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Abstract—In this paper, we propose a fast, privacy-aware,
and communication-efficient decentralized framework to solve
the distributed machine learning (DML) problem. The proposed
algorithm is based on the Alternating Direction Method of
Multipliers (ADMM) algorithm. The key novelty in the proposed
algorithm is that it solves the problem in a decentralized topology
where at most half of the workers are competing the limited
communication resources at any given time. Moreover, each
worker exchanges the locally trained model only with two
neighboring workers, thereby training a global model with a
lower amount of communication overhead in each exchange. We
prove that GADMM converges faster than the centralized batch
gradient descent for convex loss functions, and numerically show
that it converges faster and more communication-efficient than
the state-of-the-art communication-efficient algorithms such as
the Lazily Aggregated Gradient (LAG) and dual averaging, in
linear and logistic regression tasks on synthetic and real datasets.

I. INTRODUCTION

Distributed optimization plays a pivotal role in distributed
machine learning applications [1], [2], [3], [4] that commonly
aims to minimize %25:1 fn(©) with N workers. As illus-
trated in Fig. 1-(a), this problem is often solved by locally min-
imizing f,(0,) at each worker and globally averaging their
model parameters 6,,’s (and/or gradients) at a parameter server,
thereby yielding the global model parameters ® [5]. Another
way is to formulate the problem as an average consensus
problem that minimizes %2521 fn(6y) under the constraint
6,, = ©,Vn which can be solved using dual decomposition
or Alternating Direction Method of Multipliers (ADMM).
ADMM is preferable since standard dual decomposition may
fail in updating the variables in some cases. For example, if
the objective function f,,(6,,) is a nonzero affine function of
any component in the input parameter 8,,, then the 8,,-update
fails, since the Lagrangian is unbounded from below in 6,
for most choices of the dual variables [6]. However, using
ADMM or dual decomposition, an existence of a central entity
is necessary.

Such a centralized solution is, however, not capable of
addressing a large network size exceeds the parameter server’s
coverage range. Even if the parameter server has a link to each
worker, communication resources may become the bottleneck
since all workers need to transmit their updates to the server
before the server updates the global model and share it with
workers. Hence, as the number of workers increases, the uplink
communication resources become the bottleneck. Because of
this, we aim to develop a fast and communication-efficient
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decentralized algorithm, and propose Group Alternating Di-
rection Method of Multipliers (GADMM). GADMM solves
the problem %Zfzf:l fn(0,) subject to 0, = 0,,.1,Yn €
{1,--- ,N — 1}, in which the workers are divided into two
groups (head and Tail), and each worker in the head (tail)
group communicates only with its two neighboring workers
from the tail (head) group as shown in Fig. (b). Due to
its communication with only two neighbors rather than all
the neighbors or a central entity, the communication in each
iteration is significantly reduced. Moreover, by dividing the
workers into two equal groups, at most half of the workers
are competing the communication resources at every commu-
nication round.

Despite this sparse communication, we prove that GADMM
with a convex f,, enjoys o(1/k) converges rate. We numer-
ically show that its communication overhead is lower than
that of state-of-the-art communication-efficient centralized and
decentralized algorithms including Lazily Aggregated Gradi-
ent (LAG) [7], and dual averaging [8] for linear and logistic
regression on synthetic and real datasets.

II. RELATED WORKS AND CONTRIBUTIONS

There are a variety of distributed optimization algorithms
proposed in the literature, such as primal methods [9], [10],
[11], [12] and primal-dual methods [13], [14], [15]. The
performance of distributed optimization algorithms is com-
monly characterized by their computation time and commu-
nication cost. The computation time is decided by the per-
iteration complexity of the algorithm. The communication
cost is determined by: (i) the number of communication
rounds until convergence, (ii) the number of channel uses
per communication round, and (iii) the bandwidth/power per
channel use. Note that the number of communication rounds is
proportional to the number of iterations; e.g., 2 rounds at every
iteration k, for uplink and downlink transmissions in Fig. 1-
(a) or for head-to-tail and tail-to-head transmissions in Fig. 1-
(b). For a large scale network, the communication cost often
becomes dominant compared to the computation time, calling
for communication efficient distributed optimization [16],
(171, (181, [19], [20], [21].

To reduce the bandwidth/power usage per channel use, de-
creasing communication payload sizes is one popular solution,
which is enabled by gradient quantization |22], model param-
eter quantization [23], [21], and model output exchange for
large-sized models via knowledge distillation [24]. To reduce
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Fig. 1: An illustration of (a) distributed gradient descent with a parameter server and (b) GADMM without any central entity.

the number of channel uses per communication round, ex-
changing model updates can be restricted only to the workers
whose computation delays are less than a target threshold [25],
or to the workers whose updates are sufficiently changed from
the preceding updates, with respect to gradients [7], or model
parameters [20]. Albeit their improvement in communication
efficiency for every iteration k, most of the algorithms in this
literature are based on distributed gradient descent, and this
limits their required communication rounds to the convergence
rate of distributed gradient descent, which is O(1/k) for
differentiable and smooth objective functions.

On the other hand, primal-dual decomposition methods are
shown to be effective in enabling distributed optimization [26],
61, 1271, [28], [29], |30], among which ADMM is a com-
pelling solution that often provides a fast convergence rate with
low complexity [28], [29], [30]. However, all aforementioned
algorithms including standard ADMM require a parameter
server being connected to every worker, which may induce
a costly communication link to some workers.

For decentralized topology, decentralized gradient descent
(DGD) has been investigated in [31]. Beyond the GD based
approach, several communication-efficient decentralized al-
gorithms were proposed [8], [32]. However, compared to
GADMM, they either achieve a slower convergence rate or
transmit more parameters per iteration.

To summarize the contribution, we propose a novel al-
gorithm to solve the DML problem optimally for convex
functions. The proposed algorithm is shown to be fast and
communication-efficient. It enjoys the same convergence rate
of standard ADMM, but with significantly less communication
overhead. The proposed GADMM algorithm allows (i) only
half of the workers to transmit their updated parameters at
each communication round, (ii) the workers update their model
parameters in parallel, while each worker communicates only
with two neighbors which makes it communication-efficient.

The rest of the paper is organized as follows. In section
111, we describe the problem formulation. We describe our
proposed variant of ADMM (GADMM) and analyze its con-
vergence guarantees in sections In section we discuss

our simulation results comparing GADMM to the considered
baselines. Finally, in section we conclude the paper and
briefly discuss future directions.

III. PROBLEM FORMULATION

We consider a network of N workers where each worker is
equipped with the task to learn a global parameter ®. The aim
is to minimize the global convex loss function which is sum
of the local convex, proper, and closed functions f,(6,,) for
all n. Since the goal is to solve the problem in a distributed
manner, we consider the following optimization problem.

0" := arg min an ) (D

{"”1711

st.0,=6,41, n=1,--- N—-1. (2)

where 6,, € R? is the model parameter of the n-th worker.
A= AT, ) AL]T is the collection of dual variables, and
p 1s a constant adjusting the penalty for the disagreement
between 6,, and 6, 1.

Here 6* is the optimal and note that 8;_, = 0} and 6} =
0y, for all n. This implies that each worker n has joint
constraints with only two neighbors (except for the two end
workers which have only one). Nonetheless, ensuring 68,, =
0,1 for all n € {1,--- N — 1} at the convergence point
yields convergence to a global model parameter that is shared
across all workers.

IV. PROPOSED ALGORITHM: GADMM

We now describe our proposed algorithm. The main idea
of the proposed algorithm is presented in Fig. [T}(b). The
proposed GADMM algorithm splits the network nodes (work-
ers) connected with a chain into two groups head and tail
such that each worker in the head’s group is connected to
other workers through two tail workers. It allows updating the
parameters in parallel for the workers in the same group. In
one algorithm iterate, the workers in the head group update
their model parameters, and each head worker transmits its
updated model to its directly connected tail neighbors. Then,



tail workers update their model parameters to complete one
iteration. In doing so, each worker (except the edge workers)
communicates with only two neighbors to update its parame-
ter, as depicted in Fig. (b). Moreover, at any communication
round, only half of the workers transmit their parameters, and
these parameters are transmitted to only two neighbors.

We now describe the steps of GADMM (Algorithm in
more details. Without loss of generality, we consider an even
N number of workers under their linear connectivity graph
shown in Fig.(b). With that in mind, we start by writing the
augmented Lagrangian of the optimization problem in —
as.

N N-1
Lﬁ({on}ﬁllv Z fn Jr Z <)‘na en - 0n+1>
n=1 n=1

N—
+£ Z 160 = O, 3)
Let’s divide N workers into two groups, head N =
{01, 03,05, s ,0]\[,1}, and tail -A/t = {02, 04, 06; e ,ON},

respectively. The primal and dual variables under GADMM
are updated in the following three steps.

1) Atiteration k+ 1, the primal variables of head workers are
updated as:

o, (A% 1,651 — 6n)

0h1) + gnoz_l — 6,
n+1|| ] ne Ml \ {1} (4)

Since the first head worker (n = 1) does not have a left
neighbor (0,,—1 is not defined), its model is updated as
follows.

= argmin [fn(6n) +
+ (A%, 0,
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2) After the updates in and , head workers send their
updates to their two tail neighbors. The primal variables of
tail workers are then updated as:

0§+1:argngin [fn(Hn) < . 1,0k+1 0,)
p
+ (A O = 0510) + 510,71 — On

0512l n e Ny \ {N}.  (6)

Since the last tail worker (n = N) does not have a right
neighbor (0,41 is not defined), its model is updated as
follows.

P
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3) After receiving the updates from neighbors, every worker

locally updates its dual variables A, _1 and X, as follows

NEFL = \E 4 p(@F Tt — 0kt n={1,--- ,N —1}.
®)
Algorithm 1 Group ADMM (GADMM)
1: Input: N, f,,(0,,) for all n, p
2: Initialization:
3: Np = {60, | n: odd}, Ny = {0,, | n: even}
4: 020) =0, )\%0) =0 for all n
5: for k=0,1,2,--- , K do
6: Head worker n € N:
7: computes its primal variable 8%+1 via (4) in paral-
lel; and
8: sends 6T to its neighboring workers n — 1 and
n+ 1.
9:  Tail worker n € N;:
10: computes its primal variable 8% via (6) in paral-
lel; and
11: sends 6511 to its neighbor workers n—1 and n+1.

12: Every worker updates the dual variables A* | and A\*

via (8) locally.
13: end for

The convergence analysis of the proposed algorithm and the
detailed steps of the optimality proof for convex functions is
described in details in [33]. The idea to prove the convergence
is related to the proof of Gauss-Seidel ADMM in [6], while
additionally accounting for the following three challenges: (i)
the additional terms that appear when the problem is a sum
of more than two separable functions, (ii) the fact that each
worker can communicate with two neighbors only, and (iii) the
parallel model parameter updates of the head (tail) workers.
We show that the GADMM iterates converge to the optimal
solution after addressing all the above-mentioned challenges
in the proof.

V. NUMERICAL RESULTS

To validate our theoretical foundations, we numerically
evaluate the performance of GADMM in linear regression
tasks, compared with the following benchmark algorithms.

o« LAG-PS [7]: A version of LAG where parameter server
selects communicating workers.

o LAG-WK [7]: A version of LAG where workers determine
when to communicate with the server.

o Cycle-IAG [34], [35]: A cyclic modified version of the
incremental aggregated gradient (IAG).

¢ R-IAG [7], [36]: A non-uniform sampling version of
stochastic average gradient (SAG).

o GD: Batch gradient descent.

« DGD [31]: Decentralized gradient descent.

o DualAvg [8]: Dual averaging.

For the tuning parameters, we use the setup in [7]. For our
decentralized algorithm, we consider N workers without any
central entity, whereas for centralized algorithms, a uniformly
randomly selected worker is considered as a central controller
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Fig. 2: Objective error, total communication cost, and total running time comparison between GADMM and five benchmark
algorithms, in linear regression with synthetic (/N = 24) datasets.
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Fig. 3: Objective error, total communication cost, and total running time comparison between GADMM and five benchmark

algorithms, in linear regression with real (N = 10) datasets.

having a direct link to each worker. The performance of each
algorithm is measured using:

« the objective error | YV [fn(e,(ﬁ)) — fn(6%)]] at iter-
ation k.

e (ii) The total communication cost (TC). The TC of a
decentralized algorithm is 3., 25:1 1, Ly, where
Ty, is the number of iterations to achieve a target accuracy
a, and 1,, ; denotes an indicator function that equals 1 if
worker n is sending an update at ¢, and O otherwise. The
term L7, is the cost of the communication link between
workers n and m at communication round ¢. Next, let
Ly, denote the cost of the communication between
worker n and the central controller at ¢. Then, the TC of a
centralized algorithm is ZZél(LEC,t —1—227:1 1o Li 4)s
where Ly, and L7, ,’s correspond to downlink broadcast
and uplink unicast costs, respectively. It is noted that the
communication overhead in [7] only takes into account
uplink costs.

o The total running time (clock time) to achieve objective
error a. This metric considers both the communication
and the local computation time. We consider L},
Ly, ; = Lgc, = 1 unless otherwise specified.

All simulations are conducted using the synthetic and real
datasets described in [37], |7]. The synthetic data is generated
as described in [7]. We consider 1,200 samples with 50
features, which are evenly split into workers. Next, the real
data tests linear regression task with Body Fat (252 samples,
14 features). As the real dataset sizes is smaller than the
synthetic dataset, we by default consider 10 and 24 workers
for the real and synthetic datasets, respectively.

Figs.[2][3] corroborate that GADMM outperforms the bench-
mark algorithms by several orders of magnitudes, thanks to the
idea of two groups with alternating updates where each worker
communicates with only two neighbors. For linear regression
with the synthetic dataset, Fig. 2 shows that all variants of
GADMM with p = 3,5, and 7 achieve the target objective
error of 10~ in less than 1,000 iterations, whereas GD,
LAG-PS, and LAG-WK (the closest among baselines) require
more than 40,000 iterations to achieve the same target error.
Furthermore, the TC of GADMM with p = 3 and p = 5 are
6 and 9 times lower than that of LAG-WK respectively. We
also observe from Figs. [2] and [3] that GADMM outperforms
all baselines in terms of the total running time, thanks to the
fast convergence. GADMM performs matrix inversion which



is computationally complex compared to calculating gradient.
However, the computation cost per iteration is compensated
by fast convergence.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we formulate a constrained optimization
problem for distributed machine learning applications, and
propose a novel decentralized algorithm based on ADMM,
termed GADMM to solve this problem optimally for convex
functions. GADMM is shown to improve the communication
efficiency of each worker. Extensive simulations in linear
regression with synthetic and real datasets show significant
improvements in communication overhead as compared to the
state-of-the-art algorithms.
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