
Docker Enabled Virtualized Nanoservices for Local
IoT Edge Networks

Johirul Islam∗, Erkki Harjula∗, Tanesh Kumar∗, Pekka Karhula†, Mika Ylianttila∗
∗Centre for Wireless Communication, University of Oulu, Finland

†VTT Technical Research Centre of Finland
{firstname.lastname}@oulu.fi∗, pekka.karhula@vtt.fi†

Abstract—Edge computing is a novel computing paradigm
moving server resources closer to end-devices. It helps unleashing
the full potential of high-performance access networks with
respect to ultra-low latency and transfer rate and improve
resilience to problems at core networks and data centers. Multi-
access Edge Computing (MEC), is a standard solution by
European Telecommunications Standards Institute (ETSI) for
access network-level edge computing. MEC, operating at access
network level, is an ideal solution for the most cases. However,
there are still some challenges to address: first is related to the
vulnerability to access network problems and the second is about
the high load inflicted to access networks and MEC servers. This
is a particular issue in massive-scale Internet of Things (IoT) use
cases, where numerous sensors may produce high amounts of
data, or where critical system functionalities must be ensured
also during access network problems. In this paper, we study
the feasibility of bringing some edge functions to the local level
as virtualized and dynamically deployable components utilizing
local hardware capacity. For the study, we have implemented a
local edge networking prototype based on local microservices,
called nanoservices, implemented using Docker containers and
deployed using Docker Swarm-based orchestration. Since IoT
networks typically consist of constrained-capacity devices, our
focus is in optimizing the resources of the proposed nanoservices.

Index Terms—Edge Computing; IoT; Microservices; Nanoser-
vices; Virtualization; Orchestration.

I. INTRODUCTION

Internet of Things (IoT) has significant impact in almost
each aspect of our daily life. It is mainly because IoT systems
can provide practical, efficient and feasible solutions to various
key applications such as healthcare, transportation, surveil-
lance and banking, among many others [2]. Furthermore, IoT
is considered as a driving force behind the vision of ubiquitous
and pervasive computing to ensure the availability of digital

services anywhere and anytime. Such IoT networks together
with recent enabling technologies are progressing towards
new digital paradigm where digital services can be acquired
without using any hand-held gadgets. In this vision, gagdet-
free users are able to access intelligent and context-aware
services from nearby surroundings [3], [4]. Such IoT based
smart applications would have high demanding requirements
in terms of low latency, less cost, energy efficiency, scalability
and better quality of services (QoS) among others.

Moreover, future smart environments require not only tech-
nological advancements but also transformation from the per-
spective of network architectures. For example, the introduc-
tion of Edge computing in the traditional IoT networks have
been significant for providing low latency services to large-
scale IoT applications [5]. Such applications are mainly delay-
critical and require relatively faster data processing, com-
putations and the decision/response making for the different
phases. For example, a robotic arm working in a smart factory
processes is time-critical and require minimum precision/delay
at various phases. The traditional cloud based solutions may
not very appropriate in such cases due to low-latency and high
bandwidth requirements. The edge paradigms are crucial as
they extend the functionalities, capabilities and services closer
to the edge of the network.

To enhance the elasticity and scalability of applications,
there have been various network architecture for IoT and
Cloud computing that are proposed in the literature [6], [7].
One of the key requirements is the ability to provide critical
services at the local level of the IoT networks, where the
resources are limited. We have recently proposed a three-tier
IoT edge architecture for accessing gadget-free digital services
as shown in Fig. 1 [1], [8]. This architecture emphasizes the

Fig. 1: Three-tier future IoT network [1].



significance of locally available nodes to efficiently utilize
the resources and needed functionalities. The local IoT-layer
generally has less resources, such as the minimal availability of
hardware resources, limited network access and highly variable
device environment, among others. Docker container based
solutions are becoming popular to provide virtualized services
for resource-constrained IoT systems [9].

This paper presents the implementation behind the gadget-
free IoT edge architecture introduced in [1], and provides a
detailed evaluation for it. The rest of the paper is organized
as follows: section II explains the background and recent
state-of-the-art in this domain. Then we describe the selected
use case in section III. Section IV presents the Proof-of-
Concept (PoC) implementation based on the defined use case.
Results evaluations are highlighted in Section V and finally,
we provide discussion and conclusion in the section VI.

II. BACKGROUND

A. Edge and Fog Computing

Edge Computing (EC) introduces a new layer of services
between the cloud and end-devices at the edges of networks.
Compared to traditional cloud architectures, EC greatly im-
proves the latency between IoT nodes and servers by reducing
the physical distance between data sources and computational
resources. Furthermore, it helps reducing load at core networks
and data centers by providing computational capacity. It also
helps to resolve security and privacy problems by limiting the
scope of propagation of private data along the public networks
[10].

MEC [11] provides an edge platform by re-equipping the
cellular network base stations for application execution and
local data storage. The distinct feature of MEC follows from
this placement as real-time radio access network information is
exposed in MEC hosts to improve their application execution.
Fog computing (FC) [10] architecture is distributed a step
further from the EC, although the common definitions of Fog
varies. The edge applications in Fog are executed in a set of
fog nodes, at any point in the network, forming a ”cloud-thing
continuum” [12]. Examples of fog nodes include legacy and
edge devices connected through a Local Area Network, such
as common household appliances, e.g. set-top boxes, and the
network infrastructure components [12], [13], [14].

B. Container-based microservice architectures

During the past few years, cloud services have been trans-
forming from monolithic architectures towards microservice-
based architectures, where each services taking care of a lim-
ited set of functions [15], [16]. The benefits of using microser-
vice architectures include: flexibility, scalability, efficiency,
reduced complexity and improved manageability. Microservice
can be implemented using container technology [17], where
only one or few processes run inside a single container. Docker
containers provide a lightweight, low overhead and fast tech-
nology empowering the usage of microservice architectures
[9]. When the microservices are smaller enough and could be
managed locally, they can be referred as nanoservices [1]. In

this paper, since microservices can be managed locally, then
we will call them nanoservices instead of microservices.

Orchestration is a technology for controlling interactions
between virtualized components such as containers and ser-
vice management. The most commonly used container or-
chestration technologies are Docker Swarm, Kubernetes and
Mesos, all of them provide automated support to, e.g., service
discovery, load balancing, and software upgrades [18]. The
orchestration at Edge and Fog layers is a complex problem
due to the increased distribution and inter-distances of large
number of nodes [19] [20].

C. Our previous work

In our recent projects, we have initiated a path towards the
paradigm shift in the relationship between people and the dig-
ital world [3], [4], [8], [21]. In this vision, user lives ”naked”
without gadgets and services materialize for the user when
they are needed and disappear when not needed. The digital
surroundings form an intelligent environment around users,
providing all the information, tools, and services that users
need in their everyday life. To realize the above-mentioned
vision, we have proposed a novel virtualized and decentralized
nanoservice-based model, nanoEdge [1], where nodes, based
on their hardware capacity and load, collaboratively provide
local processing, storage, security and privacy services without
relying on centralized entities. With the concept of nanoser-
vice, we refer to the miniature version of microservices used
in cloud computing. In this paper, we present this Proof-of-
Concept (PoC) implementation in more detail and deepen the
evaluations by providing more detailed information on how
we succeeded to optimize the nanoservice storage footprint
and deployment time suitable for deployment on constrained-
capacity IoT devices and networks.

III. EXAMPLE SERVICE

A. Use case scenario

We use a smart meeting event use case including four
participants who are going to attend the meeting event,
namely; Alice, Bob, Carl and David. Alice is responsible
for organizing the meeting and inviting other team members.
She creates a meeting event and sends the request to her
group members. Each of the team members is required to
authenticate him/herself securely with smart surrounding to
ensure that valid participants are allowed for the meeting and
given access for confidential meeting topics. Therefore, Alice
needs to deploy a secure system locally at the entrance (smart
surroundings) of the building which is able to authenticate the
user and lead the participant way from the entrance to meeting
room.

Figure 2 shows the smart meeting event use case and
numbers in the red circles highlights key services of the
system. This secured system is required to provide three
key services, i) to authenticate the valid participants for the
meeting (1 to 4), ii) to provide guidance to valid participants
from the main entrance to the meeting room (5), and iii) to
present the meeting contents for the authorized participants
(6,7). In this scenario, we assume that gadget-free devices such



Fig. 2: Smart meeting event as a use case scenario [1].

as smart rings can be utilized for identification purposes. The
main focus is stressed upon how local resources can be utilized
efficiently due to limited resources at this level.

B. Service structure

Following the service model given in [1], we divide the
three key services further into six nanoservices as shown in
Fig. 3. New six nanoservices are: i). Presence Detection (PD)
service to detect motion around the effective area of the sensor
node, ii). Main Controller Service (MCS) to control service-
to-service interactions, iii). Bluetooth Scanner (BS) service
to authenticate a participant, iv). Authentication Engine (AE)
service to store events information, v). User Guidance (UG)
to guide participant from entrance to meeting room; and vi).
Meeting Room Service (MRS) to manage all tasks related to
meeting room.

Fig. 3: Interactive nanoservices.

Figure 3 shows the service interaction for the selected
use case scenario (small alphabet in red circles tell about
interaction between two nanoservices). PD will be activated
automatically if a participant is detected (a) and then sends a
request to MCS (b) to start BS service. The BS will start
scanning Bluetooth devices and sends the information an
those back to MCS (c). Meanwhile, MCS sends request to
AE to recognize a participant with his/her BLE ID (d). On
successful recognition, MCS sends a request to UG to guide
the recognized participant to the meeting room (e). When the

participant arrives at the meeting room then PD and BS tell
MCS to stop UG for that participant. Finally, MCS sends
a request to MRS to hide participantal contents, download
meeting contents and display those contents at a User Interface
(UI) (f).

A service administrator (admin) can create a nanoservice,
add and remove a new/existing nanoservice; and terminate
any/all nanoservices as shown in Fig. 4 (numbers in red
circles). Initially, there were five nanoservices running into the
system (1). Next, the service admin adds sixth BS nanoservice
to the system (2) and then the system admin removes the
AE nanoservice from this system (3). In the system has an
automatic backup for it’s storage, all valuable data, code and
so on before termination of any deployed services (3, 4).

Fig. 4: Nanoservice creation, modification and termination [1].

IV. PROOF-OF-CONCEPT

A. Hardware and software specifications

As mentioned above in the use case, six nanoservices were
developed. In our implementation, UG nanoservice deployed
into a Raspberry Pi 2 (RPi 2) Model B which has 512MB
RAM, 700MHz CPU and 16GB SD card with 10MB/s data
processing speed. On the other hand, AE nanoservice deployed
into a Ubuntu 18.04 based OS laptop which has 4GB RAM,
Intel Core i3 with 2GHz CPU. Rest of the four nanoservices
deployed on four separate Raspberry Pi 3 (RPi 3) Model B+
having same configuration such as 1GB RAM, 1400MHz CPU
and 16GB SD card with 10MB/s data processing speed. An



extra machine having 8GB RAM, Intel Core i7 1.6GHz CPU
responsible to make and manage the cluster along all these
resources. Here, all these nanoservices have been deployed
under a single network access point. This access point has
installed at the University of Oulu and City of Oulu with SSID
’panoulu’ which has 100 Mbps internet speed [22].

TABLE I: Hardware and software specifications

Services Hardware Software
PD PIR sensor, RPi 3 Python 2, thThings
MCS RPi 3 Python 2, thThings
BS BLE key, RPi 3 Python 2, thThings
AE Ubuntu 18.04 Laptop Python 3, thThings, Flask, MySQL
UG Arduino shield, LED, RPi 2 Python 2, CoAPthon
MRS RPi 3, UI Python 2, thThings

The implementation also includes some of software specifi-
cations as mentioned in Table I. All the nanoservices were de-
veloped with Python where Constrained Application Protocol
(CoAP) enables machine-to-machine (M2M) communication
among these IoT devices. In the implementation, AE has been
developed with Python 3, Flask 1.0.2 (Flask RESTful 0.3.6);
and MySQL 8.0.16 where UG has been developed with C++
(GCC 5.3); and Python 2. Four other nanoservices were de-
veloped with Python 2. Here, CoAPthon 4.0.2 [23] were used
at the UG nanoservice where thThings 0.3.0 [24] were used
at the rest five nanoservices for server side communication.

B. Implementation of example nanoservices

In general, every Docker container requires a container
image to deploy a service into the Docker system. In addition
to that, a container image must have at least a special structure
known as a base image. In the implementation, initially,
official Docker base images (created by Docker community)
has been introduced to create nanoservices.

Initially, Python script was used to handle request-response
cycle between a client and a server separately. This process
increases the number of containers which may cause for
overhead and may be difficult to control those. Then npm
based coap-cli package introduced to make client request in
associated server with the help of python’s subprocess [25]
module as discussed in Soha’s blog [26] which significantly
reduced the number of containers those made for client and
hence reduces extra memory consumption.

C. Container orchestration

Container orchestration has been done with Docker Swarm
and Kubernetes. Command Line Interface (CLI) based Docker
Swarm is integrated into the Docker ecosystem with its own
API while Graphical User Interface (GUI) based Kubernetes
requires third party API to manage containers. Here, we will
focus on the Docker Swarm based orchestration. Our required
six nanoservices had to deploy into their respective position
with different sensor specific host or node as illustrated in Fig.
2.

A dedicated host machine (as mentioned in A on VI) used as
manager (having Docker) to make a cluster of nodes known
as swarm where rest of the nodes used as workers (having

Fig. 5: Container orchestration for the PoC prototype.

Docker with required Docker container images). Orchestration
were implemented on top of Overlay Networks as highlighted
in Fig. 5, since it allows us to manage multi-hosted Docker
containers [27]. The orchestration includes following steps: (1)
Swarm Initialization: Cluster initialized at manager node. (2)
Joining Workers: Each worker added to the manager with a
token. (3) Labeling Nodes: In the manager, each node labeled
with their respective IP. (4) Nanoservices Deployment: Ser-
vices deployed into the cluster with their label specifications.

V. EVALUATIONS

We evaluate the measurement results based on the real life
measurement for our implementation in terms of resource
consumption and performance of deployed nanoservices.

A. Resource consumption

Resource consumption is one of the key factors for any
IoT devices. During the implementation, images created in
Docker for nanoservices were managed by Docker Swarm
and Kubernetes. The Docker system required 96 MB whereas
Kubernetes took 196 MB. Here, we analyze the resource
consumption based on three separate steps (images) for the
feasible implementation namely; official, alpine and multi-
stage-builds custom images. These measurement were taken
for five times for each cases and gave same results as shown
in Table II, III and IV.

1) Using official images: The size of a container image is
calculated with the size of it’s base image and the size of
the dependencies required for a container. The nanoservices
in Table II use official base image where AE requires 778.7
MB, which is the sum of Base image size 690.5 MB (column
3 in the table) + Unique Container size 88.18 MB (column 4),
to build the nanoservice into the Docker system. Meanwhile,
AE requires another 485.5 MB of disk space as it depends on
MySQL component (version 8.0.12) as another nanoservice.
However, rest of nanoservices such as MCS, PD, BS, MRS;
and UG consumed 599.6 MB, 599.6 MB, 609.8 MB, 612.2
MB; and 404.7 MB respectively.

Nanoservices demonstrated in Table II consumed huge
amount of disk space which is not good and suitable for low
capacity IoT devices where official base image affects the
implementation. Traditionally, an official base image includes



TABLE II: Resource consumption using official images

Component
or

Service

Consumed Disk Space
Base Image Container Size

Name Shared
(MB)

Unique
(MB)

Total
(MB) Run

AE
+ MySQL

python:3-onbuild
+ mysql:8.0.12

690.5
+ 0

88.18
+ 485.5

778.7
+ 485.5

414 kB
+ 7 B

MCS
arm32v7/python
:2.7.15-jessie 557.3

42.31 599.6 231 kB
PD 42.34 599.6 235 kB
BS 54.49 609.8 860 kB
MRS 54.94 612.2 1245 kB

UG resin/rpi-raspbian
:jessie 128.2 276.5 404.7 148.3 MB

all the dependencies even though those may not require to run
an application.

2) Using alpine images: A tentative solution was required
to reduce memory consumption that consumed by nanoser-
vices developed for usecase scenario. Table III summarizes
the memory consumption using suitable alpine images. At
the time of implementation, there has no alpine-based Docker
images for MySQL. However, MySQL version 8.0.16 is used
in this case which reduces 50 MB compared to version 8.0.12.
On the other hand, AE, MCS, PD, BS, MRS; and UG took
the total (summing column 3 and 4) disk space of 273.8
MB, 184.6 MB, 184.8 MB, 273.8 MB, 193.8 MB; and 324.7
MB respectively. All these nanoservices are now able to save
roughly 64.8%, 69.2%, 69.2%, 55.1%, 68.3%; and 52.7% of
disk space respectively as compared to the implementation that
uses official base images.

TABLE III: Resource consumption using alpine images

Component
or

Service

Consumed Disk Space
Base Image Container Size

Name Shared
(MB)

Unique
(MB)

Total
(MB) Run

AE
+ MySQL

python:3-alpine
+ mysql:8.0.16

86.98
+ 0

186.8
+ 443

273.8
+ 443

394 kB
+ 7 B

MCS

arm32v7/python
:2-alpine 52.99

131.6 184.6 231 kB
PD 131.8 184.8 231 kB
BS 220.8 273.8 239 kB
MRS 140.8 193.8 231 kB
UG 138.4 191.4 17.6 kB

Basically, alpine based image enables us to run an ap-
plication just requiring dependencies to build and run an
application. In the implementation, these alpine image based
solution include only the required dependent libraries and
hence reduce the total consumed memory space of IoT devices
used to implement the use case.

3) Using multi-stage-builds images: Docker version 17.05
facilitates multi layer caching [28] which allows us to reduce
the memory consumption even more. In general, multi-stage-
builds create many layers to optimize a docker container image
at the development time. In our case, we build an image in two
separate layers where first one is for compiling dependencies
and second one for managing dependencies to run the image.
At the run-time, however, the final images size (sum of column
3 & 4) for AE, MCS, PD, BS, MRS and UG nanoservices
took 137.13 MB, 92.19 MB, 92.36 MB, 93.71 MB, 92.14
MB; and 73.9 MB of memory space sequentially. That means,
when we introduced multi-stage-builds feature to our simple
alpine-based images then they can additionally saved 49.9%,

50.1%, 50.0%, 65.8%, 52.5% and 61.4% of disk space. On
the other hand, these nanoservices for AE, MCS, PD, BS,
MRS; and UG were able to save 82.4%, 84.6%, 84.6%, 84.6%,
85.0%; and 81.7% of memory space respectively when they
were compared to those images which were built on top of an
official base image as given in Table IV.

TABLE IV: Resource consumption using multi-stage-builds

Component
or

Service

Consumed Disk Space
Base Image Container Size

Name Shared
(MB)

Unique
(MB)

Total
(MB) Run

AE
+ MySQL

python:3-alpine
+ mysql:8.0.16

86.98
+ 0

50.15
+ 443

137.1
+ 443

2.3 MB
+ 7 B

MCS

arm32v7/python
:2-alpine 52.99

39.2 92.2 1.55 MB
PD 39.37 92.4 1.54 MB
BS 40.72 93.7 2.42 MB
MRS 39.15 92.1 1.55 MB
UG 20.9 73.9 776 kB

Alpine based image may need few compile time tools and
libraries to build an application which may not be used to
run an application. In our implementation, we neglect these
compile time dependencies (C tools and libraries required by
Python) but adding just runtime dependencies.

B. Performance

The performance factor is measured based on the time taken
at various deployment phases. Following, we discuss each of
them briefly.

1) Service deployment: Service deployment time is the total
required time to build a service into a Docker system. It is one
of important performance matrix that has been measured at the
development phase. The overall service deployment time has
been presented in the Fig. 6.

Fig. 6: Service deployment time.

Here, we measured the effect of images built on top of
official, alpine; and multi-stage-builds based images in terms
of deployment time when there is no base images inside the
Docker system. In our implementation, the time taken by PD,
MCS, BS, AE, UG; and MRS are 133s, 175s, 151s, 322s, 131s;
and 161s respectively when official images introduced to these
services. For alpine-based image, these services took time as
82s, 121s, 78s, 165s, 67s; and 88s respectively, whereas they
took 54s, 52s, 56s, 65s, 59s and 53s respectively for multi-
stage-builds images. During implementation, on an average,



40-50% deployment time has been reduced when there was a
base image inside the Docker system. In the implementation,
MySQL database were used for data persistence as a depen-
dency service to AE and the service took 60-80s on an average
at the deployment stage.

2) Service initiation: Service initiation time is the total
required time to initiate a service into the Docker ecosystem. It
is another important factor which is measured for all the three
cases introduced at the development phase. Fig. 7 shows the
overall service initiation time for all six nanoservices under
three separate cases in terms of images.

Fig. 7: Service initiation time.

For the use of official base images, PD, MCS, BS, AE,
UG; and MRS have taken the time as 13s, 15s, 14s, 95s,
11s; and 14s respectively to initialize the nanoservices. On
the other hand, for alpine image images, the time taken is 6s,
5s, 5s, 84s, 4s; and 6s respectively, and whereas for the images
created with multi-stage-builds feature took 2-4s to start the
nanoservices. These measurement were taken when there is no
MySQL image inside the Docker system which usually takes
60-80s to build it as mentioned earlier. In our case, MySQL
service took 12s, 7s; and 4s to initiate it on the Docker system
for official, alpine; and multi-stage-builds feature based images
respectively.

3) Presence detection time: In this paper, presence detec-
tion is the first nanoservice defined for the use case to detect
a participant by using Passive Infrared Radio (PIR) motion
sensor. We have measured the average required time in this
detection process.

TABLE V: Presence detection and BLE authentication time

Inspections Mean(s) Variance(s)
Presence detection 20 1.95 0.447
BLE authentication 20 2.75 0.487

In order to have more precise evaluations, we have per-
formed the measurement about 20 times to analyze the average
for the detection of participants. All these different instances
took 1s (minimum) and 3s (maximum) during our measure-
ment. On an average, all these took around 1.95s to detect a
participant into the range of motion sensor. We also analyzed
the variance of these results and it was around 0.447s as shown
in Table V. This average time of detection fully depends on
the sensing capacity of the PIR motion sensor.

4) Authentication time and accuracy: In the implemen-
tation, the autonomous smart environment required to au-
thenticate a participant with BLE-ID along with WiFi-CSI
or surveillance camera. Here, the smart system recognizes
a participant by a BLE key carried by the participant. We
measured the average authentication time at three separate
inspections.

Table V presents the mean authentication times required by
the presence detection and BLE scanner and their variance,
based on 20 inspections. We achieved 100% presence detection
and BLE scanning accuracy in all inspections. In our imple-
mentation, the authentication accomplished in two separate
processes that includes BLE scanning and API authentication.
Here, the BLE scanning took place in between MCS and
BS nanoservices (c) whereas API authentication took place
in between MCS and AE nanoservices (d) that mentioned
in Fig. 3. In the experiment, the total time to authenticate
a participant depends on the physical distance between the
BLE authentication server and the BLE key; the quality of
the packet advertising by BLE device, and the overall internal
processing speed of the MCS-BS and the MCS-AE. Any of
these can affect the authentication process and hence increase
the total authentication time.

The corridor used for the measurement was about 14m long
from the entrance to the meeting room where a user can cover
the required distance in 10s with an average walking speed.
Therefore, a participant can reach at meeting from entrance
within 15s (2s for PD, 3s for BS + AE and 10s for walking).

VI. DISCUSSION AND FUTURE WORK

This paper presents the feasibility study of deploying vir-
tualized nanoservices at the local level of IoT edge networks.
In the feasibility study, we have implemented a prototype
based on Docker containers orchestrated by Docker Swarm,
and optimized its operation by using Alpine base image and
multi-stage-builds. By using Alpine base image combined with
multi-stage-builds, we have been able to reduce the base image
size from several hundreds of MBs to few tens of MBs while
keeping the runtime consumption on feasible level. As a result,
the service deployment and initiation times per nanoservice
were reduced from several minutes to less than a minute and
service initiation times ware squeezed in most of the cases
from tens of seconds to only a few seconds.

In this paper, we successfully demonstrated the feasibility
of static deployment of nanoservices for our use case, but
we neither considered the impact of several running services
at the host machines nor took into account other important
features, such as scalability to larger setups and dynamic
deployment of nanoservices. As future work, it would be
therefore interesting to implement more dynamic use cases
with larger setups consisting of multiple local sites and several
services per device, with users moving across these sites.

Furthermore, the performance evaluations of our paper have
been measured at Docker that shares same hardware resources
with the host machine, such as RAM, CPU and storage.
Among all the evaluations, multi-stage-builds based images
show the best performance, because it includes only run-time



dependencies. In addition, most of the run-able sizes (6th
column on Table II, III and IV) of images are measured to
be highly varying. The reason for it is not much explored in
depth during this implementation and we kept this as a part
of our future work.

VII. CONCLUSION

IoT is considered as a driving force behind the vision of
ubiquitous and pervasive computing to ensure the availability
of digital services anywhere and anytime. Edge computing
has been recently introduced as an intermediate layer be-
tween local and public networks and provide vital low-latency
based services by deploying computational tasks near the end-
devices. However, there are still many challenges to address,
such as vulnerability to access network problems and the
high load inflicted to access networks and MEC servers,
being a particular issue in massive-scale IoT use cases, where
numerous sensors may produce high amounts of data, or
where critical system functionalities must be ensured also
during access network problems. Therefore, bringing some
edge functions to the local level would be beneficial from the
viewpoint of reliability and scalability. In this direction, our
work provides significant contribution in terms of implement-
ing a simple PoC deploying virtualized nanoservices at the
local level of IoT edge networks and showing the feasibility
of such scenario. With respect to hardware requirements and
deployment times, the evaluations clearly indicate the feasibil-
ity of the nanoservice-based local virtualized service model.
The future work includes e.g. expanding the study towards
larger setups with dynamic deployment of nanoservices.

ACKNOWLEDGMENT

This work was supported by Academy of Finland, under
the projects Industrial Edge and WiFiUS Massive IoT; the
Technology Industries of Finland Centennial Foundation and
Jane and Aatos Erkko Foundation, under the project MEC-AI;
and 6Genesis Flagship programme (grant no.318927).

REFERENCES

[1] E. Harjula, P. Karhula, J. Islam, T. Leppänen, A. Manzoor, M. Liyanage,
J. Chauhan, T. Kumar, I. Ahmad, and M. Ylianttila, “Decentralized iot
edge nanoservice architecture for future gadget-free computing,” IEEE
Access, vol. 7, pp. 119 856–119 872, 2019.

[2] H. U. Rehman, M. Asif, and M. Ahmad, “Future applications and
research challenges of iot,” in 2017 International Conference on In-
formation and Communication Technologies (ICICT). IEEE, 2017, pp.
68–74.

[3] J. aikio, v. pentikinen, j. hiki, j. hkkil, a. colley, on the road
todigital paradise: The naked approach (2016). [Online]. Available:
http://www.nakedapproach.fi/

[4] I. Ahmad, T. Kumar, M. Liyanage, M. Ylianttila, T. Koskela, T. Braysy,
A. Anttonen, V. Pentikinen, J.-P. Soininen, and J. Huusko, “Towards
gadget-free internet services: A roadmap of the naked world,” Telematics
and Informatics, vol. 35, no. 1, pp. 82 – 92, 2018.

[5] J. Pan and J. McElhannon, “Future edge cloud and edge computing for
internet of things applications,” IEEE Internet of Things Journal, vol. 5,
no. 1, pp. 439–449, 2017.

[6] C. Stergiou, K. E. Psannis, B.-G. Kim, and B. Gupta, “Secure integration
of iot and cloud computing,” Future Generation Computer Systems,
vol. 78, pp. 964–975, 2018.

[7] A. Botta, W. De Donato, V. Persico, and A. Pescapé, “Integration of
cloud computing and internet of things: a survey,” Future generation
computer systems, vol. 56, pp. 684–700, 2016.

[8] T. Kumar, P. Porambage, I. Ahmad, M. Liyanage, E. Harjula, and
M. Ylianttila, “Securing gadget-free digital services,” Computer, vol. 51,
no. 11, pp. 66–77, Nov 2018.

[9] D. Celesti, D. Mulfari, M. Fazio, M. Villari, and A. Puliafito, “Exploring
container virtualization in iot clouds,” in 2016 IEEE International
Conference on Smart Computing, 2016, pp. 1–6.

[10] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, Fog Computing: A
Platform for Internet of Things and Analytics. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2014, pp. 169–186.

[11] “Mobile edge computing a key technology towards 5G,”
http://www.etsi.org/images/files/ETSIWhitePapers/etsi wp11 mec
a key technology towards 5g.pdf, 2015, eTSI White Paper No. 11,
accessed: 10-10-2016.

[12] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Ni-
akanlahiji, J. Kong, and J. P. Jue, “All one needs to know about fog
computing and related edge computing paradigms: A complete survey,”
Journal of Systems Architecture, no. February, 2019.

[13] K. Dolui and S. K. Datta, “Comparison of edge computing implemen-
tations: Fog computing, cloudlet and mobile edge computing,” in 2017
Global Internet of Things Summit (GIoTS). IEEE, 2017, pp. 1–6.

[14] K. Bilal, O. Khalid, A. Erbad, and S. U. Khan, “Potentials, trends, and
prospects in edge technologies: Fog, cloudlet, mobile edge, and micro
data centers,” Computer Networks, vol. 130, pp. 94–120, 2018.

[15] C. Esposito, A. Castiglione, and K. R. Choo, “Challenges in delivering
software in the cloud as microservices,” IEEE Cloud Computing, vol. 3,
no. 5, pp. 10–14, Sep. 2016.

[16] M. Villamizar, O. Garcs, H. Castro, M. Verano, L. Salamanca, R. Casal-
las, and S. Gil, “Evaluating the monolithic and the microservice archi-
tecture pattern to deploy web applications in the cloud,” in 2015 10th
Computing Colombian Conference (10CCC), Sep. 2015, pp. 583–590.

[17] M. Amaral, J. Polo, D. Carrera, I. Mohomed, M. Unuvar, and M. Stein-
der, “Performance evaluation of microservices architectures using con-
tainers,” in 2015 IEEE 14th International Symposium on Network
Computing and Applications, Sept 2015, pp. 27–34.

[18] C. M. Aderaldo, N. C. Mendonça, C. Pahl, and P. Jamshidi, “Benchmark
requirements for microservices architecture research,” in Proceedings
of the 1st International Workshop on Establishing the Community-Wide
Infrastructure for Architecture-Based Software Engineering, ser. ECASE
’17. Piscataway, NJ, USA: IEEE Press, 2017, pp. 8–13.

[19] L. Cominardi, O. I. Abdullaziz, K. Antevski, S. B. Chundrigar,
R. Gdowski, P.-H. Kuo, A. Mourad, L.-H. Yen, and A. Zabala, “Op-
portunities and challenges of joint edge and fog orchestration,” in 2018
IEEE Wireless Communications and Networking Conference Workshops
(WCNCW). IEEE, 2018, pp. 344–349.

[20] A. Hegyi, H. Flinck, I. Ketyko, P. Kuure, C. Nemes, and L. Pinter, “Ap-
plication orchestration in mobile edge cloud: placing of iot applications
to the edge,” in 2016 IEEE 1st International Workshops on Foundations
and Applications of Self* Systems (FAS* W). IEEE, 2016, pp. 230–235.

[21] T. Kumar, A. Braeken, M. Liyanage, and M. Ylianttila, “Identity
privacy preserving biometric based authentication scheme for naked
healthcare environment,” in 2017 IEEE International Conference on
Communications (ICC). IEEE, 2017, pp. 1–7.

[22] T. Ojala, J. Orajärvi, K. Puhakka, I. Heikkinen, and J. Heikka, “panoulu:
Triple helix driven municipal wireless network providing open and free
internet access,” in Proceedings of the 5th International Conference on
Communities and Technologies. ACM, 2011, pp. 118–127.

[23] G. Tanganelli, C. Vallati, and E. Mingozzi, “Coapthon: Easy develop-
ment of coap-based iot applications with python,” in 2015 IEEE 2nd
World Forum on Internet of Things (WF-IoT). IEEE, 2015, pp. 63–68.

[24] M. Wasilak, Chrysn, P. Berndt, R. Nowakowski, and J. Kinestral. (2018,
December) txthings - coap library for twisted framework. [Online].
Available: https://github.com/mwasilak/txThings

[25] Mkn and Tripleee. (2018, August) Running bash commands
in python. [Online]. Available: https://stackoverflow.com/questions/
4256107/running-bash-commands-inpython/51950538#51950538

[26] R. Sola. (2016, September) Coap: Get started with iot
protocols. [Online]. Available: https://opensourceforu.com/2016/09/
coap-get-started-with-iot-protocols/

[27] Docker. (2019, Oct) Use overlay networks. [Online]. Available:
https://docs.docker.com/network/overlay/

[28] D. Docs. (2019, Jun) Use multi-stage builds. [Online]. Available:
https://docs.docker.com/develop/develop-images/multistage-build/


