
  

 

Abstract— Evolutionary optimizers, such as genetic 

algorithms, have earlier been successfully applied to find the 

parameter values for the fuel cell polarization curve models. 

The structure of these, typically semi-empirical, models have 

evolved during the decades. In this study, the model structures 

were reviewed and a new model structure was generated. 

Genetic algorithms were used to determine the optimized 

model structure with linear model parameters. Four different 

fuel cells, one with varying operating conditions, were studied. 

The results show that the model can outperform the semi-

empirical model utilized in number of studies without 

increasing the model complexity. 

I. INTRODUCTION 

Numerical modeling of polymer electrolyte membrane 
fuel cell (PEM-FC) stacks allows investigation of the effect 
of system parameters, such as different configurations and 
operating conditions [1]. FC models often have modular 
structure with separate modules for electrochemical 
phenomena, energy balance, and mass balances. The 
Membrane-Electrode Assembly (MEA) and therefore FC’s 
electrochemical behavior (in the steady-state) can efficiently 
be described with an equivalent-circuit model determining 
the polarization curve of the FC. Typically, these models 
have also mechanistic background, and can therefore be 
classified as semi-empirical models. This kind of simplified 
approach enables to utilize the model in a complete fuel cell 
power system simulation, where utilization of rigorous first 
principle (mechanistic) models may often be too difficult [1]. 
The semi-empirical model structures proposed for the FC 
polarization curve are reviewed in Section II. Other 
approaches to FC modeling involve rigorous mechanistic 
models [2] and purely empirical (data-driven) models [3]. 

The power of different evolutionary optimizers in the 
parameter estimation problem for the semi-empirical FC 
models has already been shown, see e.g. [4,5,6,7,8]. In this 
study, a novel approach to apply the evolutionary 
optimization tools in model structure identification of the FC 
polarization curve model is taken. The aim is to derive a FC 
polarization curve model with linear coefficients with respect 
to its parameters. The proposed model structure is validated 
for different fuel cells and operating conditions and the 
applicability of the model is discussed. 

II. REVIEW OF POLARIZATION CURVE MODEL STRUCTURES 

The steady-state electrochemical model of a PEM-FC 
aims to describe the thermodynamic potential (or the open-
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circuit voltage) and the different losses (or overvoltage) in 
the performance. The basis for the semi-empirical model 
approach is the model presented in [9]. In this model, two 
loss terms are accounted for: 1) the Tafel slope (a1) 
describing the activation overvoltage governing in low 
currents, and 2) the Ohmic overvoltage being a linear 
function of the current: 

iaiaEV 210 )log(   (1) 

where V is the FC voltage, E0 is the internal (or 
reversible, thermodynamic) potential of the FC, i is the FC 
current, and a1, a2 are the model parameters. In [10], the 
same authors added a third loss term describing the mass 
transport limitations in high currents. This concentration 
overvoltage term was given as an exponential function with 
respect to FC current: 
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where a3 and a4 are the model parameters for the 
exponential term. However, this addition has no 
physicochemical background and can therefore be considered 
as an attempt to fit the experimental data [11]. In [1], the 
model and its curve fitting capabilities were further 
developed by adding a logarithmic pressure ratio term: 
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where a5 is the additional model parameter, p is the FC 
total pressure, and pO2 is the partial pressure of oxygen in the 
cathode side. Squadrito et al. [12] have modified the 
concentration overvoltage term and introduced it as a 
logarithmic function of the ratio between the current and the 
limiting current: 
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where a1, a2, a3 and a4 are the model parameters and ilim 
is the limiting current where fuel is supplied at its maximum 
rate. This loss term is also present in many later suggested 
model structures. For example, in [13] an effort to explain all 
the model parameters with physical origin and meaning was 
made. Kulikovsky et al. [14] developed an analytical model 
for the cathode side losses, having the limiting current 
expressed in a logarithmic term, as well. 

Simultaneously to studies mentioned above, a steady-
state electrochemical model [15] and a generalized steady-
state electrochemical model (GSSEM) [11] for a PEM-FC 
have been developed. In these studies, the loss terms of the 
polarization curve model were decomposed to have physical 
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meaning (and therefore neglect exponential and pressure 
ratio terms). The model consists of basic expression for a 
single cell: 

ohmcactaactEV   ,,0  (5) 

where the terms describe the internal potential, the anode 
overvoltage (ηact,a), the cathode overvoltage (ηact,c), and 
Ohmic overvoltage (ηohm), respectively. The internal potential 
is described with the Nernst equation: 
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where T is the operation temperature, and pH2 is the 
hydrogen partial pressure in anode side. The activation 
overvoltage can be lumped to a single expression: 

)ln()ln( 42321 iTaCTaTaa Oact   (7) 

where a1, a2, a3 and a4 are the model parameters, and CO2 
is the oxygen concentration in the cathode side. Mann et al. 
[11] shows how the model parameters can be determined 
from theoretical equations with kinetic, thermodynamic and 
electrochemical foundations. In (6) and (7), the effect of the 
operating conditions is taken into account. The partial 
pressures and the oxygen concentration can be calculated as 
a function of the anode and cathode inlet pressures (pa, pc), 
temperature, relative humidity of vapor in the anode and 
cathode (RHa, RHc), saturation pressure of the water vapor 
(psat

H2O), effective electrode area (A), and cell current. The 
equations are as follows [4]:  
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The Ohmic overvoltage is described with Ohm’s law 
equations. In [15], the Ohmic losses were described as a 
function of T and i with an empirical model with quadratic 
effects: 

2
10

2
98765 iaTaTiaiaTaaohm   (12) 

However, they also mentioned that logarithmic, 
exponential or other kind of relationships might be 
necessary. In [11], constant, but unknown resistances to 

electron flow were assumed and the empirical correlation of 
resistances to proton flow was given as: 
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where a5 is the model constant for the electronic 
resistances (usually indicated as Re or Rc) and fractional term 
describes the proton resistances (Rp) as function of the 
membrane specific resistivity rm, membrane thickness l and 
cell active area A. For the Nafion membranes, the rm can be 
expressed as a function of T and i as follows: 
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where a6 is the adjustable fitting parameter (typically 
indicated as λ or β). Hence, there are six model parameters in 
the GSSEM by Mann et al. The studies focusing on 
simulations of FC systems and experimental parameter 
fitting of polarization curve models typically involve the 
GSSEM and the concentration overvoltage term (ηcon), as 
well: 
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 For example, in [4,16], ηcon is given as in (4), but with 
one lumped parameter: 
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where a7 is the model parameter (typically indicated with 
B). Hence, this modified model consists of seven unknown 
parameters. There are also further modifications to the 
concentration overvoltage term, but those are not described 
here. In [17], ageing terms were introduced for the GSSEM. 
The FC performance degradation rate was expressed in 
conjunction with the equation for a2 in (7). 

As should be obvious by now, the FC electrochemical 
models have physical background, but the problem can be 
made easier with parameterized models, which can be tuned 
with the measurable variables from the operating fuel cells. 
With the aid of experimental data, the models can be altered 
to give better prediction abilities for the inspected FC 
system (curve fitting properties), but with the expense of 
losing the generalization abilities for the unseen FC systems. 

III. ALGORITHM FOR MODEL STRUCTURE IDENTIFICATION 

The model structure identification is a difficult task 
including the selection of model variables and mathematical 
operations. Intelligent methods, such as genetic algorithms 
[18], can be applied to find an optimized nonlinear model 
structure, whenever reasonable amount of experimental data 
is available. An example is given in [19], where feature 
selection, mathematical operators for the selected features, 
and the arithmetic operations between the generated terms 
were encoded to chromosomes in order to facilitate model 
structure optimization with genetic algorithms. Here, the 
same approach is used for FC polarization curve 
optimization. 



  

A.  Inspected data 

The polarization curve data is originated from [4,20] 
comprising four different fuel cells. The numerical data is 
extracted from the plotted polarization curves by careful 
visual inspection. For the three data sets presented in [20], 
ten current-voltage pairs are available. The data sets 
presented in [4] consists of four polarization curves for one 
FC observed in different operating conditions. Each data set 
has 15 current-voltage pairs. In addition to current-voltage 
values, nominal operating conditions (temperature, partial 
pressures of oxygen and hydrogen) and cell properties (cell 
active area, membrane thickness, limiting current) are given 
and used as an input data for the model identification. 
Equations (8-11) can be used to calculate the partial 
pressures of oxygen and hydrogen, and anode oxygen 
concentration, respectively. Hence, the total number of 
current-voltage pairs, k, is 90.  

B. Model structure encoding to genetic algorithms 

Fig. 1 depicts how the variable selection and operators 
are encoded. First, the number of possible model variables (j, 
according to the data set y(k), xj(k)) are defined and 
corresponding number of bits are reserved in order to be able 
to describe the model variables in binary format. Then, the 
allowable maximum number of terms to be used in the model 
structure (n) is defined. This increases the chromosome size 
by propagating the number of reserved bits to account for the 
allowable number of variables. Next, the number of 
mathematical transformation operators to be tested is defined 
and corresponding number of bits is again reserved to 
describe operator for each selected variable. Similarly, the 
available uniting operators need to be described in binary 
format and correct number of bits need to be reserved in 
order to describe the mathematical operator between the 
selected variables. An example of the resulted chromosome 
is presented in Fig 2. 

 

Figure 1.  Encoding procedure. 

 

Figure 2.  Example of binary coded chromosome for three term model 

structure (n=3) with up to eight possible variables (23), four possible 
transformation operators (22), and two possible uniting operators (21).  

The genetic algorithm uses a population of randomly 
generated chromosomes and performs crossover and 
mutation operations until the convergence criterion is met or 
the selected number of generations is performed. The 
resulting best individual contains a vector of bits, which can 

be interpreted into a model with the following general 
structure: 

nn fafafaay )...///()///(ˆ
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 where, ý is the predicted FC voltage, f1…fn are the 
selected variables among xj with their mathematical 
transformations and a0…an are the regression coefficients. 
The model may be nonlinear due to the mathematical 
operators applied to the model variables. However, the model 
is always linear in respect to the regression coefficients and 
thus it can be solved as an ordinary regression equation. 
Depending on the uniting mathematical operators, the model 
may have a smaller amount of regression coefficients than 
the selected variables as the terms are fused together. 

From the inspected data sets, i, T, pO2, pH2, CO2, ilim, are 
selected as available model variables. Hence, three bits are 
needed to represent all the candidates. With three bits, eight 
candidates could be used (j=8). Therefore, i/ilim is used as an 
additional model variable candidate. The eighth variable is 
the regression constant. The model structure inspected in 
numerous studies (e.g. [4,5,6]) consist of seven unknown 
parameters. Hence, without increasing the model complexity, 
seven terms are allowed for the optimized model structure, as 
well. The available functional transformations (mathematical 
operations) applied to each variable are (1, ^2, ^3, sqrt, exp(-
), 1/, exp, and ln). Again, three bits are required to describe 
these eight options. The uniting mathematical operations 
(+,*,/,^) can be described with two bits. With seven terms, 
only six convolutions are needed. In total, 7*(3+3) + 6*2 = 
52 bits are needed to describe one candidate model structure 
within the GA.  

In the GA, uniform crossover and mutation operations are 
applied. Tournament selection is used with the number of 
candidates set to 5. In order to avoid the very best solution 
disappearing from the population, elitism is applied by 
replacing the worst candidate from the new generation with 
the best candidate from the previous generation. The 
algorithm used a population size of 500, number of 
generations were 100, crossing probability was 0.9, and the 
mutation probability was 0.05. The optimization loop 
involved 100 repetitions. The coding and optimization was 
performed with Matlab® software. The random number 
generator was initialized prior to the loop in order to be able 
to repeat the results. 

C. Parameter estimation and objective function 

The candidates provided by the GA are evaluated after 
the parameter estimation of the regression coefficients. Since 
the parameter estimation problem is linear, the regression 
coefficients are the least squares solution of (17): 
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The regression coefficients are calculated independently 
for different fuel cells. The objective function is the sum of 
squared errors (SSE) between the experimental data and the 
predicted data from the candidate model comprising all the 
available FC data sets: 
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IV. RESULTS 

Model structure identification is based on the data from 
three fuel cells (Ballard, BCS, SR-12) with 10 samples, and 
four data sets from the fourth fuel cell (250W) with total of 
60 samples. Linear regression parameters are calculated for 
each cell. For the fourth cell, only data sets 1 and 2 are 
utilized in parameter estimation. Data sets 3 and 4 are left for 
model validation. Their predicted values are based on the 
regression parameters estimated with data sets 1 and 2, and 
incorporated in the objective function calculation. This 
division allows the model have some generalization ability 
for different fuel cells and for different operation conditions 
in one cell. 

The optimization results are presented in Fig. 3, where 
the seven predicted polarization curves with experimental 
data are shown. Clearly, the model can follow the 
experimental data very accurately. In Table 1, the SSE values 
for each case is given. In comparison, the SSE values from 
our earlier studies [21,5] are given. It should be noted, that 
all these use exactly the same data sets and comparison of 
SSE values is straightforward. The model structure used in 
[5,21] is the one presented in [4,16]. 

The results in Table 1 show that for the SR-12 and 
Ballard fuel cell polarization curves, the optimized model 
structure produces better results than the model structure in 
[21] in terms of SSE. For the BCS polarization curve, a 
better fit was found in [21]. Based on the very low SSE 
values, acceptable result is achieved in both studies for these 
three fuel cells. For the 250W fuel cell comprising data in 
varying operating conditions, the optimized model structure 
can fit the data with a significant lower SSE than in [5]. In 
[5], the best fit showed a SSE value of 8.4854, whereas this 
model achieves a SSE of 1.6154.  

TABLE I.  MODEL PERFORMANCE FOR THE STUDIED FUEL CELLS. 

Fuel cell 
SSE 

Optimized model structure [21] [5] 

250W/1 0.2384   

250W/1 0.2782   

250W/1 0.2059   

250W/1 0.8929   

250W/all 1.6154  8.4854 

SR-12 0.0615 0.4475  

BCS 0.2148 0.1040  

Ballard 0.0640 0.0918  

 

In order to complete the comparison, several authors have 
used the same semi-empirical model structure and have been 
able to find better SSE values than reported in [5]. For 
example, Sun et al. [6] managed to reach SSE value of 7.99 
for the 250W fuel cell. However, the data sets are not exactly 

the same, although interpreted from the same original 
polarization curves. Therefore, direct comparison of SSEs 
between the studies cannot be made. Further, Yang et al. [22] 
reached a low SSE value of 1.1746, but the model structure 
was altered by adding three more free parameters to the 
modeling and parameter fitting. The model structure found in 
this study provides a very low SSE values with the same 
number of free parameters, and therefore with comparable 
model complexity than the semi-empirical model structure 
used in [4,5,6,16,21]. Naturally, part of the difference in the 
observed SSE values can be explained with the constrained 
parameter values of semi-empirical model. It was shown in 
[5], that the expanded search range leads to more accurate 
results. With the approach taken here, the optimization 
problem is unconstrained. 

The optimized model structure found for the FC 
polarization curve can be written as: 
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From (21), it can be seen that the term i/ilim is repeated 
several times in the model. Indeed, ilim has a strong effect on 
the polarization curve as it determines the end point for the 
curve. In this exercise, it was assumed that the value for the 
ilim is known and fixed throughout the operation conditions. 
Naturally, unknown ilim would require new model structure 
identification. In addition, the membrane properties (at least 
the membrane thickness) could be added to the available 
variable list prior to model structure optimization. 

The approach taken in this study is fundamentally data-
driven. However, typically the data-driven methods use 
rather vast amount of (measured) data and data pre-
processing. In this exercise, the data were very limited with 
only V, pO2, pH2, CO2 and i/ilim changing as a function if i and 
the operating conditions (T, Pa, Pc). The values for pO2, pH2, 
CO2 were calculated from the semi-empirical equations (8-
11). Despite the limited amount of data, the model structure 
established was found to have (limited) generalization 
ability. Although the model was efficiently fitted to four 
different fuel cell polarization curves, a more rigorous 
benchmark test with rich data set are needed. Data originated 
from [4,20] are only one example with the limited amount of 
data points. Benchmark data could be, for example, 
simulated via rigorous model in different operating 
condition, and adding noise and drift elements. Only with 
such data can the model performance be efficiently tested. 
Although the application of data-driven models is restricted 
and best suited to fuel cell studies with existing equipment, 
data-driven models can be feasible in diagnostics purposes, 
control designs and large-scale simulations. More rigorous 
mechanistic models should be preferred when the focus is on 
new designs. 



  

 

Figure 3.  Polarization curves with the optimized model structure (solid line) and the experimental data (circles) interpreted from [4,20]. 

V. CONCLUSION 

An application of utilizing Genetic Algorithms in model 

structure identification was presented. The procedure was 

successfully applied to determine an optimized model 

structure for PEM-FC polarization curve with relative low 

model complexity. In terms of fit to the experimental data, 

the model outperformed the semi-empirical model structure 

utilized in number of studies. The results also indicated 

generalization ability with respect to different fuel cells and 

operating conditions, but proper benchmark data are 

required for more comprehensive tests and to draw solid 

conclusions. 
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