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Abstract

Compressive sensing theory asserts that, under certain conditions, a high dimensional but
compressible signal can be recovered from a small number of random linear projections by
utilizing computationally efficient algorithms. The a priori knowledge of the basis in which
the signal of interest is sparse is the key assumption utilized by such algorithms. However,
the basis in which the signal is the sparsest is unknown for many natural signals of interest.
Instead there may exist multiple bases which lead to a compressible representation of the
signal: e.g., an image is compressible in different wavelet transforms. We show that a signif-
icant performance improvement can be achieved by utilizing multiple estimates of the signal
using sparsifying bases in the context of signal reconstruction from compressive samples.
Further, we derive a customized interior-point method to jointly obtain multiple estimates
of a 2-D signal (image) from compressive measurements utilizing multiple sparsifying bases
as well as the fact that the images usually have a sparse gradient.

1 Introduction

According to compressive sensing (CS) framework [1, 2], under certain conditions, a
high dimensional signal can be reconstructed from a small number of random linear
projections by utilizing computationally efficient recovery algorithms. Consider the
reconstruction of a 2-D signalX ∈ R

N×N from compressive measurements. The signal
of interest X is acquired utilizing the linear measurement model given by

y = Φx, (1)

where x ∈ R
N2

stacks columns of X into a vector, i.e., x = vec(X); y ∈ R
M contains

M < N2 linear measurements of x and Φ ∈ R
M×N2

denotes the measurement matrix.
In conventional CS recovery algorithms it is assumed that the signal of interest x

has a sparse representation in a known basis [2–4], i.e., x = Ψw, where Ψ is the
N2 ×N2 representation matrix and w is the sparse vector containing the transform
domain coefficients. Under this basic assumption, the problem of recovering the
signal x from the measurements y can be formulated as searching for the sparsest
vector w which satisfies y = ΦΨw. Instead of solving this NP-hard combinatorial
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Figure 1: Signal reconstruction from compressive measurements utilizing multiple sparsifying bases.

problem of discovering the sparsest w, most of the existing CS recovery algorithms
solve its best convex approximation, the l1–norm minimization problem [2,5]

ŵ = argminw ‖w‖1 subject to y = ΦΨw, (2)

with optimization variable w, where ‖ · ‖1 denotes the l1–norm. Then the signal of
interest is estimated as x̂ = Ψŵ.

For many natural signals of interest, e.g., images, video sequences, the basis in
which the signal is the sparsest is unknown. Instead, usually there exist multiple
bases which lead to a compressible representation of the signal, i.e., the energy of the
signal is concentrated in a relatively small set of transform domain coefficients [3, 6].
Let us refer to them as sparsifying bases. In traditional CS recovery algorithms,
the basis Ψ in (2) is chosen from a set of possible sparsifying bases, e.g., discrete
wavelet transform (DWT), discrete cosine transform (DCT). Naturally, the quality of
reconstruction of the signal of interest varies depending on the choice of the basis Ψ.

So far, most of the effort have been focused on finding a specific basis that provides
the sparsest representation of the signal, e.g., via dictionary learning algorithms [7,8],
which are generally computationally expensive. However, as pointed out in [9] in a
signal denoising application, significant performance improvement can be obtained
by combining several medium-sparse representations of the signal as compared to the
case in which only the sparsest representation is utilized. In this paper, we show that a
similar performance improvement can be also achieved in the context of signal recon-
struction from compressive samples by utilizing multiple sparsifying bases. Further,
we derive a customized interior-point method for recovering 2-D signals (images) from
compressive measurements which can utilize multiple sparsifying bases (e.g., wavelet
and discrete cosine transforms) as well as the fact that the images usually have a
sparse gradient. It is important to point out that, the signal reconstruction method
proposed in this paper differs from the signal denoising method introduced in [9] in a
fundamental way. Though both methods rely on combining multiple sparse signal rep-
resentations, the method introduced in [9] uses a randomization technique to generate
multiple sparse representations in a single over-complete dictionary while our method
uses several distinct sparsifying bases to obtain multiple sparse representations of the
signal of interest.



2 Signal reconstruction via multiple bases

Let us suppose that the signal of interest x is reasonably compressible in a set of K
a-priori known bases S = {Ψ1,Ψ2, . . . ,ΨK}. Then, we perform the signal recon-
struction utilizing the idea illustrated in Figure 1. First, we estimate the set of sparse
coefficient vectors W = {ŵ1, ŵ2, . . . , ŵK} from the measurements y by assuming x
is sparse in each basis Ψk ∈ S. Then the signal x is reconstructed as x̃ = f(W ,S),
where f(.) is the fusion function. We can summarize the key idea as follows:

Algorithm 1 Signal recovery via multiple sparsifying bases

1. Inputs: y, Φ, S = {Ψ1,Ψ2, . . . ,ΨK}.
2. Estimate: W = {ŵ1, ŵ2, . . . , ŵK}.
3. Output: x̃ = f(W ,S).
In step 2, ŵk ∈ W can be estimated from measurements y by solving the l1–norm

minimization problem (2) for each basis Ψk ∈ S. Alternatively, in the sequel we
propose a novel method which can utilize multiple sparsifying bases as well as the
fact that the images usually have a sparse gradient in order to estimate ŵk ∈ W . In
step 3, as an example we can utilize simple averaging as the fusion function f(W ,S)
to reconstruct the signal, i.e., x̃ = 1/K

∑K
k=1Ψkŵk. However, utilization of a more

sophisticated fusion function, e.g., by taking into account the sparsity of each ŵk ∈ W ,
may provide a better recovery performance. Finding the optimal fusion function
would be an interesting research area, which is out of the scope of this paper. However,
the numerical results show that even a simple averaging of several estimates of the
signal significantly improve the reconstruction performance compared to any single
estimate.

In general, we need to estimate ŵk ∈ W in step 2 such that it provides the best
sparse representation of the signal x in Ψk ∈ S. In order to jointly estimate ŵk ∈ W
for the case where the signal of interest is a natural image, we consider solving the
following optimization problem:

minimize
∑K
k=1 λk‖wk‖1 + TV

(∑K
k=1Xk

)
subject to ‖y −ΦΨkwk‖2 ≤ δk, k = 1, . . . , K

(3)

with the optimization variable wk for k = 1, . . . , K. Specifically, we derive a cus-
tomized interior-point method for solving the problem (3). Here the p–norm of a
vector is denoted by ‖ · ‖p, vec(Xk) = Ψkwk, and TV(·) denotes the total variation
of an image. Problem (3) not only exploits the sparsity of the image in given trans-
forms but also consider that the image has a sparse gradient. The parameter δk allows
to account for the case of noisy acquisition of the signal. Further, by utilizing the
ratio between the regularization parameters λk for k = 1, . . . , K, we can encode the
belief on sparsity of the signal in bases Ψk ∈ S.



3 Customized interior-point method for CS recovery via multiple bases

Customized methods have been proposed to solve the l1-norm minimization problem
in [10, 11] and TV minimization problem in [10]. However, these methods are not
applicable to problem (3) due to the variations in the structure of the Hessian. Thus,
in this section, we derive a customized interior-point method for solving problem (3)
that compute the search direction of the Newton method efficiently by exploiting the
specific structure of the Hessian. It is worth to mention that the implementation of
the proposed interior-point method in [12] is inspired from [10], and it can reconstruct
medium size images.

3.1 Interior-point method

Let xi,j denotes the pixel in ith row and jth column of an image X. We define the
vectors dhij ∈ R

N2
and dvij ∈ R

N2
such that

(dhij)
Tx =

{
xi,j+1 − xi,j j < N

0 j = N
(dvij)

Tx =

{
xi+1,j − xi,j i < N

0 i = N.

Then, the total variation of X can be expressed as TV(X) =
∑N
i=1

∑N
j=1 ‖Dijx‖2,

where Dij =
[
dhij d

v
ij

]T ∈ R
2×N2

and x = vec(X). Now, by introducing the aux-
iliary variables uk,n for k = 1, . . . , K, n = 1, . . . , N2 and vij for i, j = 1, . . . , N , we
equivalently reformulate the problem (3) as

minimize
∑K
k=1

∑N2

n=1 λkuk,n +
∑N
i=1

∑N
j=1 vij

subject to ‖y −Akwk‖2 ≤ δk, k = 1, . . . , K

‖∑K
k=1DijΨkwk‖2 ≤ vij, i, j = 1, . . . , N

−uk,n ≤ wk,n ≤ uk,n, k = 1, . . . , K n = 1, . . . , N2

(4)

where Ak = ΦΨk with the optimization variables wk ∈ R
N2

, uk = [uk,1, . . . , uk,N2 ]T ∈
R
N2

, and v = [v11, . . . , vN1, . . . , vNN ]
T ∈ R

N2
. Next, we introduce the logarithmic

barrier function for the inequality constraints in problem (4) as

φ(w,v,u) = −∑K
k=1 log(δ

2
k − ‖rk‖22)−

∑N
i=1

∑N
j=1 log(v

2
ij − ‖Bijw‖22)

−∑K
k=1

∑N2

n=1

(
log(uk,n + wk,n) + log(uk,n − wk,n)

)
(5)

where w = [wT
1 . . . wT

K ]
T, u = [uT1 . . . u

T
K ]

T, rk = y−Akwk, and Bij = DijΨ with
Ψ = [Ψ1, . . . ,ΨK ]. The log barrier function (5) is defined over dom φ = {(w,v,u) ∈
R
KN2 × R

N2 × R
KN2 |‖rk‖2 < δk, ‖Bijw‖2 < vij, |wk,n| < uk,n, for k = 1, . . . , K, n =

1, . . . , N2 and i, j = 1, . . . , N}.
For the notational convenience, we define q = [wT vT uT]T. Then, for t > 0,

let q�t minimize the convex function

ψt(q) = t
(∑K

k=1

∑N2

n=1 λkuk,n +
∑N
i=1

∑N
j=1 vij

)
+ φ(q). (6)



The central path associated with problem (4) is defined as the set of central points q�t
for t > 0. Specifically, the central path leads to an optimal solution of problem (4)
as t→∞, since q�t is no more than ((2K + 1)N2 +K)/t–suboptimal [13, Sec. 11.2].

In an interior-point method, we compute a set of central points q�t for a sequence of
increasing values of t until ((2K+1)N2+K)/t ≤ ε in order to obtain an ε–suboptimal
solution for problem (4) [13, Sec. 11.3]. Thus, we can summarize the interior-point
method as follows:

Algorithm 2 Interior-point method for l1–regularized TV with multiple bases

given t0 > 0, μ > 1, ε > 0 and strictly feasible q0.

initialize q̂ = q0, t = t0

repeat

1. Compute q�t by minimizing ψt(q), starting at q̂.

2. Update. q̂ := q�t .

3. quit if ((2K + 1)N2 +K)/t < ε and output q̂.

4. Increase t. t := μt.

At each iteration (except the first one) we compute the central point q�t starting
from the previously computed central point. For this purpose, in step 1, we utilize
the Newton’s method [13, Sec. 9.5] in order to minimize ψt(q), for a fix value of t.

3.2 Efficient solution of the Newton system

In Newton’s method, the search direction Δq = [ΔwT ΔvT ΔuT]T is computed as
the solution to the Newton system [13, Sec. 9.7]

HΔq = −g, (7)

where H = ∇2ψt(w,v,u) ∈ R
(2K+1)N2×(2K+1)N2

and g = ∇ψt(w,v,u) ∈ R
(2K+1)N2

denotes the Hessian and the gradient of ψt at (w,v,u) respectively. The principle be-
hind a customized interior-point method is the efficient solution of the Newton system
by exploiting the structure of the Hessian. In this subsection, we present an efficient
method for solving the Newton system (7), which is the key to the effectiveness of
the customized interior-point method. The Newton’s method utilize to compute q�t
in step 1 of Algorithm 2 can be summarized as follows:

Algorithm 3 Newton’s method

given εnt > 0 and staring point q0 ∈ dom ψt(q).

initialize q̂ = q0.

repeat

1. Compute the search direction Δq by solving Newton system (7) and the decre-
ment as η2 = −∇ψt(q̂)TΔq.

2. quit if η2/2 ≤ εnt and output q̂.

3. Choose step size s by backtracking line search.

4. Update. q̂ := q̂+ sΔq



Given the search direction Δq, the step size in the backtracking line search is taken
as s = βp, where p ≥ 0 is the smallest integer that satisfies

ψt(q+ β
pΔq) ≤ ψt(q) + αβp∇ψt(q)Δq,

where ∇ψt(q) is the gradient of ψt at q, α ∈ (0, 0.5) and β ∈ (0, 1) [13, Sec. 9.2].
To derive an efficient solution to the Newton system (7), first we obtain compact

representations of the Hessian and gradient. The Hessian can be expressed as

H =

⎡
⎣F1 + F2 +D1 F3 D2

FT
3 D3 0
D2 0 D1

⎤
⎦ ∈ R

(2K+1)N2×(2K+1)N2

, (8)

where F1 = diag(F1,1, . . . ,FK,1),D1 = diag(D1,1, . . . ,DK,1), andD2 = diag(D1,2, . . . ,DK,2)
with

Fk,1 =
2AT

kAk

δ2k − ‖rk‖22
+

4AT
k rkr

T
kAk

(δ2k − ‖rk‖22)2
∈ R

N2×N2

F2 =
N∑
i=1

N∑
j=1

[
2BT

ijBij

(v2ij − ‖Bijw‖22)
+

4BT
ij(Bijw)(Bijw)

TBij

(v2ij − ‖Bijw‖22)2
]
∈ R

KN2×KN2

F3 =

[ −4v11BT
11B11w

(v211 − ‖B11w‖22)2
· · · −4vNNB

T
NNBNNw

(v2NN − ‖BNNw‖22)2
]
∈ R

KN2×N2

Dk,1 = diag

(
2(u2k,1 + w

2
k,1)

(u2k,1 − w2
k,1)

2
, . . . ,

2(u2
k,N2 + w2

k,N2)

(u2
k,N2 − w2

k,N2)2

)
∈ R

N2×N2

,

Dk,2 = diag

(
−4uk,1wk,1

(u2k,1 − w2
k,1)

2
, . . . ,

−4uk,N2wk,N2

(u2
k,N2 − w2

k,N2)2

)
∈ R

N2×N2

,

D3 = diag

(
2(v211 + ‖B11w‖22)
(v211 − ‖B11w‖22)2

, . . . ,
2(v2NN + ‖BNNw‖22)
(v2NN − ‖BNNw‖22)2

)
∈ R

N2×N2

.

Here, we denote the diagonal matrix with diagonal blocks x1, . . . , xp by diag(x1, . . . , xp).

The gradient can be written as g =
[
gT1 gT2 gT3

]T ∈ R
(2K+1)N2

, where

g1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2AT
1 r1

δ21 − ‖r1‖22
+

⎡
⎢⎣

2w1,1/(u
2
1,1 − w2

1,1)
...

2w1,N2/(u2
1,N2 − w2

1,N2)

⎤
⎥⎦

...

−2AT
KrK

δ2K − ‖rK‖22
+

⎡
⎢⎣

2wK,1/(u
2
K,1 − w2

K,1)
...

2wK,N2/(u2
K,N2 − w2

K,N2)

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

N∑
i=1

N∑
j=1

2BT
ijBijw

(v2ij − ‖Bijw‖22)
∈ R

KN2

g2 = t1−

⎡
⎢⎣

2v11/(v
2
11 − ‖B11w‖22)

...
2vNN/(v

2
NN − ‖BNNw‖22)

⎤
⎥⎦ ∈ R

N2



g3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1t1−

⎡
⎢⎣

2u1,1/(u
2
1,1 − w2

1,1)
...

2u1,N2/(u2
1,N2 − w2

1,N2)

⎤
⎥⎦

...

λKt1−

⎡
⎢⎣

2uK,1/(u
2
K,1 − w2

K,1)
...

2uK,N2/(u2
K,N2 − w2

K,N2)

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

KN2

.

Next, in order to obtain the search direction Δq we solve the Newton system (7) by
exploiting the structure of the Hessian H in (8). In particular, we compute Δw,Δv
and Δu efficiently by employing the block elimination procedure [13, App. C.4] instead
of using directly the inverse of H, which involves an operation of O(P 3) flops and
memory of O(P 2) with P = (2K + 1)N2. For this purpose, first we express Δw by
using the block elimination procedure as Δw = S−1z1, where

S = F1 + F2 +D1 −
[
F3 D2

] [D3 0
0 D1

]−1 [
FT

3

D2

]
= F1 +D1 −D2D

−1
1 D2 + F2 − F3D

−1
3 F

T
3 ∈ R

KN2×KN2

(9)

z1 = −g1 +
[
F3 D2

] [D3 0
0 D1

]−1 [
g2
g3

]
= −g1 + F3D

−1
3 g2 +D2D

−1
1 g3 ∈ R

KN2

. (10)

Let S1 = F1 +D1 −D2D
−1
1 D2, Bh be a matrix containing (dhij)

TΨ as rows and Bv
contains (dhij)

TΨ as rows. Then we can express S as S = S1 +B
TCB, where

B =

[
Bh
Bv

]
∈ R

2N2×KN2

C =

[
F−1
v +ΣvΣ

2
∂h ΣvΣ∂hΣ∂v

ΣvΣ∂vΣ∂h F−1
v +ΣvΣ

2
∂v

]
∈ R

2N2×2N2

with Fv = diag
(
(v211 − ‖B11w‖22)/2, . . . , (v2NN − ‖BNNw‖22)/2

)
, Σv = diag

(− 4/(v411 −
‖B11w‖42), . . . ,−4/(v4NN − ‖BNNw‖42)

)
, Σ∂h = diag

(
Bhw

)
and Σ∂v = diag

(
Bvw

)
(see [12] for detailed derivation). Now, utilizing the matrix inversion lemma we com-
pute Δw as

Δw = S−1
1 z1 − S−1

1 B
T(C−1 +BS−1

1 B
T)−1BS−1

1 z1. (11)

Then, by utilizing the value of Δw, we can compute Δv and Δu as

Δv = D−1
3 (−g2 − FT

3Δw), Δu = D−1
1 (−g3 −DT

2Δw). (12)

Since D1,D2 are diagonal and F1 is block diagonal, the matrix S1 is a block diag-
onal matrix containing N2 × N2 blocks. Thus, the most computationally expensive
operation for the block elimination procedure is the inversion of C−1 + BS−1

1 B
T ∈

R
2N2×2N2

in (11). Note that for the case of K = 1, since S ∈ R
N2×N2

it is efficient to
inverse S in (9) instead of utilizing (11). Therefore, the cost of the block elimination
procedure is O(P 3) flops with P = 2N2 (P = N2 for K = 1), which is much less
compared to that of inverting the matrix H ∈ R

(2K+1)N2×(2K+1)N2
.
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Figure 2: a) Original image b) DWT ‘sym6’ c) DWT ‘bior4.4’ d) DWT ‘sym8’ e) DCT 16× 16

f) DCT 32× 32 g) DCT 64× 64 h) DCT 128× 128 i) DCT 256× 256 j) Proposed

4 Numerical results

In this section, we evaluate the performance of utilizing multiple bases for compressive
sensing reconstruction. Figure 2 presents an example for the improved performance,
in terms of the visual quality, of utilizing multiple sparsifying bases in recovering an
image from compressive measurements. The figure illustrates a portion of the ‘Pep-
pers’ image X reconstructed using different bases as well as using Algorithm 1 from
the compressive measurements y = Φx, where x is the vectorized version of the 2-D
image X. The measurement matrix Φ ∈ R

M×N2
is generated by selecting random M

rows of the ‘noiselet transform’ matrix [4] at sensing rate M/N2 = 0.15. For each
basis, we solve the l1–norm minimization problem (2) using the NESTA toolbox [11]
with the parameters μf = 10−7, NESTAmaxiter = 500 and δ = 0. Further, in step 3

of Algorithm 1, we utilized the simple fusion function x̃ = 1
K

∑K
k=1Ψkŵk. The figure

shows that the reconstructions using only a single basis contain different artifacts
which are specific to the given basis, e.g., different ringing artifacts for DWT bases
and different blocking artifacts for the DCT bases. The fusion in Algorithm 1 elim-
inates these artifacts, and as a result it provides a better subjective visual quality
compared to the reconstructions via a single basis.

Table 1 demonstrates the objective quality comparison via Peak Signal-to-Noise
Ratio (PSNR) for few example images under different sensing rates. The results show
that the basis which achieves the highest PSNR among the considered set of bases
depends on the image as well as the sensing rate. For example, the basis DWT ‘sym6’
achieves the highest PSNR for ‘Peppers’ image at sensing rate 0.4, while for the same
sensing rate the basis DCT 32×32 achieves the highest PSNR for the ‘Barbara’ image.
Similarly, for the same ‘Peppers’ image at sensing rate 0.25 the basis DCT 16 × 16
achieves the best PSNR, but at sensing rate 0.4 the basis DWT ‘sym6’ achieves the
best PSNR. However, we can see that the reconstruction via Algorithm 1 utilizing



Sensing
rate

DWT
‘sym6’

DWT
‘bior4.4’

DWT
‘sym8’

DCT
16×16

DCT
32×32

DCT
64×64

DCT
128×128

DCT
256×256 Fused

Barbara (512× 512)
0.15 20.07 19.77 20.12 22.51 23.15 22.99 22.54 21.86 23.46
0.20 21.89 21.63 21.98 24.14 24.70 24.34 23.79 23.00 25.03
0.25 23.31 22.91 23.42 25.67 26.12 25.62 24.92 24.09 26.41
0.30 24.73 24.32 24.85 27.15 27.43 26.82 26.05 25.10 27.77
0.35 26.17 25.70 26.34 28.63 28.74 27.98 27.14 26.09 29.13
0.40 27.58 27.11 27.80 29.96 30.01 29.14 28.23 27.15 30.47

Peppers (512× 512)
0.15 24.51 24.02 24.54 25.70 25.92 25.46 24.98 24.70 27.03
0.20 26.88 26.42 26.89 27.69 27.62 27.01 26.43 26.13 28.96
0.25 29.00 28.67 28.98 29.23 29.01 28.21 27.62 27.28 30.54
0.30 30.57 30.24 30.55 30.48 30.10 29.29 28.69 28.32 31.80
0.35 31.80 31.54 31.77 31.55 31.10 30.29 29.66 29.26 32.89
0.40 32.79 32.60 32.75 32.49 32.01 31.21 30.54 30.18 33.84

Table 1: Reconstruction performance comparison in average PSNR (in dB).

multiple bases provides the best PSNR for all images and sensing rates1.

Table 2 presents the reconstruction performance of fusion via the solution of prob-
lem (3) (l1+TV-fusion) in terms of PSNR. We utilize the proposed interior-point
method for solving problem (3) with parameters λk = 1, α = 0.02, β = 0.3, μ =
20, ε = 10−3, εnt = 10−3 and x̃ = 1

K

∑K
k=1Ψkŵk as the fusion function. The results

show that the reconstruction via the solution of problem (3) even out performs the
reconstruction based on the fusion using the estimates from l1-norm minimization
(l1-fusion). This is due to the fact that problem (3) also take into account that an
image has a sparse gradient.

5 Conclusions

We considered the reconstruction of a signal from compressive measurements when
the basis in which the signal of interest is the sparsest is unknown. We have shown
that fusion of multiple estimates of the signal using different sparsifying bases leads to
a better signal recovery compared to reconstructions via any single basis. Further, we
derived a customized interior-point method to jointly obtain such multiple estimates
of an image from compressive measurements which utilize multiple sparsifying bases
as well as the fact that the images usually have a sparse gradient.

6 References

[1] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information,” IEEE Trans. Inform.
Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006.

1We refer the interested reader to [12] for more simulation results.



Sensing
rate

DWT
‘sym6’

DCT
16× 16

DCT
32× 32 l1-fusion l1+TV-fusion

Peppers (512× 512)
0.20 26.88 27.69 27.62 28.95 33.01
0.30 30.57 30.48 30.10 31.91 34.81
0.40 32.79 32.49 32.01 33.92 36.15
0.50 34.61 34.30 33.71 35.67 37.36

Cameraman (256× 256)
0.20 21.97 22.88 22.54 23.84 27.94
0.30 24.84 25.44 24.82 26.48 30.80
0.40 27.86 27.78 27.11 29.09 33.50
0.50 30.65 30.28 29.22 31.59 36.23

Table 2: Reconstruction performance comparison between the fusion via l1-norm minimization and solution of prob-
lem (3) in average PSNR (in dB).

[2] D. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory, vol. 52, no. 4, pp.
1289–1306, Apr. 2006.

[3] M. A. Davenport, M. F. Duarte, Y. C. Eldar, and G. Kutyniok, “Introduction to
compressed sensing,” in Compressed Sensing: Theory and Applications. Cambridge
University Press, 2012.

[4] E. Candès and J. Romberg, “Sparsity and incoherence in compressive sampling,” In-
verse Problems, vol. 23, no. 3, p. 969, 2007.

[5] E. Candès, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and
inaccurate measurements,” Commun. Pure Appl. Math., vol. 59, no. 8, pp. 1207–1223,
Aug. 2006.

[6] E. Candès and T. Tao, “Near-optimal signal recovery from random projections: Univer-
sal encoding strategies?” IEEE Trans. Inform. Theory, vol. 52, no. 12, pp. 5406–5425,
Dec. 2006.

[7] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: an algorithm for designing overcom-
plete dictionaries for sparse representation,” IEEE Trans. Signal Processing, vol. 54,
no. 11, pp. 4311–4322, Nov 2006.

[8] K. Engan, S. O. Aase, and J. H. Husoy, “Method of optimal directions for frame
design,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, vol. 5, 1999, pp.
2443–2446.

[9] M. Elad and I. Yavneh, “A plurality of sparse representations is better than the sparsest
one alone,” IEEE Trans. Inform. Theory, vol. 55, no. 10, pp. 4701–4714, Oct 2009.

[10] E. Candès and J. Romberg, “l1-magic: Recovery of sparse signals via convex program-
ming,” Oct. 2005, [Online]. Available: http://statweb.stanford.edu/∼candes/l1magic/.

[11] J. Bobin and S. Becker, “NESTA: A fast and accurate first-order method for sparse re-
covery,” Jun. 2011, [Online]. Available: http://statweb.stanford.edu/∼candes/nesta/.

[12] U. L. Wijewardhana, E. Belyaev, M. Codreanu, and M. Latva-aho, “Signal recovery
in compressive sensing via multiple sparsifying bases: derivations and results,” 2016,
[Online]. Available: http://www.ee.oulu.fi/∼udwijewa/multibases.php.

[13] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK: Cambridge
University Press, 2004.


