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Abstract— Estimation of power plant fuel input fractions
based on unscented Kalman filtering using a first principles
simulation model of the furnace is considered. The approach is
described, together with experimental results using data from
a full scale circulating fluidized bed power plant. The results
encourage the fusion of machine learning and physical models
in monitoring of industrial processes.
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I. INTRODUCTION
Circulating fluidized bed (CFB) boilers are largely used for

combustion of various fuels in order to produce live steam.
Steam is further used for generation of electricity in steam
turbines and/or as a source of heat for process industry or
district heating. Flexibility in combusted fuel is an important
advantage of CFB power plants. Fuel properties have an
important impact to plant behaviour and performance.

This study considered fuels such as forest wood chips,
demolition wood (chips), combustion peat, and sawdust.
While the fuel heat value determines the amount of generated
heat, many other fuel characteristics are of importance for
process operation and maintenance, emissions, etc.: moisture,
particle size and shape, elementary composition of sulfur
or nitrogen, alkalines, etc. In many cases the quality and
type of fuel vary a lot during normal operation, depending
on availability and price of fuels, fuel storages, power and
electricity demand and prices, availability of plants in the
electricity/heat networks, daily and seasonal weather, etc.

Fouling is the accumulation of unwanted material on solid
surfaces. A particular focus of the work was on the impact
of fuel characteristics to fouling at heat exchange surfaces
between exhaust gases and the water-steam cycle. While
fouling on surfaces is a complex process, it is known that
both the fuel composition and process operating conditions
(temperatures, gas and sand velocities, etc.) do have a
significant impact.

Direct measurement of fuel qualities from feed silos or
feeding lines is complicated. This is due to harsh conditions
at site (dust, moisture, temperatures) and high variety of
fuels (composition, particle size, moisture), see Figs. 1–
3. Physical installations of the analytics systems require a
lot of maintenance (e.g., taking of samplings, cleaning of
lenses and lightning, calibration of analyzers), and only a
small fraction of the total fuel flow can be analyzed on-
line. Moreover, measurement of some fuel properties, such
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as alkali content, is difficult and expensive. Therefore it is
of interest to consider indirect measurements, at best already
existing at the process plant.

Fouling in boilers has been extensively studied, recent
papers on model-based monitoring include, e.g., [2][3]. Past

Fig. 1. A typical biomass CFB boiler with fuel storage stockpiles [1].

Fig. 2. Front-end loader and demolition wood [1].

Fig. 3. Wood-based fuel feed fractions [1].



works on state estimation methods applied to fouling in
boilers include [4] who considered constrained unscented
Kalman filtering (UKF) and moving horizon estimator in a
stirred tank reactor. Monitoring of fuel characteristics in CFB
in this connection has been less examined. On-line estimation
of fuel moisture and heat transfer coefficients in a circulated
fluidized bed boiler was examined in [5], in [6] also air
leakage was considered. The current work can be seen as
an extension to these, considering the use of state estimation
to relate the input fuel characteristics with measurable plant
behaviour at later stages in the furnace, flue gases and steam
cycle. In the current work, a much more challenging task of
detection of fuel input composition with varying fuel types
is considered, including testing in a full scale environment as
well as implementation aspects. While this paper examines
the UKF with a full scale physical model simulations, in [7]
subspace identification on the basis of simulated data was
used to construct a linear model and methods then developed
for the estimation of fuel elementary components.

The reminder of the text is constructed as follows. Section
II presents the plant, it’s model and the available data. Sec-
tions III-IV describe the UKF algorithm and its application
to fuel composition estimation, to complete the presentation
the UKF algorithm is given in the Appendix. Section V
illustrates the approach with real data from a full scale power
plant. The paper ends with conclusions.

II. PLANT MODEL AND DATA

The considered biofuel plant is a 110 MWth CFB designed
for combustion of fuels ranging from forest wood chips to
demolition wood, peat and sawdust, situated in the Northern
Europe.

A. Physical hotloop model

A physical model for the CFB furnace was available,
called hotloop model [8][5]. This model is used by the
manufacturing company Sumitomo SHI FW Energia Oy for
plant design purposes. It describes phenomena related to
combustion, fluidization and heat transfer, and covers the
entire solid cycle present in a circulating fluidized bed. The
model can be considered as detailed in terms of combustion
vs. heat generation and fluidization, but less reliable in terms
of emission formation. The considered part of the model
does not cover the water-steam side processes, nitrogen oxide
treatment with ammonia or sulphur-limestone reactions. Also
the impact of fuel particle size is not taken into account by
the hotloop model.

The hotloop model has been applied at various plants,
ranging from small test facilities of few MW to full scale
plants of several hundred MW, and has been used to describe
both air and oxyfuel combustion ([8][5][9], etc.) The hotloop
model available for the research was set up for the 110 MW
pilot site design values, but no adjustments with the real plant
measurements were conducted before.

The hotloop model inputs consist of fuel feed flows,
primary and secondary air flows with compositions and
temperatures at various levels of the furnace and return path,
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Fig. 4. Hotloop fuel types.

heat transfer surface temperatures, heat transfer coefficients
and solids control. There are more than one hundred inputs
in total. The dynamic model consists of more than thousand
system states. The hotloop model is implemented in MAT-
LAB Simulink, with core parts of the code written as c-code
and compiled to mex. The simulink model was executed from
the MATLAB workspace using the sim-command. The over
one hundred model outputs include predictions of flue gas
flow, composition and temperature, heat transfer at various
parts of the boiler, furnace temperature and pressure profiles,
and estimates of produced power at various sections of the
furnace.

The hotloop model defines input fuels as mass feeds of
given fuel types [kg/s]. For the 110 MW plant case, four fuel
types were specified: forest wood chips, demolition wood,
peat and sawdust. The required properties for the fuel types
include moisture, volatiles, composition (ash, C, H, N, S, H,
summing to unity), heat value of fuel, and char and volatile
combustion reaction parameters. Example properties for fuel
types are illustrated in Fig. 4. The hotloop inputs include the
mass flows for each of the defined fuel fractions.

From Fig. 4 it can be observed that the moisture content of
the fuels varies between 30–45 %. Demolition wood is the
driest of the fuels, but it also has the highest ash content.
It is apparent that peat has the highest upper heat value
and sulphur content. The lower heat values are obtained
by taking the moisture into account, leading to 13.0 MJ/kg
for demolition wood, 12.3 MJ/kg for peat, 11.5 MJ/kg for
sawdust and 10.6 MJ/kg for woodchips. It is difficult to
distinguish between woodchips and sawdust based on these
characteristics. In real life, the particle size distribution of
woodchips and sawdust is very different, which impacts
fluidization and zones of combustion, but the hotloop model
is not able to take that into account. Based on this, and
confirmed by experimentation, sawdust was not considered
as a fuel type in state estimation.



B. Measurement data

A 17 day dataset from Spring 2014 was available for
basic studies. The dataset consisted of a plant start up,
followed by fuel tests. The data contained measurements of
fuel and air flows, furnace temperatures and pressures, flue
gas components (O2, SO2, NOx, H2O, HCl) after furnace
and/or from stack, feedwater and steam flows, temperatures
and pressures, etc.

The set of plant measurements consisted of more than 200
signal positions, resampled from 5 to 20 second sampling
interval for research purposes. The main mechanism for
providing a fuel mixture was the operation of the front-
end loader filling the fuel conveyer belt from fuel storage
piles (cf. 2). No direct measured information about the
composition of the fuel fed into the boiler was available. The
set of recorded measurements was not complete as many of
the data columns contained sections of missing data. The
total mass flow of the feed was available for approximately
70% of the test period. The primary air measurements were
available. As significant part of air feeds were judged to
be missing based on flue gas analysis, the secondary air
flows were estimated based on the measured flue gas flow
and distributed according to the available measurements.
The design operating principle of feeding secondary airs
to lower levels at lower production rates was not imple-
mented in simulations. Furnace temperature measurements
were available at several levels of the furnace. While the
thermocouple measurements provided reliable outcomes, the
pyrometer measurements contained a lot of noise. The flue
gas emission measurements were partly available only from
the stack. In general, the steam side measurements were well
available.

C. Tuning of the physical model

With these relatively strong assumptions to compensate for
uncertainties in measurements and to close the balances, the
data could be used to construct inputs for the hotloop model.
A 10 day data set was selected, based on the availability of
central measurements (total fuel flow) and apparent stability
in production (no major start ups or trippings).

The model was calibrated following the idea of output
calibration [10]. For simplicity, only affine static tuning was
conducted. Each hotloop output which could be associated
with a particular measurement signal or a statistic based on
several measurements, was adjusted by finding the bias and
gain in an affine transformation, yi(k) = ayHL,i(k) + b,
by minimizing the sum of squared deviations from the
measurements. The resulting tuned output was then used in
model prediction in the state estimation application. Hence,
coefficients a close to 1 and b close to zero (in the scale
of the signal) indicate that the adjustments made to the
hotloop remain relatively small. In the physical model tuning
phase, the tuning coefficients for flue gas oxygen resulted
in yO2(k) = 1.01yHL,O2(k) + 0.016 [%/100-mass], i.e.,
only relatively modest modifications were required. For
moisture and flue gas SO2, the SSE minimum was obtained
with somewhat larger coefficients, reflecting that the model

does not contain a full set of equations governing the SO2

emission formation and reduction, and SO2 are only roughly
estimated by the hotloop model. For temperatures, the gains
varied from 0.3 to 1.3 with associated shift changes of several
hundreds of degrees, reflecting that the information obtained
of the furnace (and steam) temperature was not exactly
corresponding to model components. This is a relatively
common problem in combustion plants, as the model predicts
the furnace (1D) temperatures, while measurements reside
at the side of the plant, and the height of the combustion
zones is sensitive to the fuel particle size, among others. With
the adjustments in hotloop outputs, the correspondence with
measurements could be considered as good, however. The
amount of data was not considered sufficient for adjusting the
model dynamics with FIR components [10], and the dynam-
ics of the physical model were used in the UKF predictions.
This common situation underlines the importance of feasible
methods for physical model tuning [10][11].

III. UNSCENTED KALMAN FILTER

Unscented Kalman filter (UKF) [12][13] is an implementa-
tion of the bayesian state estimation for the filtering problem.
Similar to the Kalman filter (KF) and extended Kalman filter
(EKF) [13], or ensemble Kalman filter (EnKF) [14], it uses
the signal mean and covariances to describe the uncertainties.
This is in contrast to grid-based filtering (GF) [15] or particle
filtering (PF) [16], which allow for a much wider class of
uncertainty densities to be modelled. The PF and EnKF
are based on approximating the distributions by propagating
random samples of it, GF relies on finite discretization of the
space. While KF uses linear (state space process) models,
UKF, EnKF and EKF can handle nonlinear models.

Many practical applications involve heavy simulation
models. For example, each model evaluation may require
solving the ode equations for one sampling time ahead,
which can consume a lot of computation power. In such
cases the GF and PF become infeasible in practice, but
with EKF, EnKF and UKF the computational load may
remain feasible. EKF uses on-line linearization of the non-
linear mappings (via computation of the Jacobians). UKF
approximates the distribution using a deterministic sampling
(the so called unscented transform). The Jacobians in EKF
can also be estimated using finite differences, which makes
the approaches quite close. In general, the UKF estimates
the propagation of uncertainties in a nonlinear mapping
somewhat more precisely than the EKF ([13], Ch. 14.3).
There are several versions of the UKF, the choice of which
depends on the properties of nonlinearities associated with
noise and computational aspects (robustness, speed).

The basic UKF algorithm is well known and given in the
Appendix following Simon (Ch 14.3) [13]. In implementa-
tion, a scaling parameter W 0 [17] was considered, setting
W 0 = 0 resulted in the basic form. The basic algorithm as-
sumes that the process and measurement equations are linear
with respect to the noise. If this is not a feasible assumption,
an approach can be used where noise is augmented onto the
state vector, i.e., xT ←

[
xT , wT , vT

]
.



IV. FUEL COMPOSITION ESTIMATION
One potential approach for estimating boiler input fuel

composition is to take advantage of the hotloop model and
use it in the UKF context. In this approach, the hotloop would
provide the state-space model in UKF (f ,h), with inputs u
and measurements y coming from the plant. However, some
characteristics of the problem complicate a direct application.
• Since the components to estimate would be in the

system inputs, the unknown inputs u’ need to be added
as extended system states x′T =

[
u′T , xT

]
in the UKF

formulation.
• The pilot hotloop model consists of more than a thou-

sand states. This is too much to estimate in a practical
implementation due to the computational burden in
simulating the physical model. Hence, a selection must
be made and only a subset x′′ of states x′ considered
uncertain in the UKF context. In an extreme case x′′ =
u′ can be taken, and the propagation of the remaining
states predicted using the plant model f .

• The total fuel feed was measured from the pilot plant.
The total estimated feed is the sum of the feeds of fuels
of different types. A prediction of the total feed can be
constructed by summing the estimated feeds.

• The set of UKF measurements was chosen to be the
measured flue gas composition: H2O, O2, SO2; furnace
temperatures at the bottom, 9.6 m and exit (separator),
and total fuel flow. The states to be estimated were
chosen as the minimal set, including only the unknown
fuel feeds of three possible types.

• Due to tuning, the UKF innovation signal was con-
structed by inverting the measurement with the tun-
ing parameters zi = 1

ai
(yi (k)− bi) and comparing

zi signal with the hotloop prediction yHL,i (k) . The
estimates for the measurement covariances were scaled
accordingly by multiplying with 1/a2i .

V. EXPERIMENTAL
A set of simulation experiments was conducted on a 10

day data from the 110 MW plant. The test period included
experimental verification tests on fuel performance for the
pilot plant, conducted at the end of the commissioning phase.

The UKF estimate was constructed by choosing the output
variables measured from the plant and predicted by the
tuned hotloop model. The measurements (flue gas oxy-
gen, sulphur, moisture and temperatures from the bottom,
middle and top of the furnace) were selected after some
experimentation. In addition, the total amount of fuel feed
was measured. The UKF relies on knowledge on the state
and measurement uncertainties, i.e., noise distributions are
assumed to be zero mean with covariances Q and R. The
measurement uncertainties R (k) were chosen as squares of
the approximate effective scale of the used variables: 5×
0.15/100 for H2O, 0.04/100 for O2, 10× 0.0002/100 for SO2,
500/100 for temperatures and 0.2×10/100 for the total fuel
feed, where the coefficient (C×) reflects tuning. The state
uncertainties were chosen as Q (k) = 0.01×

√
0.02

2
I, with

initial uncertainties P (0) = 0.1× 0.52I.

Fig. 5. Fuel monitoring with fuel types: woodchips, demolition wood and
peat.

Fig. 6. Fuel monitoring with fuel types: woodchips, design mixture and
water (fuel moisture).

Figure 5 illustrates the outcomes of the hotloop/UKF
fuel quality estimation. The UKF estimated the fractions of
three potential fuels: woodchips, demolition wood and peat,
with respective physical properties defined in the hotloop
model fuel palette. The data contains intervals of some hours
with a known fuel composition, namely: two runs at 100
% load with design mixture of peat, demolition wood and
woodchips, one run at 70 % load with design mixture, 40 %
load with wood chips only, and 30 % load with wood chips.
These intervals occur approx. at 12, 36 and 60 hours for
the mixture tests, and 84 and 108 hours for the woodchips,
respectively. For the mixture tests, the small amount of peat is
correctly estimated, as well as that there are larger fractions
of demolition wood and woodchips. The internal fractions
of wood are not correct, however, as the estimate suggests a
larger fraction of demolition wood than that of woodchips,
which was not the case. The fuel fractions at lower power
levels are correctly estimated as 100 % woodchips. The
estimates at other time intervals can be assessed as plausible,
even if no full knowledge of fuel during these intervals was
available.

In another setup, the fuel fractions were defined as default
mixture, woodchips and moisture. Figure 6 illustrates the
estimation with this setup. At 100 % power level, the fuel
is correctly estimated as the mixture, at 70 % the estimate



Fig. 7. Predictions vs. measurements. Tuned posterior predictions, yHL =
h(x̂+) (see Appendix for notation), ŷi = aiyHL,i + bi are shown. Top
plot: O2, middle plot SO2, bottom plot: furnace temperatures. Measured
signals are shown in darker colors.

proposes not only a reduction in fuel feed but also increase
of moisture. At lower power levels, the fuel feed is again
correctly estimated to consist of woodchips. Again, the
estimates at other time intervals can be assessed as feasible.

Figure 7 illustrates some of the measurements and the
corresponding predictions by the UKF. The UKF innovation
signal is constructed by inverting the affine tuning com-
ponents and comparing the signal with the corresponding
hotloop prediction. Fig. 7 shows the tuned a posteriori
predictions with the plant measurements. It is clear that the
oxygen and sulphur in flue gases, as well as the furnace
temperature profile, have a significant impact on the estimate.

The desired outcome of the fuel composition estimation
is the flow of elementary components to the boiler. It is
straightforward to construct the composition (ash, C, H,
N, S, H) of the feed by multiplying the estimated feed
rates by the respective compositions. Figure 8 illustrates
the elementary composition of the fuel, as derived from
the estimated fuel fractions and their characteristics. This
information is expected to be useful in further work on
monitoring of the heat exchange surface fouling.

A significant obstacle in simulation studies was due to
the time taken by the simulations. With the UKF, 2n + 1
simulations need to be conducted at each sampling time. On
a standard 2020 up-to-date i7 laptop PC, a simulation of 20
seconds of boiler operation took approximately 1 seconds to
complete. Hence, simulation of fuel estimation on the 10 day

data set took several days to accomplish. Most of the time
is spent with solving the physical model ode’s. However, the
on-line implementation with a small number of uncertain
states (i.e., three fuel fractions) was feasible even with a
computing power provided by a standard laptop. A potential
alternative for a more significant number of uncertain states
could be the examination of the EnKF [14] in the present
context.

VI. CONCLUSIONS

This paper considered application of bayesian model-
based state estimation using physical model simulations.
The work illustrates how conclusions can be drawn on
fuel input characteristics with the help of advanced plant
models, under the impact of state and measurement noise
and plant-model mismatch. The approach was demonstrated
in estimating on-line the unknown fuel fractions entering a
full scale circulating fluidized bed boiler, using real plant data
and a dynamic physical model developed for plant design
purposes. As the model consisted of more than thousand
state ode’s, a UKF with a heavily reduced set of uncertain
states was found to perform in a reasonable manner. In
a wider perspective, the work targets the generalization of
the pilot-driven experiences of estimation of process input
characteristics for use in the heavy process industry. The
paper emphasizes the largely unused potential of fusion
of machine learning [18][19] and physical models [20] in
monitoring of industrial processes.
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APPENDIX

Suppose a n-state discre-time nonlinear system with state
equation

x (k + 1) = f (x (k) , u (k)) + w (k)

and a measurement equation

y (k) = h (x (k)) + v (k)

and assume that state and measurement noises are known
to be distributed according to w (k) ∼ (0,Q(k)) and
v (k) ∼ (0,R(k)) . Functions f and h, system inputs u and
measurements y, as well as covariances Q and R are known.
The UKF is initialized by giving the initial apriori estimates
of the state mean and covariance x+ (0) and P+(0).

(a) Choose 2n sigma points in the vincinity of the current
guess of state:

x̂(i) (k − 1) = x+ (k − 1) + x̃(i)

where x̃(i) =
(√

nP+ (k − 1)
)T
i

for i = 1, 2, ...n and

x̃(i) = −
(√

nP+ (k − 1)
)T
i

for i = n + 1, ..., 2n. In this

notation, the
√
nP is the matrix square root of nP such that√

nP
T√

nP = nP , and
√
nP i is the ith row of

√
nP (see

[13]).
(b) Use the system state equation f to propagate the sigma

points
x̂(i) (k) = f

(
x̂(i) (k − 1) , u (k)

)
Notice, that 2n evaluations of the system dynamics are
required, i.e., the system equations in f need to be solved
2n times from t = k − 1 to t = k, starting from different
initial states, x̂(i) (k − 1) .

(c)-(d) Combine an apriori state estimate at time k with
mean and covariance

x̂− (k) =
1

2n

2n∑
i=1

x̂(i) (k)

P− (k − 1) =
1

2n

2n∑
i=1

(
x̂(i) (k)− x̂− (k)

)
(...)

T

+Q (k − 1)

(e) Use the measurement equation h to predict measure-
ments

ŷ(i) (k) = h
(
x̂(i) (k)

)
Note that another unscented transform could be used here,
based on P− (k). However, reusing the sigma points from
the previous step (based on P+ (k − 1) ) will save some
computational efforts.

(f)-(g) Combine the predictions to obtain an estimate with
mean and covariance

ŷ (k) =
1

2n

2n∑
i=1

ŷ(i) (k)

Py (k) =
1

2n

2n∑
i=1

(
ŷ(i) (k)− ŷ (k)

)
(...)

T
+R (k)

(h) Estimate the cross covariance between x− and y

Pxy (k) =
1

2n

2n∑
i=1

(
x̂(i) (k)− x̂− (k)

)(
ŷ(i) (k)− ŷ (k)

)T
(i) The update of the state estimate can now be performed

using the Kalman filter equations

K (k) = Pxy (k) [Py (k)]
−1

x̂+ (k) = x̂− (k) +K (k) (y (k)− ŷ (k))

P+ (k) = P− (k)−K (k)Py (k)K (k)
T
.


