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Abstract— Photoplethysmography (PPG) provides a simple,
convenient and noninvasive method to assess pulse oximetry.
Several attempts have been made to use PPG also to estimate
blood pressure and arterial stiffness. This paper attempts to
assess obesity classes, age group, and hypertension classes
using PPG measured from the finger. One set of features
was derived from the normalized pulse width of PPG and
the other from original PPG. The features were calculated
based on the pulse decomposition analysis using five lognormal
functions and the up-slope of the PPG pulse. Using kNN and
SVM as classifiers, the results were validated using leave-one-
out validation. Performances of both features sets have no
significant difference, and the kNN outperformed the SVM. The
best accuracies are 93%, 88%, and 92% for obesity (5 classes),
age group (7 classes), and hypertension (4 classes) respectively.
These three assessment targets have a strong relationship with
arterial stiffness, therefore it also leads to a study about
arterial stiffness using PPG. Width normalization to 1 second
might affect some features points based on pulse decomposition
analysis. This study also found that the up-slope analysis might
give good indices when width normalization was employed.
However, these findings still require more experiments to gain
conclusions that are more comprehensive.

I. INTRODUCTION

Photoplethysmography (PPG) signals represent blood vol-
umetric changes in peripheral circulations measured using a
simple and low-cost optical method. It means cardiac activity
drives this signal mainly. Therefore, for instance, PPG and
ECG signals are always synchronized to each other. Some
common locations to measure PPG signals are finger and
earlobes. Each location has different peripheral circulation
characteristic and properties, thus it results in the different
shape of PPG signals. This shape also varies among different
subjects with various physiological conditions, making the
PPG signal a good technique to provide indices to assess
different kinds of characteristic from subjects.

PPG is noninvasive, inexpensive, convenient, and an easy
to use tool for measuring oxygen saturation. Further, it
can provide other physiological signals such as heart rate
variability (HRV), heart rate (HR), and respiration rate.
However, recently more and more attention has been given
to PPG for other possible applications.
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Several attempts have been made to use PPG signals to
estimate blood pressure using the PPG signals [1]-[5] and
arterial stiffness [6]-[8]. Although they are not matured yet,
these facts indicate that PPG signals carry comprehensive
information on the human body. Elgendi [9] published an
article about deriving features from PPG signal and its
first and second derivative waveforms. It includes systolic
amplitude, pulse width, pulse area, peak-to-peak interval,
augmentation index, large artery stiffness index, etc. It shows
that PPG contains useful information for further explo-
ration. Moreover, obesity seems to have strong relationship
with arterial stiffness. Tarnoki et al. [10] highlighted the
complexity of the association between obesity and arterial
stiffness. Momin et al. [11] concluded that increased BMI is
a positive factor against the development of arterial stiffness
in Chinese rural-dwelling adults with primary hypertension
undergoing antihypertension treatments, after adjusting for
confounding factors. Nordstrand et al. [12] observed general
and abdominal obesity, and they were associated with arterial
stiffness in morbid women.

The wall of large conduit arteries thicken and lose elas-
ticity over time [13]. Arterial walls, assessed via the pulse
wave velocity (PWV) and augmentation index, stiffen with
age and they have a mostly linear relationship [14]. Using
cardio-ankle vascular index, Wen et al. [15] found that a
growth curve provides better explanation about the age-
related progression of arterial stiffness than a straight line.
Jayasree et al. [16] showed that the mean pulse shape of
PPG varies among young, adult, and old people. Further-
more, analyzing the associations of blood pressure with 12
different presentations of cardiovascular disease using linked
electronic health records from 1997 to 2010, Rapsomaniki et
al. [17] found the lowest risk for cardiovascular disease was
in people with a systolic blood pressure of 90-114 mmHg
and diastolic blood pressure of 60-74 mm Hg in each age
group. Pickering et al. [18] classified them as normal blood
pressures. Consequently, PPG can be potentially used to
asses obesity, age group, and hypertension.

II. MATERIAL AND METHODS

Liang et al. [5] provide 657 short-recorded data segments
of PPG along with sex, age, weight, height, BMI, and systolic
and diastolic blood pressure from 219 subjects of 20-89 years
old. Sampled at 1 kHz, the length of each data segment is
2.1 seconds. Thus, it contains 2-3 PPG pulse.



A. PPG Signal Processing

The raw signals contain many spikes that might come from
ambient light at the photodetector. A 2nd-order of Chebyshev
low-pass filter was used to remove high-frequency noise.
However, the baseline wandering signals were still visible.
The baseline-wandering signal was estimated using cubic
spline interpolation based on the start of each PPG pulse [19].
The start of the pulse was detected based on the five-point
digital differentiator [20]. The estimated baseline wandering
was subtracted from the PPG to get a cleaned PPG signal
ready for the further process.

B. Feature Extraction and Selection

For all feature calculation, the individual PPG pulse were
normalized to [0,1]. One set of features were calculated
based on normalized PPG pulse width to 1 second to avoid
HR influence (feature set #1) and the other based on the
original width (feature set #2). Both sets used the same
feature extraction process. The first sub-set was based on the
pulses wave decomposition; decomposing PPG pulse into 5
lognormal pulse, see (1), as suggested in [21]. The main
idea lies on the theory of reflected pulses in the arteries.
Therefore, a PPG pulse is a summation of several individual
pulse. The pulse wave decomposition method aims to extract
these pulses.
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It used curve-fitting method using objective function

min|f(4,c,0) — PPG| (2)
subject to
Al > A37A3 > AQ,Ag > A4,A3 > A5 (3&)
c1 <cp<cg<cy<csy (3())
01> 09,01 > 03,01 > 04,01 > 05 (3¢)

The Matlab implementation employed fmincon function
because this function enables some constraints during opti-
mization. All fifteen parameters of the decomposition results
cannot but used directly for classification. Therefore, several
features were calculated based on them:

o Peaks of lognormal function (5)

o Times at peaks of lognormal function (5)

« Ratio between peaks of lognormal function (10)

« Difference between peaks of lognormal function (10)

« Ratio between times at peaks of lognormal function (10)

« Difference between times at peaks of lognormal func-
tion (10)

o Amplitude (A) of lognormal function (5)

o Ratio between Amplitude (A) of lognormal function
(10

« Difference between Amplitude (A) of lognormal func-
tion (10)

o Width (o) of lognormal function (5)

« Ratio between width (o) of lognormal function (10)

« Difference between width (o) of lognormal function

(10)

o Center (c) of lognormal function (5)

« Ratio between center (c) of lognormal function (10)

« Difference between center (c) of lognormal function

(10

¢ Area under curve of lognormal function (5)

e t1 — 2ty from Huotari et al. [21] (1)

The first up-slope of young people is steeper than the one
of the elderly is. The arterial stiffness also influences pulse
wave velocity and consequently blood pressure. Thus, the
up-slope of the pulse might provide useful information.

The features of the second sub-set are based on the
morphology of PPG pulse:

o Rise time of the PPG pulse (1)

« Statistical distribution of the first up slope gradient (14)

« Index based on second derivative proposed by Takazawa

et al. [22] (1)

The whole process collected 147 features, but not all
features were useful. Therefore, feature selection using the
Sequential Forward Floating Selection (SFFS) was employed
to select only features with high discriminant values for each
assessment. Using BMI data provided by the database, six
classes of obesity were made based on [23]: underweight,
normal, overweight, obesity I, and obesity II. Unfortunately,
obesity II was not found among the data. Age data was
grouped as follows: less than 30, 30-39, 40-49, 50-59, 60-69,
70-80 and over 80 years. The database put four blood pres-
sure classification: normal, prehypertension, hypertension I,
and hypertension II.

C. Classifiers and Validation

The k-nearest neighbor (kNN) was used as a classifier for
these assessments. It provides a simple but intuitive system
with fast computation and requires no training. The experi-
ments also employed the support vector machine (SVM). The
results were validated using leave-one-out cross-validation.
All methods were implemented in Matlab 2018b and ran
using Intel(R) Core(TM) i5-7500 2.70 GHz and 8 GB RAM.

III. RESULTS

The average time required in pulse decomposition analysis
using curve fitting method was 0.08 seconds. It means
the method can be used almost in real-time analysis. The
worst elapsed time was 0.9 seconds while the best one 0.03
seconds. The elapsed time variation depends on the problem
and the initial values at the beginning of the curve fitting
iteration. Obviously, this elapsed time can be influenced by
many factors such as CPU speed, memory, and tasks running
by the computer.

Fig. 1 shows the results of the decomposition analysis
from both young and elderly people on normalized width.
The pulses appeared in order as desired. The correlation



Correlation = 0.99761
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TABLE I: ACCURACY OF TWO SETS OF FEATURES FROM
THE WHOLE ASSESSMENTS USING KNN

Assessment feature set #1 | feature set #2
Obesity (5 classes) 91.9% 93.4%
Age group (7 classes) 88.2% 88.1%
Hypertension (4 classes) 90.8% 92.2%
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TABLE II: ACCURACY OF TWO SETS OF FEATURES FROM
THE WHOLE ASSESSMENTS USING SVM

Assessment feature set #1 | feature set #2
Obesity (5 classes) 89.9% 90.5%
Age group (7 classes) 83.7% 83.0%
Hypertension (4 classes) 82.1% 87.4%
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Fig. 1: Example of pulse decomposition results from young
(a) and elderly (b) people. Both figures display the original
and approximated signals in solid blue and dotted lines
respectively. The pulses appear from pulse #1 to #5 from
left to right.

coefficients also indicate that the estimated parameters could
fit the pulse almost perfect. There is no significant difference
between results from normalized and original width. Table
I and II show the results from the whole experiments for
both feature sets using kNN and SVM respectively. All
performances were above the corresponding chance level
for each case. With the lowest performance at 79%, both
feature sets offer suitable indices for these assessments. The
performances from feature set #2 looked slightly better than
the one from feature set #1 using both classifiers, but the
differences were not statistically significant.

IV. DISCUSSIONS

The SFFS selected different features from feature set
#1 and #2. All selected features from feature set #1 were
related to up-slope characteristics, while features set #2

also took features based on pulse decomposition analysis.
It looks like the width normalization weakens the features
based on the pulse decomposition analysis. Most probably,
width normalization to 1 second transforms some useful
points to other positions and makes them less useful. It
is also possible that the up-slope analysis provides good
indices with width normalization. This process enhances the
characteristic of the up-slope and makes the indices stronger
than using the original width. However, these two analyses
still require further exploration using various databases for
more comprehensive conclusions.

With a chance level of 20% for obesity case, the selected
features offer good performances from both feature sets using
kNN and SVM. The confusion matrices revealed that both
features sets make the classifiers struggled to classify obesity
I. It was found that less than 2% of the samples belong to
obesity I. However, it seemed this proportion had nothing to
do with the accuracies. Underweight, for example, was about
9% of the whole sample, but it achieved the second highest
result. It was even higher than overweight that represents
27% of the whole samples.

Age group assessment has a chance level at 14%, and
the overall performance for both feature sets were good,
but they were slightly below the obesity assessment. The
confusion matrices showed that both feature sets make the
classifiers struggled to classify age older than 80 years old.
The confusion matrices also confirmed that the proportion of
the class had no influence on the accuracy individually. The
highest performance was achieved by the 30-39 years old
class, which was less than 3%. Hypertension cases have a
chance level at 25% and the performances are good for both
sets. Based on the confusion matrices, the most struggling
class was the hypertension I. We also did not find any
correlation between the class proportion and the individual
accuracy from the confusion matrices of both classifiers.

This study found that a single pulse PPG can be used to
assess obesity, age group, and hypertension with accuracies
up to 93%. These three assessment targets have a strong
relationship with arterial stiffness. Thus, it also confirms
the previous finding that PPG signals can be used to assess
arterial stiffness [22]. With average processing time about 80



ms for each pulse, pulse decomposition analysis can be used
in a real-time application. Future works consist of using PPG
signals measured from different parts of the body to assess
the same target and exploring pulse decomposition analysis
as a marker in arterial stiffness study.
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