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Abstract—Prediction of wireless network parameters, such
as traffic (TU) and channel utilization (CU) data, can help in
proactive resource allocation to handle the increasing amount
of devices in an enterprise network. In this work, we examined
the medium-to-long-scale forecasting of TU and CU data collected
from an enterprise network using classical methods, such as Holt-
Winters, Seasonal ARIMA (SARIMA), and machine learning
methods, such as long short-term memory (LSTM) and gated
recurrent unit (GRU). We also improved the performance of
conventional LSTM and GRU for time series forecasting by
proposing features-like grid training data structure which uses
older historical data as features. The wireless network time series
pre-processing methods and the verification methods are pre-
sented as time series analysis steps. The model hyper-parameters
selections process and the comparison of different forecasting
models are also provided. This work has proven that physical
layer data has more predictive power in time series forecasting
aspect with all forecasting models.
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Networks, Real Network Data, SARIMA, Time Series, WLAN.

I. INTRODUCTION

Next generation wireless networks including fifth gener-
ation (5G) and beyond networks are expected to provide not
only higher data rate but also ultra-reliable low latency commu-
nications (URLLC) for billions of devices since they will play
the main role in the growth of Internet of Everything (IoE).
Network data analytic function (NWDAF) which can perform
data analysis, forecasting and executing decisions for network
planning has been introduced by 3rd Generation Partnership
Project (3GPP) [1]. Data analysis and prediction is important in
data driven centralized frameworks. Hence, analyzed data with
a good prediction about how much network parameters will be
utilized at an access point (AP) or a group of APs can help
in effectively allocating appropriate resources at those APs.
Consequently, not only cellular networks but also enterprise
networks will be extended to provide the connections for
enormous amount of devices to incorporate IoE [2].

Hence, data driven automated frameworks for data analysis
and good predictions of network parameters to make decisions
on network performances are also required for enterprise net-
works. Wireless network parameters collected from an enter-
prise network such as traffic utilization indicating the data rate,
number of users connected and channel utilization indicating
the channel occupancy percentage, can be modeled as time
series and many mechanisms have already been designed for
time series analysis and prediction [3]. Various time series
forecasting methods can be divided into two major groups:
classical methods including exponential smoothing (ES) and
auto-regressive integrated moving average (ARIMA) [4], and
machine learning methods including support vector machine

(SVR) and neural network based (LSTM) [5]. The gated
recurrent unit (GRU) method is famous alternative to LSTM
with faster operation and simpler structure [6]. Both classical
and machine learning methods have their own advantages
such as classical methods are better for the series with strong
seasonality and trend [7]. Machine learning methods have the
ability to handle non-linear patterns and rapid changes by
extracting the features of the historical data [8].

According to the various results of researches from past
decade, traffic time series patterns can be vary for different
networks and there is no prediction method which can be fit
all types of network time series patterns. There is abundant
literature on detailed analyzing and forecasting network traffic
data of cellular networks [9], [10]. The channels utilized
in enterprise networks are shared channels operating with
IEEE 802.11 wireless network standards which are different
from the cellular networks. Therefore, separate forecasting
studies are required for enterprise networks. So far only a
few researches presented results for the enterprise networks
using classical methods such as [11]. We did correlation-
based detailed analysis and forecasting using both classical
and machine learning methods for traffic time series data of
a real enterprise network in [12]. In fact, a channel in an
enterprise network is shared among multiple wireless devices.
Hence, the traffic occupied on the physical layer channel can
be more than the network layer traffic of a certain AP or a
group of APs. Having low traffic usage at the APs with high
channel utilization becomes the problem in proactive allocation
by forecasting network layer traffic data. In [12], physical layer
data was not considered.

Analyzing and forecasting physical layer data, such as
channel usage time series, to help in allocating appropriate
resources at those APs with shared channel can be a potential
solution in the enterprise networks. Short-scale estimation of
the channel duty cycle using neural network based forecast-
ing methods was performed in [13] and capacity utilization
prediction in point-to-point microwave communication links
using ARIMA as well as neural network based forecasting
method was done [14]. Moreover, it will be useful in network
management to perform medium-to-long-scale network param-
eters analysis and forecasting for both network layer traffic
and physical layer channel utilization time series of a real
enterprise network. It is also important to investigate which
layer data is more predictive in time series forecasting aspect to
help in proactively allocating appropriate resources at a certain
AP or a group of APs.

Therefore, we attempt to do time series analysis and fore-
casting with classical and machine learning methods for both
physical layer data and network layer data of a real enterprise



network. The main contributions of our work include:

e We evaluate forecasting performances of analyzed
time series for both traffic utilization (TU) and channel
utilization (CU) data using 4 methods: Holt-Winters,
Seasonal ARIMA (SARIMA), LSTM and GRU.

e We propose features-like grid (FLG) training data
structure to improve the performances of machine
learning methods for both medium and long-scale
forecasting.

e We present challenges of network parameter time
series forecasting of TU data of the APs deployed at
the student lounge of University of Oulu and CU data
of a channel which is shared among different devices
including above APs.

e We compare forecasting performances of network
layer data and physical layer data to show that physical
layer data has more predictive power in time series
forecasting aspect to help in proactively allocating
appropriate resources at the APs.

II. TIME SERIES DATA ANALYSIS AND FORECASTING

A. Description of collected data

We collected both network and physical layer data from
APs deployed around the Linnanmaa campus of the University
of Oulu, Finland. The received and transmitted traffic data rate,
number of users, locations and the names of each AP of a
total 470 APs around the campus are collected as the network
layer data. Each data point of total 5040 of the time series
provides the measurement at every 10-minute interval within
the period of January 5, 2019 to February 8, 2019. We defined
the transmitted traffic time series of an AP i as R} and consider
it (which dominates received traffic) as the network TU data.
The collected TU dataset, which is named Wireless Network
Traffic Time Series of an Enterprise Network, has open access.

Physical layer data CU indicates the percentage of the
total amount of transmission from all kinds of sources in-
cluding APs operating on the same specific channel within
time period f. A data point of CU time series is defined as:
CU, = %):]TZID j» where Dj is the 7 binary decision of the
signal presence or absence and 7 is the number of signal
detection iteration. We collected CU of a channel with 20MHz
bandwidth operating in 2.4GHz using three measuring devices
placed in one of the locations of the University of Oulu where
four APs are operating with high traffic transmissions. The
devices were configured to collect mean CU (CU-mean) and
maximum CU (CU-max) values of the channel at every 20
seconds interval between February 11 to February 24, 2019.
Hence, each CU time series has over 50,000 data points.
The details of collected CU time series and the measurement
devices we used can be found in [15].

B. Time Series Analysis System

Analyzing and forecasting TU and CU of an enterprise
network within medium-to-long time periods, such as one
hour (1-hr) and one day (1-day) ahead, will help to make
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Fig. 1. An illustration of traffic and channel utilization forecasting system

predictions about the behavior of the network and channel
to effectively allocate the appropriate resources in the net-
work. First we defined the forecast horizon (FH) which is
the number of future time periods for which forecasts must
be produced. The training dataset with the total number of
samples 7T is divided equally into the pairs of input sample
and target. The first pair of input sample and target can be
defined as X] = {xl,xz,...,xFH} and Y] = {y1,y2,...,yFH},
for instance, if x; is the current traffic usage, y; will be the
traffic usage of next hour for 1-hr FH. The testing dataset
is also divided equally where the first testing sample and
forecasted values are defined as X = {XT41,X742, s X7+ FH }
and Py = {pr41,pr+2,---, PT+FH } 10 evaluate the forecasting
performance by comparing them.

Before forecasting, we need to perform time series analysis
of the data which in turn can improve the forecasting per-
formance. As both TU and CU of typical enterprise network
are very low during weekends, we focus our investigation
to weekdays (working days) data of both TU and CU time
series. The illustration of our system can be seen in Fig.
1. For TU data series, we only selected the APs near to a
specific location with shared channel that we collected CU
data from. We already observed that aggregating traffic series
of numerous APs makes the resultant time series more stable
[12]. Consequently, the traffic time series of K APs with shared
channel at a specific location are aggregated into a total traffic
time series, defined as Rry = R, +R% + ...+ RX to utilize
the benefits of resulting less variability.

In general, network parameter time series collected from
any network exhibit non-stationarity and their statistical prop-
erties change over time [11]. However, a specific filter is
applied to the traffic series of wireless home network to get
the similar properties of stationary series in [16]. Therefore, we
also try applying median filter to both our collected TU and CU
data series as a process of time series smoothing. Median filter
is widely used for its ability to keep the important pattern of the
time series preserving the edges by distinguishing the outliers
[17]. Since we would like to perform hourly forecasting,
median filter with hourly window length is used to smooth out
both aggregated TU and CU time series in this work. Then,
we down sampled the collected CU-mean and CU-max time
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Fig. 2. Auto-covariance of non-overlapping sliding with 24-hour windows

series so that each data point provides the measurement of
every 10-min period as in aggregated TU series, since CU
data is collected for two weeks of every 20 second. Sampling
is not required for TU data.

As the last steps for time series analysis, the correlation-
based analysis of the collected time series and testing con-
sistency of statistical properties for different types of data
series are followed. Investigation of the auto-correlation results
before and after applying the medium filter with various hourly
window lengths tells that 1-hour and 2-hour window lengths
provides the decent increments in the correlation of each
aggregated TU and CU time series. After aggregation, filtering
and correlation-based analysis, it is time to test stationarity of
the analyzed time series since the behavior and properties of
the time series strongly influence the forecasting performances.
Unit root tests such as Augmented Dickey-Fuller (ADF) and
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests are widely
used as the stationary tests. However, absence of unit root in
a time series does not grantee for stationarity [18].

Hence, we used simple and guaranteed method called weak
stationarity test by checking constant mean, variance over time
and co-variance between two time periods to depend only on
the time difference but not the actual time at which the co-
variance is computed. For both aggregated TU and CU time
series do not have constant mean and variance over time for
any time windows. Nevertheless, CU-max time series appears
to have flatter mean and variance changes over time. The
covariance of different time periods such as #; to f, 3 to
t4 and their time difference T are also not the same so that
none of the time series satisfy the weak stationarity properties.
However, Fig. 2 shows that properties of CU time series are
more similar to stationary time series than aggregated TU time
series. After time series analysis, the prepared time series to
be able to enhance the forecasting performances are ready to
pass through the forecasting algorithms.

C. Forecasting Methods and Performances

1) Holt-Winters and SARIMA:

As network time series data usually exhibit seasonal pat-
terns, one approach that is available for the analysis of such
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Fig. 3. The block structures of LSTM and GRU networks

data is Holt-Winters which is also known as triple exponential
smoothing method. It is used to forecast the time series
algorithm by assigning exponentially decreasing weights and
values on the historical data. Based on seasonality, Holt-
Winters has two type of models, additive model and multi-
plicative model. However, we used only additive model as a
research [19] stated that additive model is more suitable for
wireless mobile traffic data.

ARIMA, is widely used for univariate time series data
forecasting. However, it is not suitable for our work as it does
not support time series with a seasonal component. Seasonal
ARIMA (SARIMA) which is an extension of ARIMA supports
the direct modeling of the seasonal component of a time series
and is therefore perfect to use for forecasting network data
usage. This method has AR term, MA term and integrated (I)
term to fit the seasonal data as well as possible. SARIMA
can be expressed as ARIMA(p,d,q)(P,D,Q)s, where p is the
number of AR terms, d is the number of difference, g is the
number of MA terms while the capital P, D, Q are for seasonal
terms respectively, and s is seasonal period of time series.
SARIMA model can be trained to fit the data by adjusting
the above parameters [20].

2) LSTM and GRU:

LSTM is a variation of recurrent neural networks (RNNs).
It is one of the most powerful tools in time series forecasting
and hence makes a strong case for using it in our work. LSTM
can remember the long time information as in RNN and can
also even delete unnecessary information from its memory.
One LSTM block can be considered as a cell with 3 main
regulation structures to control the amount of information flow
which are called Input gate (i;), Forget gate (f;) and Output
gate (0,) [21]. LSTM computes not only the states of the gates
but also the Candidate cell state (¢;), the Current cell state
(¢;) and the Final output (h;). The activation function used in
the gates of a cell in LSTM are sigmoid activation functions
and the ones used in calculating cell states are tanh activation
functions. The block structure can be seen in Fig. 3(a).



TABLE 1. CONSIDERED HYPER-PARAMETERS FOR LSTM AND GRU
Hyper-parameter Considered values
No. of layers (/) 1,2,3
No. of neurons (nn) 32, 64
Dropout (d,) 0.3, 0.5, 0.8
Learning rate 0.001
Losses MAE
Optimizer Adam
Epochs 50

TABLE II.

PERFORMANCE COMPARISON OF LSTM WITH DIFFERENT
HYPER-PARAMETERS FOR CU-MAX SERIES IN 1-HR FH (/ IS THE NUMBER
LAYERS, nn IS THE NUMBER OF NEURONS, AND d), IS THE DROPOUT)

GRU also handles the information as in LSTM but without
calculating the cell states. GRU structures consists of two
gates called Reset gate (r;) and Update gate (z,) with sigmoid
activation functions. The computation of Current memory (h,)
and the Final output (h;) with tanh activation function are
followed after the gating operations. The benefit is that GRU
has less gating units resulting in faster operation than LSTM
and the forecasting performance difference between LSTM and
GRU can be insignificant [6]. The GRU is shown in Fig. 3(b).

D. Hyper-parameter selections of forecasting methods

Optimizing the hyper-parameters of both classical and
machine learning methods is important to achieve the optimal
forecasting performance. In Holt-Winters algorithm, the initial
values such as /g, by and so are computed based on the input
time series as in [22]. The level, trend and seasonal smoothing
factors are also optimized to fit the training samples by solving
the minimum of constrained nonlinear multi-variable function.
The optimal level, trend and seasonal smoothing factors used
in our work are o = 0.004, B = 0, Y= 0.23 for TU series and o
=0.001, B =0, y=0.75 for CU series, respectively. Moreover,
there are various ARIMA model to choose for a certain time
series. In fact, ARIMA(0, 1,1)(0, 1, 1)s is the most widely used
model for seasonal time series with repetitive patterns [22].
According to the above correlation-based results, s and the
seasonal MA terms Q are assigned as 144 to get the optimal
performance for both TU and CU time series in this work.

In LSTM and GRU, which are the neural network-based
machine learning methods, the hyper-parameters such as no. of
layers, no. of neurons, dropout value and activation functions
influence the performance of the forecasting model. The possi-
ble combinations of considered hyper-parameters presented in
Table I are run through to find the optimal ones. Mostly, more
complex features of the input can be extracted with deep and
narrow neural networks than the shallow and wide ones [23].
However, as stated in [24] that applying deep or wide network
for time series does not always improve the performance,
the optimal hyper-parameters of LSTM for both TU and CU
series are 2-layer each with 32 neurons and dropout value
0.3, where value 1 means no dropout is applied. Then, the
optimized LSTM model is followed by a dense layer with
linear activation function. Moreover, the batch size is set to 1
since [25] convinced that the method called on-line learning,
which is with batch size 1, is good for pattern recognition
problems and is faster than batch training. As an example, the
performance comparison of forecasting CU-max time series
with 1-hour medium filter length using LSTM models for
different hyper-parameters can be seen in Table II.

Hyper-parameters | d, =03 | d, =05 | d, =08
[=1,nn=32 0.8500 0.8482 0.8462
[=2,nn=32 0.8633 0.8626 0.8330
[ =3, nn=32 0.8220 0.8365 0.8057
[=1,nn=064 0.8493 0.8473 0.8435
=2, nn =64 0.8631 0.8623 0.8479
=3, nn=064 0.8630 0.8522 0.8350

E. Network time series data forecasting

Time series forecasting is the process of extracting useful
information from historical data to determine possible future
data values. Different from classical methods, the main advan-
tage of neural network based methods is that they can exploit
the features or extra information to improve the forecasting
performance [26]. In conventional LSTM and GRU for time
series forecasting, only historical data sequence is given as
input data if there is no extra feature available. On the other
hand, it will require extra time and resources to compute extra
features of all time series in the whole enterprise network.

Therefore, we proposed simple yet effective training data
structure, which is named features-like grid (FLG), to im-
prove the performance of neural network based methods. In
proposed training data structure, 6 consecutive data points
(as 1-hr period) are used as features instead of computing
extra features. The first training sample with FLG structure is
defined as X1 = {X17X2, ---7XFH} where X; = {xi,xi+1,...,xi+5}
and the improvement of forecasting performance is also proved
in this work. For all neural network based models, multi-step
forecasting is used to learn the complex dependent structures
of inputs and outputs of the model and to predict the multi-
points ahead at once [27]. Since each data point provides the
value at every 10-min, an input training sample is in the shape
of 6x6 grid for 1-hr FH and 6x144 grid for 1-day FH. To
make sure that samples and targets of the training data are
not overlapped, we used 2 x FH separation period between
samples and targets while preparing the training data.

The data collection days of TU series are longer than CU
series. Therefore, we used the last 9 weeks of TU data to have
the same amount of days as in CU data and represented as
TU-R. We also investigated the impact of different training
data size on forecasting performance of TU series by using
the whole collected TU data and represented as TU-all. For
CU series, we evaluated forecasting performance of both CU-
mean and CU-max time series. As the performance evaluation
metric, we used R Squared (Rz) normalized standard metric,
which is scaled between 0 and 1 with an intercept, since the
common metrics such as root mean squared error (RMSE) and
normalized RMSE varied with different time series without
any specific range [28]. In addition, only averaged accuracy of
10 times evaluation are presented in this work by considering
the stochastic nature of neural network where results can be
different for each prediction with the same model.

For 1-hr FH, the forecasting performances of considered
time series with 1-hour median filter length for different
models are presented in Table III. Among classical methods
and conventional LSTM and GRU for time series models,
SARIMA gave the decent accuracy for all time series. The
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TABLE IIL R? SCORE ACCURACY COMPARISON OF DIFFERENT
METHODS FOR ALL TIME SERIES IN 1-HR FH
T-hr FH HW | SARIMA | LSTM | GRU | LSTM-FLG | GRU-FLG
TU-all | 0.8290 | 0.8852 | 0.7100 | 0.7114 0.9596 0.9644
TU-R 0.7328 | 0.8645 | 0.7145 | 0.7132 0.9669 0.9645
CU-mean | 0.8323 | 0.8935 | 0.8276 | 0.8274 0.9396 0.9893
CU-max | 0.8708 | 0.9213 | 0.8633 | 0.8542 0.9901 0.9879

accuracy are improved by using LSTM-FLG and GRU-FLG
in all cases. Mostly, LSTM-FLG has the overall better accuracy
than GRU-FLG for 1-hr FH. However, the performance differ-
ence between LSTM-FLG and GRU-FLG is not significant
while GRU-FLG has the advantage of simpler and faster
operation than in LSTM-FLG. According to given results in
Table III, both CU series have better accuracy than TU series
and CU-max series has the highest accuracy with LSTM-FLG
for medium-scale prediction. The performance comparison of
Holt-Winters, SARIMA and LSTM-FLG for CU-max series
with 1-hr FH is presented in Fig. 4.

For 1-day FH, 2-hour median filter length is used for all
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Forecasting performances for aggregated TU-all time series with 1

TABLE IV. R? SCORE ACCURACY COMPARISON OF DIFFERENT
METHODS FOR ALL TIME SERIES IN 1-DAY FH
T-day FH | HW | SARIMA | LSTM | GRU | LSTM-FLG | GRU-FLG
TU-all 0.8194 | 0.8574 | 0.7654 | 0.8513 0.8145 0.8169
TUR 08424 | 08449 | 0.7557 | 0.7431 0.7991 0.8005
CU-mean | 0.8653 | 0.8641 0.7766 | 0.7743 0.7908 0.8213
CU-max | 09017 | 0.8996 | 0.8889 | 0.8984 0.9159 0.8992

considered time series to enhance the long-scale performance.
As shown in Table IV, classical methods gave better accuracy
than conventional LSTM and GRU in all cases. Although
LSTM-FLG and GRU-FLG improve the performances of con-
ventional LSTM and GRU for time series in all cases, they can
not outperform classical methods in long-scale prediction of
TU-all, TU-R and CU-mean series. SARIMA gave the highest
accuracy for TU series and Holt-Winters is best for CU-
mean series. The performance differences between SARIMA,
LSTM-FLG and GRU-FLG for TU-all series with 1-day FH
are shown in Fig. 5. Mostly, GRU-FLG has the overall better
accuracy than LSTM-FLG for 1-day FH. However, LSTM-
FLG outperformed classical methods and gave the highest
accuracy for CU-max series. Same as in 1-hr FH prediction,
CU-max series has the overall highest accuracy with LSTM-
FLG for long-scale prediction.

III. CHALLENGES IN FORECASTING TU AND CU SERIES

Time series forecasting itself has its own challenges but the
challenges are more specific for a particular wireless network
parameter time series. The important factors and challenges to
consider before forecasting wireless network parameter time
series include training data size, training frequency, multiple
seasonality, irregular changes and data processing. In Section
II-E, we presented the impact of different training data size
on forecasting performance by using two training data size for
TU series. Results for 1-hr FH in Table III shows that accuracy
of classical methods reduced along with the training data size
while LSTM-FLG and GRU-FLG did improve the accuracy for
TU-R when training data is reduced. However, overall accuracy
for TU-R is reduced in both classical and machine learning
models for 1-day FH as can be seen in Table IV. Hence, it is
impossible to decide how much is enough training data size
to train models in wireless network parameters forecasting.

Wireless network parameters are time-varying and non-
stationary so that their statistical properties are also chang-
ing with time. The forecasting models need to be retrained
with a certain frequency for a time period and how to set
the optimal frequency is the interesting question. Moreover,
most wireless network parameter of an enterprise network
have strong multiple seasonal patterns. Multiple seasonality
brings extra complexities for the forecasting models and proper
handling methods are still an open issue. Some robust and
strong forecasting models can predict the irregular changes in
the network parameters time series up to some extent for short
and medium scale forecasting. However, to predict the sudden
changes in the network for long-scale forecasting is almost
impossible as shown in Fig. 5. Pre-processing the data before
forecasting is necessary for all models to enhance the accuracy
by aggregating, filtering and so on. And, the utility of these
pre-processed methods can be verified by doing correlation-
based analysis and stationary test. However, all these steps



require selection of right parameters and determining the
amount of increased utility is also one of the challenging tasks.

IV. CONCLUSION

To manage the increasing amount of devices in an en-
terprise network, predictions of TU and CU can help in
proactive resource allocation. Therefore, we examined the
forecasting performances of TU data with different training
data amounts, CU-mean data and CU-max data of an enterprise
network. We investigated for 1-hr FH (medium-scale) and 1-
day FH (long-scale) predictions using Holt-Winters, SARIMA,
the conventional LSTM and GRU as well as the proposed
LSTM-FLG and GRU-FLG. The time series processing such as
aggregating, filtering and sampling are done and the utility of
these methods are verified with correlation-based analysis and
stationary tests. It is shown that the proposed machine learning
methods are suitable for medium-scale predictions since they
can learn the complex relations of input and output data better
than classical methods. For long-scale prediction, the classical
methods performed well for most of the cases due to their
insensitivity of outliers from the data set. The physical layer
CU data, especially CU-max data, has the highest accuracy
in all cases and it answers the question of which layer data
is more predictive in time series forecasting aspect to help
in proactively allocating appropriate resources. The challenges
that encountered during the investigation of different forecast-
ing models for all time series are also presented.
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