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Abstract—In this work, we consider a system where external
requests arrive for status updates of a remote source, which is
monitored by an energy harvesting (EH) sensor. The requests
are placed in an aggregator that has direct communication with
the sensor and is also equipped with storage space to cache
a previously generated status update. A probabilistic model is
considered to determine whether a new request will be served
with a fresh update from the EH sensor or with a cached update
from the aggregator. In the first case, the fresh update will replace
the cached one in the aggregator. Assuming that the energy
arrivals at the sensor can be modeled by a Bernoulli process,
we characterize the average Age of Information (AoI) of the
source seen at the aggregator as a function of the external request
probability, the battery charging probability, and the probability
that a fresh update will be generated by the EH sensor. Our
numerical results reveal some insights about the role of caching
in EH-based status updating systems.

Index Terms—Age of Information, Energy Harvesting,
Caching.

I. INTRODUCTION

The Age of Information (AoI) was introduced recently as
a metric and tool that captures the information freshness. It
was first introduced in [1], [2]. This metric is particularly
meaningful for some Internet of Things (IoT) applications that
generate time-sensitive data. Such IoT applications consider
the reception of status updates of some remote processes that
evolve over time. Therefore, receiving fresh information, i.e.,
keeping the AoI small, is crucial. The notion of AoI has been
extended to metrics such as the Value of Information, Cost
of Update Delay, and non-linear AoI. A detailed treatment of
this topic can be found in [3], [4].

The deployment of energy harvesting (EH) sensors is be-
coming a promising aspect of future wireless networks, espe-
cially in the IoT scenario where low-power devices transmit
sporadically a small amount of information. Furthermore, EH
is an enabling technology to create self-operating IoT networks
with sensors in those areas that are hard to reach. The role of
AoI and its effect in the efficient design of freshness-aware
IoT networks was presented in [5].

If the sensor that generates the status updates by sam-
pling/measuring a process is energy-limited, it cannot always
be available to transmit. This issue can be resolved by having
an intermediate node, an aggregator for example, with caching
capabilities to store previously generated status updates by

the sensor. The aggregator is responsible for forwarding the
updates to the requesting devices.

A. Related Works

AoI for an energy harvesting source node has been in-
vestigated under various system settings. In [6]–[15], the
EH process is modeled as an independent external stochastic
process, usually as Bernoulli or Poisson process. In [12], the
interplay of throughput/delay and average AoI was studied in a
two-user multiple access channel consisting of an EH sensor
and another node always connected to the power grid. The
authors in [13] considered an EH status update system that
monitors a stochastic process which can be either in a normal
or in an alarm state of operation and the optimal status update
transmission policies are derived. In [14], considers the aver-
age AoI minimization in cognitive radio EH communications.
In [15], the minimization of the time-average expected AoI
for status updates sent by an energy-harvesting source with a
finite-capacity battery is considered.

Another set of works consider the case where a source is
powered by radio frequency (RF) energy harvesting. In that
case, the harvested energy depends on the channel condition
and its variation over time. More specifically, the work in [16]
studies the performance of a wireless powered sensor network
in terms of the average AoI. The sensor node transmits
updates to the destination by discharging its battery, which
is charged by a dedicated energy source. The work in [17]
considers freshness-aware IoT networks with EH enabled IoT
devices. The optimal sampling policy for IoT devices that
minimizes the long-term weighted sum-AoI is investigated. In
[18], a cognitive network with primary and secondary users
coexisting is considered. The secondary users harvest wireless
energy from active primary ones and access the spectrum
opportunistically to transmit status updates, then the average
AoI is analyzed.

The works in [19]–[25] consider cache freshness. In [19],
a system consisting of a library with time-varying files is
considered where a server observes the current version of
all files, and a cache that stores the current versions of all
files and updates fresh versions of these files from the server.
The update duration is considered to change depending on
the file and its AoI. The authors in [20], propose a model
for mobile caching where the rate of requests for content



depends on the popularity and the freshness of the information.
The work in [22] considers an updating policy for a system
where a local cache is connected to a remote server through a
capacity-constrained link and the cache maintains a collection
of multiple content items that are requested by users. In [24], a
cache refresh system is considered where a server is connected
to multiple sources and stores local copies of the data items
at the sources. The allocation of refresh rate at the server for
each source is investigated to maintain overall data freshness
given limited refresh rate.

B. Contribution

The main contribution of this work is about investigating the
role of caching in a status updating system, where a sensor
monitoring a remote source relies solely on EH to operate. An
aggregator with caching capabilities serves as an intermediate
node between the sensor and the external requests for status
updates. The latest received status update is always stored in
the cache of the aggregator. When a new request for status
update arrives at the aggregator, with some probability it can
either be served with a fresh update generated by the sensor
or with a cached update in the aggregator. Based on this
probabilistic model, we characterize the average AoI of the
source at the aggregator which affects the freshness of the
status updates that serve the external requests. The impact of
different parameters on the average AoI is shown by numerical
results.

II. SYSTEM MODEL

In this work, we consider a discrete-time system depicted
in Fig. 1, where an energy harvesting sensor ( can measure a
process and send the measurement in a form of a status update
to an aggregator �. � can store the update and potentially
utilize it when an external request for status update arrives.
( is harvesting energy from the environment, the energy
arrival process is modeled as a Bernoulli process with average
probability X. In addition, we assume ( is equipped with an
infinite size battery 1. We consider that the size of status update
packets are the same, and the transmission of a status update
from � is instantaneous and error free. When � requests for
a fresh update from (, we assume that the whole duration of
requesting, sampling, and transmission from ( occupies a slot
and it consumes one energy unit from the battery of (.

An external request for status update arrives in a timeslot
with probability ?, and is served by either a cached update
from � or a fresh update from ( through �. If the battery at
( is non-empty, and there is an external request for update at
�, then with probability U, � will request for a fresh update
from (. Otherwise, � will serve the external request with the
cached update with probability 1−U. Furthermore, if ( has an
empty battery, then � will serve an external request with the
cached update. Every time � gets a fresh update from (, the
update is stored in �’s cache and the previously stored update
is dropped since it becomes obsolete. If in a timeslot there is

1The extension to the finite size battery is straightforward [26, pp. 69].

no external request then � will never ask for a fresh update
from (.

as functions of their transmission probabilities, the data arrival
rate at the source node and the energy arrival rate at the sensor,
which can be further used to optimize the operating parameters
of such systems.

II. SYSTEM MODEL

We consider a time-slotted MAC where two source nodes
with heterogeneous traffic intend to transmit to a common
destination, as shown in Fig. 1. The first node S1 is connected
to the power grid, thus it is not power-limited. S1 has bursty
data arrival following a Bernoulli process with probability �.
When the data queue of S1 is not empty, it transmits a packet
to the destination with probability q1. The second node S2 is
not connected to a dedicated power source, but it can harvest
energy from its environment, such as wind or solar energy. We
assume that the battery charging process follows a Bernoulli
process with probability �, with B denoting the number of
energy units in the energy source (battery) at node S2. The
capacity of the battery is assumed to be infinite. When S2 has a
non-empty battery, it generates a status update with probability
q2 and transmits it to the destination. The transmission of one
status update consumes one energy unit from the battery.
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Fig. 1. The system model. One throughput-oriented source node and an
energy-harvesting (EH) device share the same wireless channel to a common
destination. The EH device is generating status updates to transmit to the
destination.

We assume multi-packet reception (MPR) capabilities at the
destination node D, which means that D can decode multiple
messages simultaneously with a certain probability. MPR is a
generalized form of the packet erasure model, and it captures
better the wireless nature of the channel since a packet can
be decoded correctly by a receiver that treats interference
as noise if the received signal-to-interference-plus-noise ratio
(SINR) exceeds a certain threshold. We consider equal-size
data packets and the transmission of one packet occupies one
timeslot.

For the notational convenience, we define the following
successful transmission/reception probabilities, depending on
whether one or both source nodes are transmitting in a given
timeslot:

• pi/i: success probability of Si, i 2 {1,2} when only Si is
transmitting;

• pi/i, j : success probability of Si when both Si and Sj are
transmitting;

In the case of an unsuccessful transmission from S1, the
packet has to be re-transmitted in a future timeslot. We
assume that the receiver gives an instantaneous error-free
acknowledgment (ACK) feedback of all the packets that were
successful in a slot at the end of the slot. Then, S1 removes
the successfully transmitted packets from its buffer. In case of
an unsuccessful packet transmission from S2, since it contains
a previously generated status update, that packet is dropped
without waiting to receive an ACK, and a new status update
will be generated for its next attempted transmission.

In the remainder of this paper, we aim at characterizing the
tradeoff between the stable throughput/delay of the node S1
and the average AoI of the EH sensor S2.

A. Physical Layer Model

We consider the success probability of each node i based
on the SINR

SINRi =
Pi |hi |2�iÕ

j2A\{i } Pj |hj |2�j + �2 ,

where A denotes the set of active transmitters; Pi denotes
the transmission power of node i; hi denotes the small-scale
channel fading from the transmitter i to the destination, which
follows CN(0,1) (Rayleigh fading); �i denotes the large-scale
fading coefficient of the link i; �2 denotes the thermal noise
power.

Denote by ✓i , i = {1,2}, the SINR thresholds for having
successful transmission. By utilizing the small-scale fading
distribution, we can obtain the success probabilities as follows:

pi/i = P {SNRi � ✓i} = exp
✓
� ✓i�

2
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◆
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III. PERFORMANCE ANALYSIS OF NODE S1

In this section, we study the performance of node S1
regarding (stable) throughput and the average delay per packet
needed to reach the destination. The service probability of S1
is given by

µ =Pr(B = 0)q1p1/1 + Pr(B , 0)q1(1 � q2)p1/1

+ Pr(B , 0)q1q2p1/1,2

=q1p1/1 [1 � q2Pr(B , 0)] + q1Pr(B , 0)q2p1/1,2. (3)

In this work, we mainly focus on the case where S2 relies
on energy harvesting to operate, but for comparison purposes
we also consider the case that S2 is connected to the power
grid, thus does not have energy limitations.
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and energy arrivals on the performance of a multiple access
channel (MAC) has not been studied.

In this work, we study the MAC where one node connected
to the power grid has bursty arrivals of regular data packets,
and another EH sensor sends status update when its battery
is non-empty. We derive the data delay of the throughput-
oriented node and the AoI of the EH sensor, which are given
as functions of their transmission probabilities, the data arrival
rate at the source node and the energy arrival rate at the sensor,
which can be further used to optimize the operating parameters
of such systems.

II. SYSTEM MODEL

We consider a time-slotted MAC where two source nodes
with heterogeneous traffic intend to transmit to a common
destination D, as shown in Fig. 1. The first node S1 is
connected to the power grid, thus it is not power-limited. Note
that S1 is a throughput-oriented node, which intends to achieve
as high throughput as possible. The data packets arrives at S1
following a Bernoulli process with probability �. We consider
an early departure late arrival model for the queue. When
the data queue of S1 is not empty, it transmits a packet to
the destination with probability q1. The second node S2 is
not connected to a dedicated power source, but it can harvest
energy from its environment, such as wind or solar energy. We
assume that the battery charging process follows a Bernoulli
process with probability �, with B denoting the number of
energy units in the energy source (battery) at node S2. The
capacity of the battery is assumed to be infinite. When S2 has a
non-empty battery, it generates a status update with probability
q2 and transmits it to the destination.1 The transmission of one
status update consumes one energy unit from the battery.
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Fig. 1. The system model. One throughput-oriented source node and an
energy-harvesting (EH) device share the same wireless channel to a common
destination. The EH device is generating status updates to transmit to the
destination.

We assume multi-packet reception (MPR) capabilities at the
destination node D, which means that D can decode multiple
messages simultaneously with a certain probability. MPR is a
generalized form of the packet erasure model, and it captures
better the wireless nature of the channel since a packet can
be decoded correctly by a receiver that treats interference

1A similar update packet generation model for the EH user can be found
in [27].

as noise if the received signal-to-interference-plus-noise ratio
(SINR) exceeds a certain threshold. We consider equal-size
data packets and the transmission of one packet occupies one
timeslot.

For the notational convenience, we define the following
successful transmission/reception probabilities, depending on
whether one or both source nodes are transmitting in a given
timeslot:
• pi/i : success probability of Si , i 2 {1,2} when only Si is

transmitting;
• pi/i, j : success probability of Si when both Si and Sj are

transmitting;
In the case of an unsuccessful transmission from S1, the

packet has to be re-transmitted in a future timeslot. We
assume that the receiver gives an instantaneous error-free
acknowledgment (ACK) feedback of all the packets that were
successful in a slot at the end of the slot. Then, S1 removes
the successfully transmitted packets from its buffer. In case of
an unsuccessful packet transmission from S2, since it contains
a previously generated status update, that packet is dropped
without waiting to receive an ACK, and a new status update
will be generated for its next attempted transmission.
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where A denotes the set of active transmitters; Pi denotes
the transmission power of node i; hi denotes the small-scale
channel fading from the transmitter i to the destination, which
follows CN (0,1) (Rayleigh fading); �i denotes the large-scale
fading coefficient of the link i; �2 denotes the thermal noise
power.

Denote by ✓i , i = {1,2}, the SINR thresholds for having
successful transmission. By utilizing the small-scale fading
distribution, we can obtain the success probabilities as follows:
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is given by
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In this work, we mainly focus on the case where S2 relies
on energy harvesting to operate, but for comparison purposes
we also consider the case that S2 is connected to the power
grid, thus does not have energy limitations.
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Figure 1. The system model. � is the aggregator with cache, ( is the energy
harvesting sensor who samples the source and creates the status updates. X
denotes the energy arrival probability.

A. Analysis for the battery at (

In this subsection we give more details regarding the oper-
ation of the battery at ( and we will provide the probability
that the battery at ( is empty. We assume that the energy
arrival process is Bernoulli with probability X. Furthermore,
� asks for a fresh update from ( with probability U, when
there is an external request and if the battery is not empty.
Thus, one energy chunk will be consumed from the battery
at ( with probability ?U. Then, the battery can be modeled
by a Geo/Geo/1 queue with arrival probability X and service
probability ?U. We consider an early departure, late arrival
model for the queue, thus we can obtain Pr(� = 0) = 1 − X

?U

if X < ?U. If X ≥ ?U, the Markov chain that models the
Geo/Geo/1 queue is not positive recurrent, however, this case
can capture the scenario where ( is constantly connected to
the power.

III. AVERAGE AOI ANALYSIS

In this section, we provide the analysis regarding the average
AoI that � has about the source measured by (. At a time slot
C, the AoI Δ(C), seen at �, is Δ(C) = C −� (C). � (C) is the time
the update stored at � was generated at (. Since discrete time
is assumed, the AoI values are in the set of natural numbers.
A sample path for the AoI evolution can be found in Fig. 2.
'8 denotes the time between two consecutive external

requests, i.e., 8-th and (8+1)-th; ): is the elapsed time between
reception of :-th and the (: + 1)-th fresh status updates from
(, # denotes the number of served external requests between
the two fresh status updates. Then we have that

): =

#∑
8=1

'8 . (1)
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Figure 2. An example for the evolution of the AoI Δ(C) . Every time that an
external request is served with a fresh update, AoI becomes one, since the
fresh update is stored in the cache of �.

Here # is a random variable. Note that ): is a stationary
process, thus, E[)] = E[): ] and E[)2] = E[)2

:
] for any : , in

addition we have E['] = E[': ], and E['] = 1
?

.

We consider a period of " time slots where * external
requests for updates are placed and served. In order to derive
the average AoI we proceed as follows

Δ" =
1
"

"∑
<=1

Δ(<) = 1
"

*∑
:=1

.: =
*

"

1
*

*∑
:=1

.: . (2)

Since lim
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*
"
= 1
E[) ] , and 1

*

*∑
:=1
.: is the average of . , we

have
Δ = lim

#→∞
Δ# =

E[. ]
E[)] . (3)

From Fig. 2, we obtain that

.: =

):∑
<=1

< =
): (): + 1)

2
. (4)

Then we have

Δ" =
*

"

1
*

*∑
:=1

.: =

E
[
) 2
:

2 + ):2
]

E[)] =
E[)2]
2E[)] +

1
2
. (5)

We calculate E[)] as follows

E[)] =
∞∑
#=1

#?#E[']Pr(C)#−1Pr(S), (6)

where S denotes the event that an external request will be
served with a fresh update from (. C, denotes the event that
a stored update will be utilized for the external request. Then
we obtain that Pr(C) = 1−UPr(� ≠ 0) = 1− X

?
and Pr(S) = X

?
.

Then, we have

E[)] =
∞∑
#=1

#?#
1
?

(
1 − X

?

)#−1
X

?
=
X

?
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#=1

# (? − X)#−1.

(7)

By utilizing that
∞∑
#=1

#A#−1 = 1
(1−A )2 if A < 1, we have that

E[)] = X

?(1 − ? + X)2 , (8)

given that X < ?, as we discussed in Section II-A.
For the second moment of ) , we utilize that

)2
: =

#∑
8=1

'2
8 +

#∑
8=1

#∑
9=1, 9≠8

'8' 9 . (9)

Due to the stationarity of '8 , we use E['] for the average of
'8 then, taking the conditional expectation of both sides, we
obtain

E[)2 |#] = #E['2] + # (# − 1) (E['])2 . (10)

We calculate E['2] as follows

E['2] =
∞∑
:=1

:2Pr(' = :) =
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:=1

:2 (1 − ?):−1? =
2 − ?
?3 . (11)

Note that
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:=1

:2A:−1 = A+1
(1−A )3 if A < 1. Then we have that

E[)2 |#] = # 2 − ?
?3 + # (# − 1)

?2 . (12)

Now we proceed with the calculation of E[)2] as follows

E[)2] =
∞∑
#=1
E[)2 |#]?#E[']Pr(C)#−1Pr(S)

=
X
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+ X

?3

∞∑
#=1

# (# − 1) (? − X)#−1

=
X(2 − ?)
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After substituting (8) and (13) into (5), we obtain that

Δ =
2 − ?
2?3 +

? − X
?2 (1 − ? + X) +

1
2
. (14)

A. The case where X > ?U

In this case, the battery is charging faster than discharging.
Thus, we have that Pr(� ≠ 0) = 1. Then, by following similar
methodology as above, we obtain that

E[)] = U

(1 − ?(1 − U))2 , (15)

and

E[)2] = U(2 − ?)
?3 (1 − ?(1 − U))2 +

2U(1 − U)
?2 (1 − ?(1 − U))3 . (16)

Thus, the average AoI in this case is



Δ =
2 − ?
2?3 +

1 − U
?(1 − ?(1 − U)) +

1
2
. (17)

Remark 1. Note that the expression of the average AoI
depends on the range of ?, X, and U. Even though the
expression in (14) does not depend on U, the values of ? and
X are constrained from the condition X < ?U.

Remark 2. The expression for the average AoI for the system
without energy limitations at (, is given by (17) where U and
? vary independently.

IV. NUMERICAL RESULTS

In this section, we present numerical results for the average
AoI and investigate the impact of different parameters on it.

In Fig. 3, we illustrate the average AoI, Δ, as a func-
tion of the external request probability ? for U = 0.5 and
X = {0.02, 0.05, 0.1, 0.2}. For comparison, we also depict the
average AoI for the system without energy constraints, labeled
as Non-EH.
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Figure 3. Average AoI vs ? for U = 0.5.

We observe that for the case without energy constraints, Δ
is decreasing with ?. Furthermore, with lower values of ?, we
observe that the performance is almost the same, or very close,
among the different cases. This is expected, since the external
requests are not stressing the battery of the sensor. However,
when ? increases, we observe that Δ initially decreases and
then increases, this behavior is more profound for X = 0.02
and X = 0.05, which is due to the fact that at some point the
requests to the sensor for fresh updates are draining the battery.
When X = 0.2, we observe a similar performance trend to the
Non-EH case, except a slight increase of Δ for ? > 0.9.

In Fig. 4 we present the average AoI versus U for ? =

{0.4, 0.8} and X = {0.1, 0.2}. For both values of ? we depict
the performance for the system without energy constraints
for comparison. We observe that as U increases, then � is
requesting more frequent fresh updates from ( given that it
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Figure 4. Average AoI vs U.

has a non-empty battery. Note that when X > ?U the the
performance is close to performance of the system without
energy constraints as also explained in Remark 2 in the
previous section. In addition, for larger ?, Δ decreases faster
with U.
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Figure 5. Average AoI vs X.

In Fig. 5, the average AoI versus X is illustrated. We
consider the cases with ? = {0.5, 0.9} and U = {0.5, 0.8}.
Note that the lowest Δ is achieved by the case ? = 0.9 and
U = 0.8. However, for the lower values of X, the performance
between ? = 0.9, U = 0.8 and ? = 0.9, U = 0.5 is the same,
since as we saw in Section III, for X < ?U, Δ does not depend
on U directly.

V. SUMMARY AND FUTURE DIRECTIONS

In this work, we investigated the average AoI in a cache-
enabled status updating system with an EH sensor that mon-



itors a process. An external request for status update can be
fulfilled by either receiving a fresh update generated by the EH
sensor or a previously cached update at an aggregator, based
on a probabilistic rule. The average AoI has been derived as
a function of different system parameters. Our results showed
how the energy arriving process and the status updating rule
affect the information freshness in such system.

Future directions of this work include the case of multiple
sensors, introducing errors in the transmissions, and delay in
the sampling process.
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