload from the users of that AP when the edge
deployment is online [11]. ESs serve two types of workload:
vertical workload is caused by user tasks on the APs allocated
to the ES, while horizontal workload is reallocated from other
ESs. The grid computing paradigm can be seen analogous to
edge computing in the sense that the grid data centers serve
both vertical and horizontal workload [26].

Reallocation. Reallocation is an online process, where the
allocation of an AP is changed [6]. Reallocation may be
caused by the allocated edge server being unavailable due
to, for example, exceeded capacity. Depending on the edge
computing architecture, reallocation may be the responsibility
of an orchestrator [27].

Fig. 1 illustrates an example of reallocation. ES 1 is
over capacity, and cannot accept the workload from AP 1.1.
Consequently, AP 1.1 has to reallocate new user workload to
either ES 2 or ES 3, or else offload the workload to cloud.
Depending on the type of the edge application, reallocation
may require the migration of data from one ES to another.
For example, if the edge application in question maintains
connection-specific session or state, that state needs to migrate.

Reallocation strategy. Reallocating workload, the target ES
needs to be decided (Fig. 1). While the details vary, proposed
strategies often fall into the following broad categories: Cloud
strategy always offloads the workload to cloud, if the allocated
ES is over capacity [18], [19]. This is the default strategy the
edge strategies may revert to if they, for some reason, fail.
Edge strategies try to find another ES in the edge deployment
as a reallocation target. There are a number of subcategories:

e Proximity strategy reallocates workload to the nearest
ES with available capacity [14]-[16].

e Bottom-up strategy reallocates workload to the ES with
the lowest current workload [6], [26], [28]. This strategy
does not minimize communication latency. Depending on
the edge architecture, it may require constant communi-
cation between the ESs and an orchestrator to maintain
up-to-date book-keeping of ES workloads, queue sizes, or
minimum estimated task completion times for each ES.

e Random strategy reallocates workload to a random ES
with available capacity. This strategy is also a possible

Capacity "

Capacity

Capacity ,

Fig. 1. Reallocation of workload. ES 1 is over capacity, so AP 1.1 may
decide to reallocate new workload from its users to ES 2, the nearest ES
(proximity strategy), ES 3, with the lowest workload (bottom-up strategy), or
offload the workload to cloud (cloud strategy).

fallback if another strategy fails or produces a number of
possible candidates [14].

Superfluous reallocation. A poor choice of target ES with
the chosen edge strategy may trigger another reallocation. In
Fig. 1, if AP 1.1 chooses (or is orchestrated) to follow the
proximity strategy and reallocate workload to ES 2, the nearest
one, ES 2 will exceed its capacity. Any subsequent vertical
workload from any of ES 2’s allocated APs (2.1, 2.2 or 2.3)
must thus also be reallocated.

Reallocation storm. Under certain conditions, the number
of superfluous reallocations may grow to a high proportion of all
user connections. This happens when a high proportion of ESs
are above or nearly above capacity, i.e., when the ES network as
a whole is under high workload. In such conditions, superfluous
reallocations may trigger yet another round of reallocations if
other nearby ESs are also near capacity, et cetera. In this paper,
we study the conditions leading to reallocation storms, their
frequency and impact, and find ways to avoid them. We simulate
the reallocation strategies, analyse the workload—latency trade-
off for each of them, study how the reallocation storm is realized
for each strategy, and discuss their merits and pitfalls.

III. METHODS AND EXPERIMENTAL SETUP

Data. We use a real-world Wi-Fi network connection log
as a basis for our analysis. The log data set is collected in the
PanOULU public Wi-Fi network in the city of Oulu, Finland,
in 2007-2015 [29]. We select the starting timestamps and the
APs of all the connections during our observation period of
2013-2014, chosen to include the last two full years in the
data. The total number of individual Wi-Fi connections during
the observation period was 47.656.939, with the number of
quarterly connections shown in Fig. 2. There are a total of 898
APs in the data set, 855 of which were active in the observation
period. These APs are depicted in Fig. 3.

Assumptions. The topology of the underlying fixed network
is not available in the data set. As a number of related work
(see [11]), we assume the underlying network is homogeneous
in relation to AP density, and approximate the latency between
the APs with the Euclidean distance. We assume an edge
deployment where a number of ESs of identical capacity are
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Fig. 2. Number of quarterly connections. The number of connections
fluctuates slightly over the observation period 2012-2014, remaining between
5M and 7M connections quarterly.
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Fig. 3. Access points. Depicted on the map are the PanOULU public Wi-Fi
network APs, active during the observation period of 2010-2014, located in
the city of Oulu, Finland.

deployed at some of the access points in Fig. 3. The ESs serve
user tasks of variable workload, one per user connection. To
simplify the analysis, we use a pre-determined numeric value
for the capacity of an ES, compared online to the combined
workload of the tasks allocated to it. An ES may either be below
the capacity, where it is assumed to function normally, or have
exceeded its capacity, where it is no longer functioning normally,
and will reallocate vertical workload (i.e., the workload of its
allocated APs) and refuse horizontal workload (i.e., workload
reallocated by other ESs). This reflects a scenario where the
workload of an ES exceeds a threshold such that the processing
time of a task becomes unacceptable.

Data augmentation. We enrich the base data set with
simulated data on the duration of the user tasks and the
normalized workload they incur on the edge servers during
that time. The workloads are sampled from the log-normal
distribution, with mean 1. The task durations are sampled from
the exponential distribution with three alternative means (1/)),
corresponding to three different dominant application usage
patterns: 1) 1/\ = 10s, reflecting e.g. dominant messaging
application usage; 2) 1/A = 100s, reflecting e.g. dominant

mobile game usage; and 3) 1/A = 1000s, reflecting e.g.
dominant AR/VR or other constant or near-constant app usage.

Indeed, Hintze et al. [30] measure comparable session durations
on mobile phone and tablet, and the empirical density of their
measured durations roughly follows the shape of the sampled
exponential densities (Fig. 4).

We split the enriched data to a training set we use for offline
edge server placement, and a testing set we use for simulation

1/.=10s 1/h=100s 1/3. = 1000s
-—— —— - ——
0 20 40 60 0 200 400 600 800 0 2000 4000 6000
duration duration duration

Fig. 4. Empirical densities of the durations of simulated user tasks. We
sample the durations from the exponential distribution with three different
means (1/X): 10s, 100s and 1000s.
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Fig. 5. Example of edge server placement and allocation. The example
is derived with duration mean 100s and 20 edge servers (red triangles). APs
(round dots) allocated to the same ESs are all painted in the same colour.

of the online operation. The training—testing split is set to
0.8:0.2 respectively along the temporal axis, with the larger
training set comprising ca. 38M user connections between Jan
Ist, 2013, and July 29, 2014, and the testing set comprising ca.
9.5M connections between July 29, 2014 and Dec 31, 2014.
We select two edge server placement schemes for serving the
user workload aggregated through the APs: 1) 20 edge servers,
corresponding to MEC or edge cloud, with a sparse deployment
of high capacity edge servers serving all users; and 2) 150
edge servers, corresponding to a dense deployment with a large
number of low capacity servers.

We employ the PACK placement method, based on ca-
pacitated clustering, and an R-based rpack software tool
implementing the method [11]. We use the offline training
data set to find the placement and allocation for the edge
servers in both deployment schemas. The employed placement
method interprets the clustering task as an optimization problem,
minimizing an objective function comprising AP allocation and
their distances from edge servers, with constraints for e.g. an
upper and a lower limit for edge server capacity. Each AP is
assigned a weight in relation to its maximum workload within
the training set time period. The resulting ES placement and
allocation for 20 edge servers and a user task duration mean
of 100s is shown as an example in Fig. 5. Further, the first
weeks of resulting online edge server workloads are depicted
in Fig. 6.

Simulation and analysis. For each combination of duration
mean (10s, 100s, 1000s) and edge deployment schema (20 ESs,
150 ESs), totaling 6 scenarios, we run a number of simulations.
Each simulation assumes the ESs all have identical capacity,
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Fig. 6. Example workloads on edge servers. The example is derived with
duration mean 100s and 20 edge servers. The circadian rhythm of workloads
is clearly visible, as is a service outage around Aug-03.

and that capacity is increased for each subsequent simulation.
Further, for each scenario and each capacity, we simulate all of
the strategies, namely, cloud, proximity, bottom-up and random.
Further, we set the cloud strategy as the fallback for the edge
strategies (proximity, random and bottom-up) in case all of the
ESs are over capacity. For all of those strategies, we analyse the
resulting workloads on the ESs, the number and workload of
cloud offloads and reallocations, as well as the relative latency
in the ES network.

The difference between the number of cloud offloads for the
cloud strategy, and the sum of the number of cloud offloads and
the reallocations for the edge strategies (proximity, bottom-up,
random) gives us the number of superfluous reallocations:

P =Rg+ O —O¢, (1)

where P is the number of superfluous reallocations, R is
the number of reallocations, and O is the number of cloud
offloads, while the subscript E designates an edge strategy and
C the cloud strategy.

Indeed, since the cloud offloads in the cloud strategy affect
only the offloading ES, they give a baseline of the times
when that ES was over capacity due to workload from its
allocated APs. Since reallocation transfers workload from one
ES to another, that extra workload on the target ES may cause
there superfluous reallocations, which manifest as a number of
reallocations exceeding the baseline. Further, the number of
cloud allocations for the edge strategies, i.e. the times when
an edge strategy had to revert to cloud offloading due to over
capacity in all edge servers, are also included (Fig. 7). As
proxies for latency in the ES network, we measure the distances
between ESs along the great circles connecting them.

IV. RESULTS

Results are depicted in Figs. 8 and 9. The superfluous
reallocations for proximity strategy (in red) peak at ca. 12-
17% of all connections for durations with mean 100 and 1000
seconds, and ca. 2% and 3% of connections for 20 and 150
edge servers for task durations with mean 10, respectively.
Bottom-up (blue) and random (black) strategies consistently
result in a lower number of superfluous reallocations.

Clearly, the proportion of superfluous reallocations is
high, indicating a reallocation storm, when edge servers have
low capacity. Indeed, a lower capacity is exceeded more

40

©
S

Cloud strategy offloads

—— Edge strategy offloads and reallocations

% of connections
N
3

o

0 10 20 30 40
Capacity
(% of peak workload)

Fig. 7. Superfluous reallocations. The difference (blue area) between
the number of offloads for cloud strategy (orange line) and the number of
reallocations and offloads for an edge strategy (green line) is the number of
superfluous reallocations, shown here as a proportion of all connections.

quickly, resulting in more superfluous reallocations. However,
at very low capacity values, we see the number of superfluous
reallocations suddenly dropping in many scenarios. This is
likely the result of the number of regular (i.e. not superfluous)
reallocations growing so high that they start to dominate over
the superfluous ones.

The higher the mean of the task duration, the wider
the storm. For the proximity strategy, the capacity where
the reallocation storm ends, that is, where the proportion of
superfluous reallocations drops below 0.1% of all connections,
peaks at ca. 35% of top ES workload for task duration means
100s and 1000s, with 20 ESs.

The effect of the number of edge servers is inverse. The
more edge servers, that is, the denser the ES deployment,
the narrower the storm, with the proportion of superfluous
reallocations always lower with 150 ESs than with 20 ESs.
In more detail, superfluous reallocations are caused by user
workload that is reallocated to a server, which exceeds its
capacity within the duration of the task. Such an event is less
likely to happen when there are more ESs around.

On the other hand, average reallocation distances (Fig. 9),
as a proxy to communication latency in the network connecting
the ESs, show that the proximity strategy results in consistently
shorter distances than the other two strategies. Interestingly,
with a high number of ESs, random strategy and bottom-up
strategy have nearly identical distances. Since they also all
but agree on the number of superfluous reallocations, the
results suggest employing the random strategy instead of
the bottom-up strategy in dense ES deployments due to its
lower communication overhead and simpler decentralization.
In sparser deployments, and with short average task duration,
the bottom-up strategy may however provide a slight edge over
the random strategy in terms of the number of superfluous
reallocations, at the cost of some additional latency.

V. CONCLUSION

We employed a real-world large-scale Wi-Fi connection
dataset for the simulation of workload in a number of edge
computing scenarios. While the study considered the Wi-Fi
deployment of one geographical area, earlier studies [11],
[12] have shown the deployment is representative of an edge
deployment spanning urban areas with a high AP density as well
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as sub-urban areas with a low AP density. Further, while the
studied period was as early as 2013-2014, we augmented the
data to accommodate potential future edge use cases with usage
patterns ranging from predominantly short to predominantly
long, sampling the actual task execution times and workloads
from realistic distributions.

We studied four distinct strategies, namely, the cloud,
proximity, bottom-up and random strategies, for reallocating
workload when edge servers exceed their capacity. We discov-
ered a reallocation storm with a large number of superfluous
reallocations, triggered when a task is reallocated to an ES

whose capacity is exceeded within the duration of the task.

The proximity strategy results in the highest number
of superfluous reallocations in all conditions. Further, the
superfluous reallocations vanish when capacity was increased
above a certain threshold, unique for each strategy, peaking
at ca. 35% of top ES workload for the proximity strategy in
a sparse ES deployment with heavy workload. Further, with
dense ES deployments, bottom-up and random strategies were
roughly equal in terms of both superfluous reallocations and
latency. Since random strategy requires much less coordination,
we recommend it over bottom-up in dense ES deployments.



Limitations. The study simplified edge server capacity to
one scalar, exceeding which lead to ES unavailability. In reality,
capacity is a more complex concept, with execution slowing
down with increasing workload. Especially for edge applications
where reallocation is a lightweight operation (e.g., reallocation
does not require the transfer of application data from one ES to
another), reallocation could be triggered well before the actual
capacity of the ES is reached. However, this can be reflected
in the study by employing a lower capacity value.

Impact. In general, the value of these findings is threefold.
First, avoiding the reallocation storm improves QoS/QoE
and resource-efficiency, as superfluous reallocations causing
network burden and increasing latency are minimized. Second,
edge operators have more information for selecting the most
suitable reallocation strategy. Finally, the results point towards
future studies.

Future work. We plan to further study the conditions
leading to reallocation storms, focusing on the spatio-temporal
aspects of the phenomenon. In particular, we are interested in
when and where do they appear, how long do they last, and how
they propagate through the edge network. Further, we plan to
study refined methods for avoiding the storm while optimizing
ES capacity by means of novel reallocation strategies.
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