
Proactive Edge Computing in Latency-Constrained
Fog Networks

Mohammed S. Elbamby∗, Mehdi Bennis∗†, and Walid Saad‡
∗Centre for Wireless Communications, University of Oulu, Finland,

emails: {mohammed.elbamby,mehdi.bennis}@oulu.fi
†Department of Computer Engineering, Kyung Hee University, South Korea
‡Wireless@VT, Bradley Department of Electrical and Computer Engineering,

Virginia Tech, Blacksburg, VA, USA, email: walids@vt.edu

proposed in [4]. The power-delay tradeoff in centralized mo-
bile edge computing (MEC) systems is discussed in [5] using
tools from stochastic optimization. However, these works
rely on centralized solutions in which the MEC network
has information about all users requests and channel-state
information (CSI). Game-theoretic solutions are studied in [6]
to design decentralized computing offloading schemes in cases
of homogeneous and heterogeneous users. Recently, an online
secretary framework for fog network formation is proposed in
[7] under uncertainty on the arrival process of fog nodes.

While interesting, the vast majority of the literature in
fog networking is based on the reactive computing paradigm
in which task computing starts only after the task data is
offloaded to the fog node [3]. Moreover, prior art has not
explicitly accounted for stringent latency and reliability con-
straints in fog networks. Due to the distributed nature of these
networks, having computing resources closer to the network
edge allows for providing personalized type of computing
services to end-users [3]. Clearly, harnessing the correlation
between end-user requests motivates the need for proactive
computing to minimize computing latency. For example, for
augmented reality (AR) services provided in a museum,
proactively computing popular AR services of visitors can
aid in minimizing computational latency [8]. Using proactive
computing, the fog network can keep track of the popularity
patterns of user tasks and cache their computing results in
advance. This eliminates the need to request the task data
multiple times thus reducing the burden on the task offloading
transmissions [3]. A possible first step towards proactive
computing is the idea of task data prefetching [9], in which
part of the upcoming task data is predicted and prefetched
during the computing of the current one such that the fetching
time is minimized.

While the idea of proactive networks has been recently
studied in the context of wireless content caching, such as
[10] and [11], none of these works investigate the problem of
proactive caching of computing tasks. In contrast to content
caching, computing caching poses new challenges. First, while
in content caching, popular contents are prefetched from the
core network during off-peak times to alleviate the burden
on the backhaul links, computing caching decreases the load
on the access link by providing computing results to end-
user nodes (UNs) without the need to prefetch their task data

Abstract—In this paper, the fundamental problem of distribu-
tion and proactive caching of computing tasks in fog networks
is studied under latency and reliability constraints. In the
proposed scenario, computing can be executed either locally
at the user device or offloaded t o a n e dge c loudlet. Moreover,
cloudlets exploit both their computing and storage capabilities by
proactively caching popular task computation results to minimize
computing latency. To this end, a clustering method to group
spatially proximate user devices with mutual task popularity
interests and their serving cloudlets is proposed. Then, cloudlets
can proactively cache the popular tasks’ computations of their
cluster members to minimize computing latency. Additionally,
the problem of distributing tasks to cloudlets is formulated
as a matching game in which a cost function of computing
delay is minimized under latency and reliability constraints.
Simulation results show that the proposed scheme guarantees
reliable computations with bounded latency and achieves up
to 91% decrease in computing latency as compared to baseline
schemes.

I. INTRODUCTION
The emergence of the Internet of things (IoT) and machine-

to-machine communication is paving the way for a seamless
connectivity of a massive number of resource-limited devices
and sensors [1]. The unprecedented amount of IoT data com-
munication and computation requirements impose stringent
requirements in end-to-end latency, mandating ultra-reliable
and low-latency communications (URLLC). However, the fi-
nite computation capabilities of end-user devices challenge
the possibility of coping with the stringent computing and
processing latency requirements of IoT networks. Therefore,
mobile cloud computing (MCC) services have been recently
proposed to allow end-users to offload their resource consum-
ing tasks to remote cloud centers. However, despite having
high computational resources, MCC solutions are inefficient
in handling latency-critical computing services due to the high
propagation delays between the end-user device and the cloud
data center.

Recently, the idea of fog computing has been introduced
[2] to bring computing resources closer to where tasks are
requested. In order to minimize computing latency in fog
networks, smarter communication and computing resource
utilization schemes are needed [3]. A centralized joint com-
munication and computation resource allocation scheme is

This research was supported by the Academy of Finland (CARMA) project,
NOKIA donation on fog (FOGGY project), and by the U.S. Office of Naval
Research (ONR) under Grant N00014-15-1-2709.

beforehand. Second, computing tasks can be of diverse types

UN u offloads
computing tasks to

cloudlet e

Computing results are
proactively stored in the

cloudlet cache according to
cluster’s popular task vector

A cluster of cloudlets and user nodes

Popular
task

vector

Tasks
 arriving λu

se ce

a3 non-cacheable task
requiring k3 cycles/bit and of

size L3

a1, a2 cacheable tasks
requiring k1, k2 cycles/bit and

of size L1, L2 respectively

Figure 1. An illustration of the cache-enabled fog network model

and depend on the computing environment, while some of
the content is cacheable for reuse by other devices, personal
computing data is not cacheable, and must often be computed
in real time. Finally, due to the nature of IoT networks, with
large number of deployed servers and low density of UNs
per server [12], it is not practical to build popularity patterns
locally at each server. Instead, studying popularity distributions
over larger sets of servers can provide a broader view on the
popularity patterns of computing tasks.

The main contribution of this paper is to investigate the
problem of edge computing and proactive edge caching in
fog computing networks. We exploit both computing and
storage resources to minimize computing latency via joint task
offloading and proactive caching of popular and cacheable
computing tasks. A cacheable task has a computing result that
can be reused by several other devices. Moreover, we impose
constraints on computing latency and reliability so as to ensure
computing delay bounds with high levels of reliability. In
the proposed framework, clusters of UNs and their serving
edge computing nodes (cloudlets) are formed based on spatial
proximity and mutual interests in popular tasks. Accordingly,
cloudlets proactively cache computed results of popular tasks
in their clusters thereby ensuring minimal latency. Moreover,
the problem of task distribution to cloudlets is modeled as a
matching game between cloudlets and UNs. To this end, an
efficient distributed matching algorithm is proposed to reach
a stable matching of UN requests to cloudlets or to their
local device such that the minimal task computing delay is
incurred and a reliable service latency is guaranteed. Simula-
tion results show that the proposed framework can guarantee
reliable computations with bounded latency and achieve up to
91% decrease in computing latency as compared to baseline
schemes.

The rest of this paper is organized as follows. Section II
describes the system model and problem formulation. The
proposed clustering scheme as well as the joint caching and
matching scheme are studied in Section III. The performance
of the proposed framework is analyzed in Section IV. Finally,
Section V concludes the paper.

II. SYSTEM MODEL

Consider a fog network that consists of a set E of E
cloudlets, each of which having a CPU computing and storage
capability of ce and se, respectively, and a set U of U
UNs that are distributed uniformly over the network area.
Cloudlets share the same frequency channel and operate in
time-division-duplex (TDD). In our model, we focus on the
uplink transmission. UNs have computing tasks that arrive
following a Poisson process with mean λu. UNs are interested
in a set A of A tasks. Each task has a required CPU cycles
of κ per bit of task data, and the task data size follows an
exponential distribution of mean La. UNs can offload their
computing tasks to any cloudlet within their coverage, where
coverage is decided based on a threshold path loss value1. Task
data must be offloaded to the cloudlet prior to computation. To
minimize the task data offloading delay, cloudlets proactively
cache the computed results of the most popular cacheable
tasks. We assume that a subset Ac ⊂ A of the tasks are
cacheable and another subset Anc ⊂ A is non-cacheable such
that Ac∪Anc = A. An illustration of the studied fog network
model is shown in Fig. 1.

A. Computing Model
The computation of each task a ∈ A by UN u can be either

performed locally or offloaded to a cloudlet. The total local
computing time is:

Dl
ua(t) =

κLa

clocal
+W l

ua(t) + τLP, (1)

where W l
ua(t) is the queuing delay of task a in the local queue

of UN u at time t, clocal is the local computing capability in
cycles/second, and τLP is the local processing delay.

Each task a requested by user u and offloaded to the cloudlet
e experiences a total computing delay that consists of the
task data transmission time, cloudlet computing time, cloudlet
queuing time, and processing time, as follows:

Df
ea(t) =

(
κLa

ce
+

La

rue(t)
+W f

ea(t)

)
(1−yea(t)) + τEP, (2)

where rue = BW log2

(
1 + Puhue/(No + Ie)

)
is the uplink

data rate2 from UN u to the cloudlet e, W f
ea(t) is the waiting

time of task a due to the previous computing tasks in the queue
Qe of cloudlet e, yea(t) is a binary variable that equals 1 when
the computation result of task a is cached in cloudlet e, and
τEP is the cloudlet latency which accounts for the downlink
transmission of computed data and the cloudlet processing
latency. Consequently. the delay incurred by the computation
of a given task a will be:

Da(t) = xea(t)Df
ea(t) +

(
1−

∑
e∈E

xea(t)

)
Dl

ua(t), (3)

where xea is a binary variable that equals 1 if task a is
distributed to cloudlet e.

1Path loss is used as a coverage metric such that UN’s cloudlet list does
not change frequently due to wireless channel dynamics.

2BW is the channel bandwidth, Pu is the transmit power of UN u, hue is
the channel gain between UN u and cloudlet e, Ie is the interfering power
from other UNs, and No is the noise power.

Similar to other works [9], we assume that the latency due
to downlink transmission of computed data is negligible com-
pared to the uplink task data offloading time and computing
time, and, hence, it is not accounted for in the optimization
problem. This assumption is due to the typically small size of
computed data and the relatively high transmission power of
cloudlet compared to end-user devices.

Our objective is to minimize the total task computing
latency under reliability constraints, by efficiently distributing
and proactively caching the results of computing tasks. The
UN task distribution to cloudlets and task caching matrices are
expressed as X = [xea] and Y = [yea], respectively. Reliabil-
ity is modeled as a probabilistic constraint on the maximum
offloaded computing delay. This optimization problem is:

min
X,Y

∑
u∈U

Da(t) (4a)

Pr(Df
ea(t) ≥ Dth) ≤ ε, ∀e ∈ E , (4b)∑

e∈E
xea(t) ≤ 1, ∀u ∈ U , (4c)∑

a∈Qe

xea(t) ≤ 1, ∀e ∈ E , (4d)∑
a∈A

yea(t) ≤ se, ∀e ∈ E , (4e)

where (4b) is a probabilistic delay constraint that ensures the
latency is bounded by a threshold value Dth with a proba-
bility 1 − ε. Constraints (4c) and (4d) ensure the one-to-one
correspondence of distributing new requests to cloudlets. (4e)
limits the number of cached tasks to a maximum of se. The
above problem is a combinatorial problem with a non-convex
cost function and probabilistic constraints, for which finding
an optimal solution is computationally complex [13]. The non-
convexity is due to the service rate term in the delay equation
which is function of the interference from other offloading
UNs. To make the problem tractable, we use the Markov’s
inequality to convert the probabilistic constraint in (4b) to a
linear constraint [13] expressed as E{Df

ea(t)} ≤ Dthε, where
E{.} denotes the expectation over time. Since the delay of
computing a cached task is very small, we are interested in
keeping the delay of non-cached tasks below a pre-defined
threshold. Hence, the constraint can be written as:

E
{
κLa

ce
+

La

rue(t)
+W f

ea(t) + τEP

}
≤ Dthε, (5)

substituting the queuing time as W f
ea(t) =

∑
ai∈Qe

L′
ai

(t)

rie(t) :

E
{

La

rue(t)

}
≤ Dthε− E

{ ∑
ai∈Qe

L′
ai

(t)

rie(t)

}
− κLa

ce
− τEP, (6)

where L′
ai

(t) is the remaining task data of task ai in the queue
Qe of cloudlet e at time instant t. Finally, the constraint can
be expressed as:

La

r̄ue(t)
≤ Dthε−

κLa

ce
−
∑

ai∈Qe

L′
ai

(t)

r̄ie(t)
− τEP. (7)

The above constraint implies that to reach the desired
reliability, a maximum value of La

r̄ue(t) is allowed for the newly

admitted requests to the queue of cloudlet e. The average
service rate r̄ue(t) is estimated at each cloudlet e for each
UN u within its coverage using a time-average rate estimation
method, as follows:

r̄ue(t) = ν(t)rue(t− 1) + (1− ν(t))r̄ue(t− 1). (8)

Next, we propose a joint matching [14] and caching scheme
to solve the optimization problem in (4).

III. JOINT TASK MATCHING AND CACHING

To simplify the computational complexity of the optimiza-
tion problem in (4), we decouple the problem into two separate
subproblems: distributing UN tasks to cloudlets and caching
popular cacheable task results. Due to the large size of IoT
networks, it is not practical to perform task matching over
the whole network set of cloudlets and UNs. Therefore, a
clustering scheme is introduced to group UNs into disjoint
sets based on spatial proximity and mutual interest in popular
tasks, followed by the calculation of a task popularity matrix.
Subsequently, a joint task distribution and caching scheme is
proposed. UN clustering and task popularity matrix calcula-
tions are assumed to be performed during a network training
period during which information about UNs’ requests and their
serving cloudlets are reported to a higher level controller, e.g.
a cloud data center. While a central controller is involved
in the training period calculations, we emphasize that this
process does not need to be updated as frequently as the
task distribution and caching processes, since a given user’s
interests are likely to remain unchanged for a number of time
instants Nt (� 1).

A. Network Clustering and Task Popularity Matrix
We start by grouping UNs into k disjoint clusters C1, . . . , Ck

based on their mutual-coupling in distance and task popularity
such that a task popularity matrix, defined as Ξ = [ξ1, . . . , ξk]
is calculated, where ξi is a vector of the popularity order
of tasks in cluster Ci. Essentially, identifying the similarities
between neighboring UNs and their mutual interests is the
first step in bringing computing resources closer to them. To
that end, we exploit the similarity of different UNs in terms
of their similar task popularity patterns to allow cloudlets in
their proximity to store the computing results of their tasks.

1) Distance-based Gaussian similarity: The Gaussian sim-
ilarity metric is used to quantify the similarity between UNs
based on their inter-distance. A distance Gaussian similarity
matrix is defined as Sd = [dij], with dij being:

dij = exp

(
− ‖ vi − vj ‖2

2σ2
d

)
, (9)

where vi is a vector of the geographical coordinates of UN i,
and σd is a similarity parameter to control the neighborhood
size.

2) Task popularity-based similarity: To discover the task
popularity patterns of different UNs, the task request oc-
currence is recorded for each UN during a training pe-
riod set. Subsequently, a task occurrence vector nu =
[nu,1, . . . , nu,|Ac|] is calculated for each UN. This vector

Algorithm 1 UN clustering and popularity matrix calculation.
1: Training phase: For a sequence of training time instants:

• Record nu of each UN.
• Calculate the similarity matrix S from (11).
• Set kmin = 2 and kmax = U/2.
• Record the number of times a cloudlet served each UN.

2: Clustering phase:
• Perform spectral clustering using the similarity matrix S, use the

largest eigenvalue gap method [15] to select the number of clusters
k ∈ {kmin, . . . , kmax}.

• Obtain k disjoint clusters of UNs C1, . . . , Ck .
3: Popularity list construction phase:

• Mark a cloudlet most preferred cluster as the cluster from which it
received the highest number of requests during the training period.

• Calculate the task popularity matrix Ξ of each cluster using the
number of request occurrences nu of its set of UNs.

• Report to each cloudlet the task popularity vector ξi of its most
preferred cluster Ci.

captures the UN’s task arrival rate and helps to build similarity
between UNs. A cosine similarity metric is considered to
measure the similarity between UNs. The task popularity
similarity matrix is Sp = [pij], where pij is expressed as:

pij =
ni.nj

‖ ni ‖‖ nj ‖
. (10)

3) UN clustering and popularity matrix calculation: Since
we are interested in groups of UNs that are close to each
other and having similar task popularity patterns, we consider
a similarity matrix that blends the distance and task popularity
matrices together. The similarity matrix S is calculated as:

S = θSd + (1− θ)Sp, (11)
where θ is a parameter that adjusts the impact of distance and
task popularity. Subsequently, we use spectral clustering [15]
to group UNs into k disjoint clusters, C1, . . . , Ck.

To bring the popular tasks closer to the network edge, the
task popularity matrix of UN clusters is reported to cloudlets
so that they cache the computing result of the most popular
tasks. Accordingly, the most preferred cluster by a cloudlet
is obtained by calculating how frequently the members of
each cluster were assigned to this specific cloudlet during the
training period. The vector ξi of tasks that are most popular
for a cluster i is reported to the cloudlets that have cluster Ci as
their most preferred cluster. The proposed UN clustering and
task popularity matrix calculation is described in Algorithm 1.
B. Computing Caching Scheme

During network operation, cloudlets seek to minimize the
service delay of their UNs’ requests by proactively caching the
computing results of the popular tasks they receive. The caches
of each cloudlet are assumed to be empty at the beginning
of the network operation. As UNs start to offload computing
tasks, cloudlets will cache as many computing results as their
storage capacity allows. Once a cloudlet’s storage is full, a new
arriving request that is more popular than the least popular
task currently in the cache will replace it. The algorithm
implementation per cloudlet is described in Algorithm 2.

Next, if the cloudlet receives a computation request of a
task that is cached in its storage, there is no need to offload
the task data or recompute the task, and only processing delay
is incurred. Each cloudlet aims to find the optimal caching
policy that minimizes the total latency.

Algorithm 2 Proactive task caching algorithm.
1: Initialization:

• Define the set Ψe as the cache content of cloudlet e.
• Ψe = φ, ∀e ∈ E .

2: foreach a ∈ Qe

3: if | Ψe |< se
4: a→ Ψe.
5: else if | Ψe |= se
6: if there exists at least one task ai ∈ Ψe with lower index than a in

ξe
7: task ai is removed from Ψe.
8: a→ Ψe.
9: else

10: the computing result of task a is not stored.
11: end if
12: end if
13: end foreach

C. UN Task Distribution
Our next step is to propose a task distribution scheme

that solves the constrained minimization problem in (4). The
task distribution problem is formulated as a matching game
between UNs and cloudlets where, at each time instant, UNs
requesting new tasks are matched to a serving cloudlet aiming
to minimize their service delay. Matching theory [14] is
a framework that solves combinatorial problems in which
members of two sets of players are interested in forming
matching pairs with a player from the opposite set. Preferences
of both the cloudlets and UNs, denoted �e and �u, represent
how each player ranks the players of the opposite set.

Definition 1. Given the two disjoint sets of cloudlets and UNs
(E ,U), a matching is defined as a one-to-one mapping Υ from
the set E ∪U into the set of all subsets of E ∪U , such that for
each e ∈ E and u ∈ U :

1) For each u ∈ U ,Υ(u) ∈ E ∪ u, where Υ(u) = u means
that a UN is not matched to a cloudlet, but will perform
local computing instead.

2) For each e ∈ E ,Υ(e) ∈ U ∪{e}, where Υ(e) = e means
that no UN is assigned to the cloudlet e.

3) | Υ(u) |= 1, | Υ(e) |= 1; 4)Υ(u) = e⇔ Υ(e) = u.
By inspecting the problem in (4), we can see that the con-
straints (4c)-(4d) are satisfied by the one-to-one mapping
of the matching game. Moreover, matching allows defining
preference profiles that capture the cost function of the players.
To this end, the preference profiles of UNs are defined so as
to minimize their task service delay as follows:

e �u e
′ ⇔ Df

ea(t) < Df
e′a(t), (12)

u �u e⇔ Dl
ua(t) < Df

ea(t). (13)
Note that since a UN has no information about the queue

length at each cloudlet, it considers the transmission, comput-
ing and processing delay of its own task data in calculating
its preference profile.

The utility of cloudlets will essentially reflect the latency
and reliability constraint in (7), taking into account the waiting
time in the queue. Therefore, we define the utility when UN
u is assigned to cloudlet e as:

Φeu(t) = Dthε−
kaLa

ce
−
∑

ai∈Qe

L′
ai

(t)

r̄ie(t)
− τEP−

La

r̄ue(t)
. (14)

Algorithm 3 DA algorithm for UN-cloudlet matching.
1: Initialization: all UNs and cloudlets start unmatched.
2: Each UN constructs its preference list as per (12)-(13).
3: Each cloudlet constructs its preference list as per (15)-(16).
4: repeat an unmatched UN u, i.e., Υ(u) = φ proposes to its most

preferred cloudlets e that satisfies e �u u.
5: if Υ(e) = φ,
6: UN u proposal is accepted.
7: Υ(e) = u, Υ(u) = e.
8: elseif Υ(e) = u′,
9: if u′ �e u

10: UN u proposal is rejected.
11: UN u removes cloudlet e from its preference list.
12: elseif u �e u′

13: UN u proposal is accepted.
14: Υ(e) = u,Υ(u) = e.
15: Υ(u′) = φ.
16: UN u′ removes cloudlet e from its preference list.
17: end if
18: end if
19: until all UNs are either matched or not having cloudlets that satisfy

e �u u. in their preference lists.
20: Υ(u) = u for all remaining unmatched UNs.
21: Output: a stable matching Υ.

The preference of each cloudlet can be expressed as follows:

u �e u
′ ⇔ Φeu(t) > Φeu′(t), (15)

e �e u⇔ Φeu(t) < 0, (16)

where (16) states that a cloudlet is not interested in being
matched to a UN that will violate its reliability constraint. In
other words, the utility of each cloudlet is to seek a matching
that maximizes the difference between the right hand side
and the left hand side of the inequality in (7), such that the
constraint is met as a stable matching is reached.

The above problem is a one-to-one matching game. Next,
we define matching stability and provide an efficient algorithm
based on deferred acceptance (DA) [14] to solve this game.
Definition 2. Given a matching Υ with Υ(e) = u and Υ(u) =
e, and a pair (u′, e′) with Υ(e) 6= u′ and Υ(u) 6= e′, (u′, e′)
is said to be blocking the matching Υ and form a blocking
pair if: 1) u′ �e u, 2) e′ �u e. A matching Υ∗ is stable if
there is no blocking pair.
Remark 1. DA algorithm described in Algorithm 3, converges
to a two-sided stable matching of UNs to cloudlets [14].

IV. SIMULATION RESULTS

In this section, we present and illustrate insights from sim-
ulation results of the proposed scheme. We also compare the
proposed proactive computing scheme against the following
two baseline schemes:

1) Baseline 1, which is a reactive version of the proposed
scheme, in which the latency and reliability constrained
task distribution scheme is considered, but with no
caching capabilities in the cloudlets.

2) Baseline 2, in which latency and reliability constraints
are not considered. Instead, UNs and cloudlets rank each
other based on the wireless access link quality, without
taking delay queues or proactiveness into account.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Total delay (ms)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ai

l d
is

tr
ib

ut
io

n

Proactive (1/3)
Proactive (1/6)
Baseline 1
Baseline 2

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

Figure 2. The total delay tail distribution for the proposed (proactiveness of
1/6 and 1/3 of cacheable contents) and the baseline schemes, with E = 30
cloudlets, U = 3× 30 UNs, and traffic intensity of 9 Mbps.

We use a set of default parameters3 unless stated otherwise.
Three different sets of task popularity distributions are as-
signed randomly to UNs, where popularity varies among tasks
following the Zipf popularity model with parameter z [10].
Accordingly, the request rate for the ith most popular task
is proportional to 1/iz . Furthermore, one third of the tasks,
uniformly selected, are assumed to be cacheable.

A. Proactiveness and Computation Delay
In Fig. 2, we show the tail distribution of the instantaneous

total computing delay, i.e., the complementary cumulative
distribution function (CCDF) F̄D(d) = Pr(D > d), for
different schemes. The proposed scheme is simulated for
different proactiveness levels of 1/3 and 1/6. In other words,
the cloudlet storage can store up to 1/3 and 1/6 of the
computing results of the cacheable tasks. From Fig. 2, we
can see that the proposed scheme maintains a 99% reliability
constraint (ε = 0.01) for both the proactive and the reactive
cases. Moreover, the probability of having higher delay values
significantly decreases as the proactiveness level increases
since storing more computing results closer to UNs will further
reduce the computing delay.

The average total delay performance is presented in Fig. 3
under different proactiveness levels. Comparing Baseline 1
and Baseline 2 schemes, about 72% decrease in the average
computing delay can be seen. In Baseline 2 scheme, requests
that will violate the latency constraints are not admitted,
and are computed locally instead. Furthermore, the proactive
scheme significantly decreases the computing delay as the
proactiveness level increases. By storing more computing
results close to UNs, up to 91% decrease in delay is observed.

The impact of proactiveness on the delay and cache hit
rate is investigated in Fig. 4 for different discrepancy levels

3E = 30 cloudlets, U = 3×30 UNs, | A |= 90 tasks, z = 0.6, Dth = 1s,
ε = 0.01, UN power = 20 dBm, θ = 0.5, σ2

d = 500, ν(t) = 1/t0.55,
κ/clocal = 10−7, κ/ce = 10−8, se = 10 tasks, τLP = Unif(0, 1

8
) ms,

τEP = Unif(1
8
, 1
4

) ms.

0 10 20 30 40 50 60 70 80 90 100

Proactiveness (%)

0

50

100

150

200

250

300
T

ot
al

 d
el

ay
 (

m
s)

Proactive
Baseline 1
Baseline 2The computing delay is constant

for the baseline schemes since
proactiveness is not exploited

Figure 3. Total delay performance at different proac-
tiveness levels

20 30 40 50 60 70 80 90 100

Proactiveness (%)

15

20

25

30

T
ot

al
 d

el
ay

 (
m

s)

30

40

50

C
ac

he
 h

it
ra

te
 (

%
)

Figure 4. Total delay (solid lines) and cache hit rate
(dashed lines) at different values of z

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

Traffic Intensity (Mbps)

0

50

100

150

200

250

300

T
ot

al
 d

el
ay

 (
m

s)

Proactive
Baseline 1
Baseline 2

Figure 5. Total delay performance as the arrival
traffic intensity increases

of the task popularity distributions, represented by the Zipf
parameter z. As z increases, the popularity gap between the
most and least popular tasks increases. At high values of z,
most of the computing requests are for the most popular tasks.
Accordingly, it is possible to serve more requests from the
cache, resulting in low computing delay and high cache hit
rate, even at low proactiveness levels. On the other hand, at
low values of z, high proactiveness levels are needed to store
the most popular task results. Therefore, a steep decrease in
computing delay and an increase in the cache hit rate are
observed as proactiveness level increases.

B. Impact of Traffic Intensity
Next, we study how the performance changes with the

traffic intensity. Intuitively, at low traffic intensity conditions,
cloudlets can cope with the computing requests with minimal
latency, and there is no need to assign requests to local
computing. However, at high traffic conditions, offloading all
requests causes the cloudlet queues to grow rapidly, unless
stringent latency requirements are imposed. From Fig. 5, we
can see that as the traffic intensity increases, there exists a
threshold point in which higher traffic intensity will cause
severe delay for the baseline scheme with unbounded latency.
Below this point, Baseline 1 scheme achieves similar or lower
delay values than Baseline 2 as there is no compelling need
to maintain latency bounds by assigning requests to local
computing. Moreover, both the reactive and proactive schemes
achieve low delay performance, with proactiveness gains of up
to 65% at high traffic intensity.

V. CONCLUSIONS

In this paper, we have proposed a task distribution and
proactive computing scheme for cache-enabled fog computing
networks under ultra-reliability and low-latency constraints.
In the proposed scheme, clusters of cloudlets and edge user
nodes are formed based on spatial proximity and similar
interests in computing results. To ensure minimal computing
delays, each cluster proactively caches computing results in
the storage of its cloudlets. Moreover, we have proposed
a matching algorithm to distribute the computing tasks to
cloudlets such that computing delay is minimized and latency
constraints are met. Simulation results have shown that the

proposed scheme significantly minimizes the computing delay
under different proactiveness and traffic intensity levels, and
is able to guarantee minimal latency bounds with high levels
of certainty.

REFERENCES

[1] Z. Dawy, W. Saad, A. Ghosh, J. G. Andrews, and E. Yaacoub, “To-
ward massive machine type cellular communications,” IEEE Wireless
Commun., vol. 24, no. 1, pp. 120–128, February 2017.

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things,” in Proc. the First Edition of the MCC
Workshop on Mobile Cloud Computing, ser. MCC ’12, 2012, pp. 13–16.

[3] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “Mobile edge
computing: Survey and research outlook,” ArXiv e-prints, 2017.

[4] S. Barbarossa, S. Sardellitti, and P. D. Lorenzo, “Joint allocation of
computation and communication resources in multiuser mobile cloud
computing,” in Proc. IEEE 14th Workshop on Signal Processing Ad-
vances in Wireless Communications (SPAWC), June 2013, pp. 26–30.

[5] Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief, “Power-delay tradeoff
in multi-user mobile-edge computing systems,” in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Dec 2016, pp. 1–6.

[6] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct 2016.

[7] G. Lee, W. Saad, and M. Bennis, “An online secretary framework for
fog network formation with minimal latency,” in Proc. IEEE Int. Conf.
on Commun. (ICC), May 2017, pp. 1–6.

[8] E. Baştuğ, M. Bennis, M. Médard, and M. Debbah, “Towards inter-
connected virtual reality: Opportunities, challenges and enablers,” IEEE
Commun. Mag., to be published, 2017.

[9] S. W. Ko, K. Huang, S. L. Kim, and H. Chae, “Live prefetching
for mobile computation offloading,” IEEE Trans. Wireless Commun.,
vol. PP, no. 99, pp. 1–1, 2017.

[10] E. Baştuğ, M. Bennis, and M. Debbah, “Living on the edge: The role
of proactive caching in 5g wireless networks,” IEEE Commun. Mag.,
vol. 52, no. 8, pp. 82–89, Aug 2014.

[11] M. S. ElBamby, M. Bennis, W. Saad, and M. Latva-aho, “Content-aware
user clustering and caching in wireless small cell networks,” in Proc.
11th Intl. Symp. on Wireless Communications Systems (ISWCS), Aug
2014, pp. 945–949.

[12] A. Anpalagan, M. Bennis, and R. Vannithamby, Design and Deployment
of Small Cell Networks. Cambridge University Press, 2015.

[13] A. Mukherjee, “Queue-aware dynamic on/off switching of small cells
in dense heterogeneous networks,” in IEEE Globecom Workshops (GC
Wkshps), Dec 2013, pp. 182–187.

[14] Y. Gu, W. Saad, M. Bennis, M. Debbah, and Z. Han, “Matching theory
for future wireless networks: fundamentals and applications,” IEEE
Commun. Mag., vol. 53, no. 5, pp. 52–59, May 2015.

[15] J. Cranshaw, R. Schwartz, J. I. Hong, and N. Sadeh, “The livehoods
project: Utilizing social media to understand the dynamics of a city,”
in Proc. International AAAI Conference on Weblogs and Social Media,
2012, p. 58.

