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Abstract— Video-based motion analysis gave rise to contact-
less respiration rate monitoring that measures subtle respira-
tory movement from a human chest or belly. In this paper, we
revisit this technology via a large video benchmark that includes
six categories of practical challenges. We analyze two video
properties (i.e. pixel intensity variation and pixel movement)
that are essential for respiratory motion analysis and various
signal extraction approaches (i.e. from conventional to recent
Convolutional Neural Network (CNN)-based methods). We find
that pixel movement can better quantify respiratory motion
than pixel intensity variation in various conditions. We also
conclude that the simple conventional approach (e.g. Zero-
phase Component Analysis) can achieve better performance
than CNN that uses data training to define the extraction of
respiration signal, which thus raises a more general question
whether CNN can improve video-based physiological signal
measurement.

I. INTRODUCTION

Respiration rate (RR) is a critical vital sign for indicating
the physiological status of a person, which has been applied
in health monitoring to detect sleep disorders (e.g. apnea),
cardiac arrest and stroke [1]. However, conventional respi-
ration measurements that require contact-sensors attached
to the human skin, such as electrodes, a strain gauge or
respiratory effort belts, are uncomfortable and cumbersome
to use for long-term continuous health monitoring.

In recent years, Video-based respiration measurement
has been proposed and prototyped, which measures subtle
chest/belly movement by tracking pixel movement [2]–[5].
Li [2] uses optical flow to track the motion trajectories of
the features in four simulated sleep scenarios (i.e. left side,
right side, supine and torso obscured). In [3], the motion
features of the chest are tracked by using optical flow in
four recording conditions (i.e. camera distances, illumination
conditions, the clothing of subjects and the view of camera).
In addition, pixel intensity variation has been exploited
to measure respiratory motion, assuming that chest/belly
motions change light reflections of the body surface [6], [7].
Carlo [7] used the variation of light intensity to measure
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respiration and studied the influence of the subject’s clothing
and gender on respiration measurement.

Various algorithmic approaches have been developed to
extract the respiration signal from the aforementioned video
properties (e.g. pixel intensity variation and pixel movement).
Conventional approaches such as Principal Component Anal-
ysis (PCA) and signal averaging have been used to derive
a respiration signal from motion signals. More recently,
Convolutional Neural Network (CNN)-based methods have
been introduced to measure the respiration signal from a
video in an end-to-end fashion [8]–[10]. Qayyum [8] esti-
mated the respiration rate on the pre-trained network from
the videos, where the subjects perform breathing in the
complex background. In [9], an SR-DNN model enhances the
low-resolution thermal sequences to measure the respiration
signal from the subjects without voluntary body movements.
Deepphys [10] measures the respiration signal from the
videos with different levels of head motion. The architec-
tures of above CNN-based methods are 2D-CNN where the
convolution operation is on the spatial contexts, which is
different from 3D-CNN where the convolution operation is
on the spatio-temporal contexts.

However, these methods are validated in different yet
limited experimental conditions (e.g. different camera param-
eters and recording protocols), which is difficult to compare
and conclude their performance. Therefore in this paper,
we build a unified and fair benchmark to understand their
performance and try to answer two specific questions:

1) Which video property (pixel movement or pixel inten-
sity variation) is better for respiratory motion mea-
surement?

2) Which method (Zero-phase Component Analysis
(ZCA), Averaging, 2D-CNN, 3D-CNN) can better mea-
sure a respiration signal from the given video prop-
erty?

To this end, we created a video benchmark dataset that
includes six categories of practical challenges. We compared
four signal extraction methods on two video properties. The
results show that pixel movement is more robust than pixel
intensity variation in capturing subtle respiratory motions
in different conditions. But both video properties are not
immune to non-respiratory motions. We also find that the
simple conventional approach (e.g. ZCA) can achieve a
better performance than 2D/3D CNN for respiration signal
extraction (i.e. the best option is pixel movement based
ZCA extraction). The benchmark and insights provided in
this paper would be useful for designing new methods and
applications in future.



II. METHODS

Fig. 1 shows the benchmark system in this study. Video
properties and respiration signal extraction methods are spec-
ified in the following subsections.

A. Pixel intensity variation-based methods

1) Light intensity variation: In [7], the intensity of re-
flected light measured by a camera contains two components:
the illumination intensity and subject body reflection:

C(x, y, t) = I(x, y, t) ∗R(x, y, t), (1)

where C(x, y, t) is the reflected light intensity at (x, y);
I(x, y, t) is the illumination intensity and R(x, y, t) is the
body reflection. If the light source remains stable, pixel
intensity variation observed by the camera resembles the sur-
face changes caused by the movement of chest/abdomen [7].
Therefore, respiration signal could be measured by tracking
pixel intensity variation. According to [6], respiratory motion
has strong energy on the vertical direction (y-axis) due to
inhale and exhale. The intensity of the pixels is projected
onto the y-axis to derive the respiration signal. Since the tem-
poral standard deviation of the y-projected signal indicates
the amount of motion, we select ten y-projected signals with
the largest standard deviation to measure a respiration signal
using different approaches (the Averaging approach and
ZCA). For Averaging, the mean of ten y-projected signals is
used as the respiration signal. For ZCA, we apply it on the
ten y-projected signals to find the respiratory components.
Top three periodic ZCA signals with the largest Signal-to-
Noise Ratio (SNR) are selected and averaged. Note that ZCA
is similar to PCA, with an extra step of back-projection of
the de-mixed signals to eliminate the arbitrary sign problem
of PCA [11].

2) Pixel intensity variation-based 2D/3D-CNN: To ex-
plore whether the pixel intensity variation can be used as
the input of 2D/3D-CNN to measure respiration signal,
we replace the input of DeepPhys (2D-CNN) in [10] with
the image difference between two consecutive frames that
measures intensity changes. The training label is the differ-
entiated reference respiration signal that corresponds to the
input of image difference. For 3D-CNN, we use the same
architecture of PhysNet [12] that has been demonstrated for
pulse extraction, which takes the input of the R-G-B channels
of 128 frames of a video recorded at 20 frames per second
(fps). Here we replace its training label by the reference
respiration signal. Note that the mean square error is used as
the loss function for both CNN methods.

B. Pixel movement-based methods

1) Optical flow: Optical flow measures the pixel displace-
ment on a 2D plane [4]. Assuming I(x, y, t) as the intensity
of a pixel (x, y) at t, it remains constant when moving to
x + ∆x, y + ∆ at t + ∆t:

I(x, y, t) = I(x + ∆x, y + ∆y, t + ∆t) (2).

Fig. 1: Overview of the benchmark system, which compares
the performance of four respiration signal extraction methods
on two different video properties.

We use dense optical flow [13] to measure the pixel displace-
ment caused by respiratory motion of chest/abdomen. As-
suming respiratory motion has major energy on the vertical
direction, we only use the pixel motion on the y-direction to
generate motion traces, which are further used for respiratory
component extraction (i.e. by Averaging or ZCA).

For the averaging method, it takes the mean of vertical
motion traces as the respiration signal. For ZCA, we first
down-scale the dense flow image into 10×10 pixels using the
nearest-neighbor interpolation to reduce the computational
complexity of ZCA. Then we use ZCA to decompose the
10× 10 motion traces and select the respiratory component,
in the same way as the ZCA used in pixel intensity variation.

2) Optical flow-based 2D/3D-CNN: To investigate the
pixel movement-based 2D/3D-CNN, we use dense flow
image as the input for DeepPhys and PhysNet, respectively.
The only difference between 2D-CNN and 3D-CNN in this
application is: 2D-CNN takes a single flow image between
two consecutive frames as the input, while 3D-CNN takes a
sequence of flow images (128 frames at 20 fps). The training
labels for 2D/3D-CNN are differentiated respiration signals
that associate with the same meaning of dense flow input
(i.e. temporal changes of image pixels).

III. EXPERIMENT AND RESULT

A. Experimental setup

HNU respiration dataset We created a total of 66 record-
ings for six challenge categories: (1) Breathing patterns
(Bre: deep breath, shallow breath and normal breath); (2)
Illumination conditions (Ill: bright, dark and varying); (3)
Postures (Pos: sitting-front, sitting-side, sitting-back, lying-
side and lying-front); (4) Camera distances (Cam: 1.5 m and
2.5 m); (5) Backgrounds (Bac: simple and complex); (6)
Non-respiration motion (Nrm: intentional body movement).

Six healthy adult subjects (4 females and 2 males) were
guided to mimic the sinusoidal breathing pattern displayed on
a frontal screen during the recording. The reference was the
sinusoidal signal with the frequency between 0.167-0.33 Hz
shown on the screen. Videos were recorded by a regular RGB
camera (Global shutter RGB CMOS camera USB M2ST036-
H from Shenzhen city Shen Technology Co. Ltd.) for one
minute duration. Each video was saved in the lossless BMP
format (640×480 pixels, 8-bit depth) and constant frame rate
(20 fps). This study was approved by Hunan University and
written consent forms were obtained from the participants.



TABLE I: Average RMSE obtained by four methods on two
video properties in different challenges. Boldface character
denotes the best result per row (challenge category).

Challenges
Pixel intensity variation-based (frames) Pixel movement-based (frames)

AVG ZCA 2D-CNN 3D-CNN AVG ZCA 2D-CNN 3D-CNN

Bre 35.7 30.9 53.2 30.6 4.8 4.6 14.4 28.4

Ill 37.5 32.6 60.8 27.8 19.3 4.9 35.5 18.3

Pos 42.7 44.83 42.5 31.3 10.6 6.3 23.5 23.3

Cam 72.4 33.9 53.9 46.3 13.9 4.7 35.3 21.5

Bac 81.3 34.1 44.2 44.3 5.0 6.9 5.7 18.6

Nrm 63.3 95.8 90.8 41.6 51.2 10.4 46.0 30.7

Total 55.5 45.4 57.6 37.0 17.5 6.3 26.7 23.5

TABLE II: Average accuracy obtained by four methods on
two video properties in different challenges.

Challenges
Pixel intensity variation-based (%) Pixel movement-based (%)

AVG ZCA 2D-CNN 3D-CNN AVG ZCA 2D-CNN 3D-CNN

Bre 18.3 35.1 26.8 25.1 75.8 73.0 53.5 23.7

Ill 35.3 55.6 23.4 16.9 74.9 76.8 32.2 23.5

Pos 15.5 22.9 33.01 14.5 65.9 67.3 45.5 15.6

Cam 11.3 33.9 17.7 12.9 58.0 70.6 30.7 20.1

Bac 7.8 29.1 20.3 25.1 58.7 59.7 66.0 21.1

Nrm 4.0 0.0 23.4 12.0 40.1 45.3 36.9 21.2

Total 15.4 29.4 24.1 17.8 62.2 65.5 44.1 20.9

Each subject had a default recording condition: the subject
performs normal breathing, sitting on a chair that is 1.5 m
away from the camera, with bright illumination and simple
background. For the rest recordings of this subject, we
changed one challenge factor for each recording. We mention
that for the CNN training, the HNU dataset is divided into
six subject-independent groups for five-fold cross validation.

B. Evaluation metrics

• Root Mean Square Error (RMSE) The RMSE is used
to measure the difference between the peak location of
the measurement and reference.

• Accuracy It refers to the percentage where the differ-
ence between the peak location of the measurement and
reference is smaller than 6 frames (20 fps).

C. Results and discussion

Tables I-II summarize the averaged evaluation results of
the benchmark. It is clear that the methods using pixel
movement features (e.g. optical flow) are, in general, better
than using pixel intensity variation. For instance, pixel move-
ment is more robust to the challenges such as illumination
and camera distance. We expect the benefits of using pixel
movement are twofold: (i) pixel intensity is affected by both
the illumination changes and body motions, whereas pixel
movement (measured by optical flow) that only measures
body motion is robust to illumination changes; (ii) optical
flow separates motions into vertical and horizontal directions.
Only the vertical motion (with strong respiratory component)
is used for measurement, which is in principle robust to
motion disturbances on the horizontal direction. In con-
trast, pixel intensity variation cannot differentiate reflection
changes on different directions.

(a) Video properties (overall extraction methods)

(b) Methods (overall video properties)

(c) Challenges (pixel movement + ZCA)

Fig. 2: Box-plots of RMSE and accuracy in terms of (a)
video properties; (b) methods; and (c) challenge categories.
In each panel, the median values are indicated by red bars
inside the blue boxes, the quartile range by boxes, the full
range by whiskers, the outliers by red cross.

Fig. 2 shows the statistical comparison among the bench-
mark in terms of video properties, extraction methods and
challenge categories. Fig. 2 (a) confirms our observation
that pixel movement is indeed more robust than pixel in-
tensity variation in quantifying subtle respiratory motions.
Fig. 2 (b) shows that ZCA has the overall best performance
in both video properties, second by Averaging that has no
respiratory component de-mixing and selection. We also see
that simple and conventional solutions of Averaging and
ZCA outperform 2D/3D-CNN. More specifically, 2D-CNN
has larger RMSE than 3D-CNN. The reason could be that
the convolution of 2D-CNN is performed on the pixel data
(either intensity variations or movements) with limited tem-
poral information (i.e. only between two consecutive frames),
whereas 3D-CNN can perceive longer spatio-temporal con-
text (with more information related to respiratory activity)
by its 3D convolution. However, the accuracy of 3D-CNN is
lower because of the phase shift of the produced respiration
signal, which is essentially due to its internal 3D processing
(i.e. artifact of the default network). In Fig. 2 (c), we can
see that non-respiratory motion is the most challenging factor
for the best benchmarked approach that uses pixel movement
with ZCA, i.e. motion-based respiration measurement is very
difficult to be motion robust.

Since simple approaches like Averaging achieve better
performance than CNN for respiration signal extraction, we
somehow doubt whether CNN is suitable for this assign-
ment. CNN has shown impressive performance in computer
vision tasks such as recognition and classification that use



Fig. 3: Visualization of activation maps measured by 2D-CNN and 3D-CNN based on two video properties. Two subjects
are exemplified: top row — the subject wears textureless cloth; bottom row — the subject breaths in a complex background.

image contexts/features to differentiate objects or activities.
However, human physiology is not appearance dependent.
A subject’s respiration rate and heart rate is determined by
its cardio-respiratory system, not by facial appearance or
clothing. Different subjects may have very different facial
features (exploited by face recognition) but their vital signs
could be very similar. Therefore, a rationale for signal ex-
traction would be first eliminating the interfering appearance
factor in images to reduce intra-subject variance and then
retrieving the bio-signals. Another example is the camera-
based photoplethysmography that measures blood perfusion
beneath the skin but not outside the skin (not associated with
appearance features). In addition, CNN-based physiological
measurement still resembles a black-box. It is unclear how
the image data is mapped to the physiological variables and
the principles for such mapping/training are yet unknown,
i.e. a fully transparent and explainable system is essential
for making medical claims for healthcare technology.

To gain more insights, we show the activation maps
obtained by 2D-CNN and 3D-CNN based on different video
properties in Fig. 3. The activation maps suggest that CNN
has been focused on the spatial contexts that are not rel-
evant for respiration (e.g. pillow boundaries, subject hair,
background edge) and these may deteriorate the performance
as they are not the source of respiration. In the end, we
mention that the challenges (e.g. motion robustness) that
cannot be addressed by conventional approaches can nether
be resolved by CNN. The role of CNN in vital signs
extraction needs to be justified. Currently we consider it to
be more suitable to be used as front-end steps in a camera
vital signs monitoring system, such as region of interest (e.g.
face or chest) detection and tracking where we have sufficient
understanding and knowledge.

IV. CONCLUSIONS

In this paper, we revisit the video-based respiration mon-
itoring that measures the respiratory motion. We use a
large benchmark dataset with six categories of challenges to
validate four signal extraction methods (from conventional
to CNN-based approaches) on two video properties (i.e.
pixel intensity variation and pixel movement). We conclude
that pixel motion features are more robust for respiration
signal extraction. The major challenge for both video prop-

erties is the disturbance of non-respiratory motion. Simple
conventional approach (e.g. ZCA) outperforms CNN for
signal extraction. We hope that the benchmark and insights
gained in this study can help the video health monitoring
community to improve and apply the techniques for video-
based respiration monitoring.

REFERENCES

[1] A. Steinschneider, “Prolonged apnea and the sudden infant death
syndrome: clinical and laboratory observations,” Pediatrics, vol. 50,
no. 4, pp. 646–654, 1972.

[2] M. H. Li, A. Yadollahi, and B. Taati, “A non-contact vision-based
system for respiratory rate estimation,” in 36th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC). IEEE, 2014, pp. 2119–2122.

[3] C. Wiede et al., “Remote respiration rate determination in video
data-vital parameter extraction based on optical flow and principal
component analysis,” in International Conference on Computer Vision
Theory and Applications, vol. 5. SciTePress, 2017, pp. 326–333.
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