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Abstract—In this paper, we propose an instance level hier-
archical features based convolution neural network model(H-
CNN) for detecting surface defects. The H-CNN uses different
convolutional layers’ extracted features to generate defect
masks. The H-CNN first generates proposal regions. Then,
it proposes a fully convolutional neural network to extract
different level’s convolutional features and detect instance level
defects. We applied the H-CNN model in freight train detection
system for detecting oil-leaks, and the results demonstrate that
the H-CNN can effectively identify and generate defect masks.
It achieves 92% accuracy on the large reflective oil-leak stain,
86% on the large non-reflective oil-leak stain, 89% on the small
reflective oil-leak stain and 74% on the small non-reflective oil-
leak stain. Its image process speed is 0.467s per frame.

I. INTRODUCTION

Surface defect detection is an important task [1]-[4]. It
has two main challenges. First, the defect image dataset
is small, due to low occurrence. Second, defect detection
requires precisely detecting defect mask.

Most surface defect detection algorithms use the low-
level image hues [5]-[10]. These methods use local and
global color, gradient, and texture properties to detect surface
anomalies. Wu et al. [8] presented a technique that uses
multi-feature fusion to detect surface defects. Shi et al.
[9] improved the Sobel algorithm for rail surface defect
detection. Li et al. [10] proposed a local neighborhood-based
surface defect detection algorithm for improving the surface
defect detection accuracy in automation industry. Truong
et al. [11] suggested an automatic thresholding technique,
which uses an entropy weighting scheme to detect defect
regions. These algorithms are useful in some cases but have
low robustness. They will be easily affected by hand-crafted
parameters. Also, most of them aim at the specific defect
due to extracted features’ low representative ability, which
has low generalization.
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In recent years, deep learning has been applied in detecting
objects [12], including instance level object segmentation
[13] and surface defect detection [14]-[16]. Li et al. [17]
proposed an improved YOLO(you only look once) detection
network for real-time steel strip surface defect detection.
Zhu et al. [18] took advantage of the tire feature similarity
to capture the anomalies. Tao et al. [19] designed a novel
cascaded auto-encoder architecture for segmenting and lo-
calizing metallic surface defect. Kai et al. [20] proposed a
general framework for object instance segmentation. This
framework can efficiently detect objects while simultane-
ously generating a high-quality segmentation mask for each
instance. Jia et al. [21] presented a multiple-kernel learning
feature fusion method for surface defect detection. Ren et al.
[22] proposed a generic approach that requires small training
data for automated surface inspection. Instance segmentation
technique shows its power in detection and segmentation. It
extracts discriminative features, and separates the defects and
backgrounds.

This paper proposes a hierarchical features based convolu-
tion neural network (H-CNN) model to detect surface defect.
The H-CNN adopts the instance segmentation technique. It
adds a CNN module to generate more precise defect mask. It
first uses the region proposal network(RPN) [23] to generate
proposal regions. Then, it suggests a CNN module to learn
more defect information, and create more accurate defect
masks.

The remainder of the paper is organized as follows.
Section 2 presents the work related to the H-CNN, including
the region-based convolution neural network approach (R-
CNN) and the instance segmentation technique. Section 3
illustrates the H-CNN framework. Section 4 applies the H-
CNN to detect oil-leaks for freight trains, and demonstrates
that the H-CNN outperforms other methods. Section 5 draws
a conclusion.

II. RELATED WORK

A. R-CNN

Girshick et al. [24] developed the R-CNN, which ap-
plies high-capacity CNNS(convolutional neural networks)
to generate bottom-up region proposals for localizing and
segmenting objects. The R-CNN has been improved for
higher efficiency and accuracy [23], [25]-[27]. The faster
R-CNN [23] improved R-CNN by learning the attention
mechanism with a RPN. It becomes the leading framework
in several benchmarks [28]—[30].



B. Instance segmentation

There are many instance segmentation methods proposed
for the effectiveness of R-CNN. Dai et al. [31] suggested a
complex multiple-stage cascade that predicts segment pro-
posals from bounding-box proposals, followed by classifica-
tion. Li et al. [32] combined the segment proposal system and
the object detection system for fully convolutional instance
segmentation (FCIS). The FCIS simultaneously addresses
object classes, boxes, and masks, making the system operate
fast [33], [34]. However, it exhibits systematic errors on
overlapping instances and creates spurious edges, which
makes it difficult to segment instances.

ITII. H-CNN ARCHITECTURE

The H-CNN consists of two phases. In the phase 1, the
H-CNN adopts faster R-CNN model to generate regions of
interest(ROIs). Then the H-CNN produces a fully convolu-
tion neural network (F-CNN) to extract different hierarchical
image features to predict the defect mask. Figure. 1 illustrates
the H-CNN architecture.
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Fig. 1. The H-CNN architecture

A. Generate ROIs

The Faster R-CNN detector [23] consists of two stages
(Fig. 2). The first stage suggests candidate object bounding
boxes. The second stage extracts features using RoIPool from
each candidate box and executes classification and bounding-

box regression.
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Fig. 2. The faster R-CNN architecture

B. Generate defect mask

We propose a CNN model to obtain the hierarchical image
features, including both specific and general characteristics.
Therefore, it could extract more information from a small
dataset.

We use different kernel size on the image with different
dimensionality. Suppose the kernel size is 3 x 3, the padding
size is 1 x 1, the stride is 2 x 2. When the input image size

is 5 x 5, the output feature map is 3 x 3. So, different kernel
size on each dimension can output different size feature map.
The loss function is defined as (Equation 1),
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where n! denotes the probability of true detection of l;;, pixel
of class i, n!* equals 1 when predicted label is a real label,
and m denotes pixel numbers of class i.

IV. EXPERIMENTS
A. Experimental settings

In recent years, freight train detection system (FTDS) is
installed on the railway to monitor train safety. FTDS uses
high-speed camera to catch all parts of the running train;
then, it compresses the captured image and saves them in
the computer; subsequently, it selects images of key parts
of the train that affects the safety of the train, including
gear, bearing, and engine, etc.; The selected images are
then transmitted to the data server in monitor room for
anomaly detection by indoor inspectors. Once the defect is
observed, the indoor inspector will inform outdoor inspectors
to confirm and handle the problem [35]. Although effective,
the FTDS can only capture, transmit, and store images, leav-
ing anomaly inspection for indoor inspectors. Meanwhile,
erroneous detection is prone to occur during human detection
due to vision fatigue.

This study focuses on oil-leak detection in FTDS, which
has never been studied. Oil-leak detection in FTDS has two
main difficulties, namely the similarity to dark backgrounds
and small datasets.

Oil-leak has four major types, namely the large reflective,
large non-reflective, small reflective and small non-reflective
oil-leak stains(Fig. 3). When the oil-leak stain area is larger
than 250 x 250 pixels, we define it as large oil-leak stain. The
parameter ratio is used to differentiate reflective and non-
reflective oil-leak stain (Equation 2), if ratio is less than 1%,
we define it non-reflective oil-leak stain.
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n : number of pointsthat I > 250 and S < 5
N : number of all detected points
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We obtain 28 images with oil-leaks in the experiment. We
make data augmentations for them. We use 18 raw images
to create 500 training samples through flipping, rotation and
scaling transformations. And we use another 10 images to
generate 150 validation samples and 150 test samples using
the same transformations, respectively.

We also introduce an evaluation rule to calculate detection
accuracy. Suppose the area of a detected region is A, the area



of a real oil-leak region is B. Then, if A(\B <= 0.8 x B,
it will be classified as a wrong detection. Then we use F1-
measure as Formula (3) to evaluate detection accuracy,

I 2x Px R
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Where P denotes the precision, R denotes the recall. TP
means true positive, F'P means false positive, F'/N means
negative positive.

B. Implementation

The H-CNN is implemented on a laptop with GPU 1060
MAX-Q, which has four cores with 6GB memory.

The hyper-parameters of the faster R-CNN module are the
same as the one in [23]. We resize images as 512x448 pixels.
We use three scales with box areas of 64 x 64, 128 x 128 and
256 x 256 pixels, and three aspect ratios of 1:1, 1:2, and 2:1.
Some RPN proposals highly overlap each other. To reduce
redundancy, we adopt non-maximum suppression (NMS) on
the proposal regions based on their class scores. We fix the
IoU (intersection over union) threshold for NMS at 0.7. After
NMS, we use the top-N ranked proposal regions as detection
results. The learning rate is 0.01, the weight decay is 0.0001,
the momentum is 0.9 in the defect mask detection module.
We run the mask generation only on proposal regions. Each
mini-batch has two images per GPU, and each image has [V
sampled Rols, with a ratio of 1:2 of defects to non-defects.
We can predict K masks per Rol, but we only use the k-
th mask, where k is the predicted class by the classification
branch. Finally, the mask is binarized at a threshold of 0.5.

C. Results and discussions

We use the obtained 150 images to test the H-CNN detec-
tion accuracy on the four type oil-leak stains. To calculate
the accuracy, we separate the 150 test images into 10 test
sets, and 10 mean accuracy values are obtained from these
test sets. Experimental results are shown in Fig. 4, Fig. 5
and Tab. I. It achieves 92% accuracy on the large reflective
oil-leak stain, 86% on the large non-reflective oil-leak stain,
89% on the small reflective oil-leak stain and 74% on the
small non-reflective oil-leak stain.

TABLE I
F1 — measure OF THE H-CNN DETECTION RESULTS ON DIFFERENT
OIL-LEAK STAINS.

Rule The large reflective | The large non-reflective
Fy1 — measure(%) 92 86

Rule The small reflective | The small non-reflective
F1 — measure(%) 89 74

To further evaluate the H-CNN performance, we compare
it with the LBP(local binary pattern) [5], the Sobel [9] and

the DNN(deep neural networks) [16]. In the experiment, we
make modifications for the three methods shown in Fig. 6.
We apply the four models to detect the four oil-leaks.
Results are shown in Fig. 7, Tab. II and Tab. III. The H-CNN
achieves higher accuracy than others. Moreover, it consumes
0.467s per frame, which is faster than other methods.

TABLE II
DETECTION RESULT WITH THE FOUR MODELS(%)

Method The large reflective | The large non-reflective
H-CNN 92 86
The LBP 64 56
The sobel 58 51
DNN 73 72

Method The small reflective | The small non-reflective
H-CNN 89 74
The LBP 57 56
The sobel 50 51
DNN 72 68

TABLE III

IMAGE PROCESS SPEED OF THE FOUR MODELS(%)

Method
Time(s)

H-CNN
0.467

The LBP
0.852

The sobel
1.074

DNN
0.879

V. CONCLUSIONS

This paper introduces a novel hierarchical features based
convolution neural network for surface defect detection. The
model has been applied to detect four types of oil-leaks
in FTDS. And the experiments show that the H-CNN can
detect different oil-leak stains accurately and efficiently. H-
CNN shows better results compared with the state-of-the-art
methods. The H-CNN also has high robustness to the scaling,
the flipping and the rotation transformations.

In the future, the H-CNN can be applied to detect cracks,
scratches, foreign matters et al. We will further improve the
H-CNN accuracy and efficiency.
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Fig. 3. Different kinds of oil-leak, We use red color denotes the large
reflective, blue is the large non-reflective, green is the small reflective and
cyan is the small non-reflective.

Fig. 4. The H-CNN detection results on different oil-leak stains. Row a
and d are raw images, row b and e are H-CNN detection results, and row ¢
and f are benchmarks. We use red color denotes the large reflective, blue is
the large non-reflective, green is the small reflective and cyan is the small
non-reflective. The benchmarks are labeled using ”labelme”.
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Fig. 5. F1 —measure of the H-CNN detection results on different oil-leak
stains using different test sets.
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Fig. 7. Four methods’ detection results on four oil-leaks. (a)The large
reflective (b)The large non-reflective (c)The small reflective (d)The small
non-reflective.
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