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Abstract—Industrial wireless networks are pushing towards
distributed architectures moving beyond traditional server-client
transactions. Paired with this trend, new synergies are emerging
among sensing, communications and Machine Learning (ML) co-
design, where resources need to be distributed across different
wireless field devices, acting as both data producers and learners.
Considering this landscape, Federated Learning (FL) solutions
are suitable for training a ML model in distributed systems.
In particular, decentralized FL policies target scenarios where
learning operations must be implemented collaboratively, without
relying on the server, and by exchanging model parameters
updates rather than training data over capacity-constrained radio
links. This paper proposes a real-time framework for the analysis
of decentralized FL systems running on top of industrial wireless
networks rooted in the popular Time Slotted Channel Hopping
(TSCH) radio interface of the IEEE 802.15.4e standard. The
proposed framework is suitable for neural networks trained
via distributed Stochastic Gradient Descent (SGD), it quantifies
the effects of model pruning, sparsification and quantization, as
well as physical and link layer constraints, on FL convergence
time and learning loss. The goal is to set the fundamentals for
comprehensive methods and procedures supporting decentralized
FL pre-deployment design. The proposed tool can be thus used
to optimize the deployment of the wireless network and the ML
model before its actual installation. It has been verified based on
real data targeting smart robotic-assisted manufacturing.

I. INTRODUCTION

Federated Learning (FL) [1], [2] is emerging as an effective
method to train Machine Learning (ML) models in distributed
systems. The ML model parameters, i.e. the weights and biases
of Neural Network (NN) layer, are optimized collectively
by devices, acting as both training data producers and local
learners. Compared with conventional edge ML relying on
training data exchange, FL decouples the ML stages from the
need to send local training data to the server. Sending training
data might not be feasible for privacy issues, or critical designs
that require extremely low latency when moving large volume
of data, or with intermittent/limited communication links.

Early approaches to FL, such as federated averaging [1]
allowed the networked devices to build a joint model with the
help of a remote Parameter Server (PS) and by implementing
a distributed Stochastic Gradient Descent (SGD) algorithm
[3]. However, beyond 5G technologies envisioned for next
generation Industrial Internet of Things (IIoT) systems [4]
are pushing toward massively dense and fully decentralized
networks that do not rely upon a central server, and where the
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Fig. 1. Decentralized FL rooted at the Time Slotted Channel Hopping
(TSCH) MAC layer of the IEEE 802.15.4e standard. Communication and
computational model: model averaging, SGD on local data, ML model
parameters pruning, compress and forward of parameters on each FL round.

cost of Device-to-Device (D2D) communications, in terms of
energy, computational power, bandwidth and channel uses, is
much lower than the cost of a long-range server connection.
Fully decentralized solutions to FL based on a distributed
implementation of SGD [3] have been thus recently proposed
in [5], [6], [7]. In decentralized FL, devices rely solely on
local cooperation with neighbors, and in-network (as opposed
to centralized) processing. Cooperative training of the ML
model parameters, ie. collected in the matrix W, uses a
distributed mesh network as backbone, typically designed for
Ultra-Reliable and Low-Latency Communications (URLLC).
As shown in the example of Fig.1, a device (¢) receives (and



decode/reconstruct) the model updates Wy, ;, Wy, , from the
neighbors k, h at time ¢ over the short range radio links. Next,
it upgrades the local parameters W ; sequentially: first, by
averaging the contributions of neighbors, and then, by running
SGD rounds on local data (mini)batches. The device encodes
and compresses the updated local ML model parameters
W, 141, e.g. using sparsity constraints, and forwards them to
the neighbors using the transmission resources assigned by
the Medium Access Control (MAC) layer and the scheduling
policies. Finally, it waits for a new round, until a desired
learning loss is obtained.

Contributions: the paper proposes a real-time simulation
framework designed to analyze the performance of decen-
tralized FL over arbitrarily complex wireless mesh network
structures, limited by fading and rooted in the industry stan-
dard Time Slotted Channel Hopping (TSCH) MAC layer
[17]. Existing frameworks [8], [10] limit their applicability
to conventional FL relying on a PS server. On the contrary,
the proposed tool real-time simulates the decentralized FL
training process using federated datasets of any size as in-
puts and accounts for hundreds of distributed communication
rounds, that involve short range D2D communications over
an arbitrary graph structure. The paper considers an industrial
wireless network architecture, consisting of dense, massively
interacting groups of wireless field devices, namely machines
with computational capabilities that move far beyond tradi-
tional sensors. In particular, in line with FL systems, every
field device supports: i) data- or model-driven ML tools and
learning of complex models, typically with 20K+ parameters;
ii) autonomous decision making in complex and adaptive
situations (e.g., mobility, human-machine interfacing, time-
varying environments); iii) URLLC networking [9] rooted
in the TSCH MAC of the IEEE 802.15.4e PHY layer. The
standard is designed for cable replacing in industrial pro-
cesses and targets time-sensitive, energy-efficient and reliable
distributed networking. However, it is subject to throughput
and spectral efficiency limitations that demand for an efficient
optimization of the communication resources. In industrial
processes, continual training of the ML model is critical
to track frequent changes of data dynamics. Considering a
TSCH MAC policy [17], we analyze the key factors that rule
both the learning loss and the convergence time (latency), by
quantifying the time span of each FL. communication round,
and how this is affected by model parameters digitalization
and compression, the graph structure, and the number of
cooperating neighbors. The proposed framework thus targets
the development of consistent design methodologies for the
joint optimization of the decentralized learning operations and
the distributed networking.

The paper is organized as follows. Sect. II introduces the de-
centralized FL paradigms based on gossip and consensus [3],
[5], [6], and physical (PHY) communication design aspects,
including ML model pruning, quantization and communication
over wireless channels limited by fading impairments. Sect. III
introduces the proposed network simulation framework and
the related MAC layer adaptations for the implementation

of decentralized FL on top of a TSCH compliant wireless
interface. Based on an extensive analysis inside a real in-
dustrial workspace environment, in Sect. IV we study the
learning loss and the convergence time over mesh networks
characterized by varying (weakly to fully) connected structures
and considering different decentralized FL strategies, namely
gossip and consensus. The ultimate goal is to analyze how the
quality of the information flow among the devices affect the
learning loss and latency trade-off.

II. DECENTRALIZED FL AND PHYSICAL
COMMUNICATIONS

The objective of FL [2] is to learn a global model §(W; x)
that transforms input observations x into the desired outputs,
ie § € {yc}il, with model parameters specified by the
matrix W. In what follows, and without leading in generality,
we will focus specifically on NN models of @@ > 1 layers
and trained by SGD methods [3]. The model matrix W =
[Wl e WQ] collects all model parameters (i.e., weights and
biases) for each layer w, = [wl’q,...7wdq,q]T, qg=1,..Q.
Notice that layers can have different input/output dimensions
(dg) and the analysis can be extended accordingly.

In FL systems, all devices act as local learners: each k-th
device has a database & of Ej (labeled) examples (xp,yn)
that are used to train a local model Wy, at some time ¢.
Local examples & are typically collected independently and
individually by the devices based on their local observations
of the given phenomenon. Therefore, local samples are not
representative of the full data distribution £ = U£-<=1 & of
size B = Zszl E. A practical example is given in Sect. IV.
Federated optimization targets the iterative exchange of local
models Wy, ; with a PS server [9] for the cooperative training
of the global model W, such that Vk it is lim;_,oc Wy, = W.
Optimization is generally applicable to any finite-sum objec-
tive/loss L(W) of the form

K

min L(W) = nvl‘i,nk; B x L (W), (1)

L(W)

where L;(W) is the local loss, or cost, of the k-th device,
such that Wy, , = argmin L (W).
W

A. Gossip and consensus approaches to decentralized FL

In decentralized FL, the learning process alternates a local
model update running inside the individual devices and a
communication round, where the devices diffuse the model
updates Wy, over across all the network nodes [11] and
following an assigned connectivity graph. In what follows, the
network is modeled as a directed graph G = (V,§) with K
devices (nodes or vertexes) V = {1, 2, ..., K} and edges (links)
€. We define the neighbor set of device k as Ny ;: it contains
the chosen neighbors for cooperative training at round ¢, such
that (k,4) € &,Vi € N . For this chosen neighbor set, the
graph G has adjacency matrix A = [0y, ;] where oy ; > 0 iff



i€ Nk,t and o} ; = 0 otherwise. Decentralized FL replaces
the centralized fusion of model parameters implemented by
the PS server with consensus [6]. Every new communication
round (t > 0) a device k performs a model averaging, W,(Cat),
by combining the local model Wy, , with the model update(s)
W, obtained from the neighbor device(s), followed by a
model adaptation, running SGD on local training batches of
data. The model update equation is written as

=W +e Z ki Wi — Wy )+
’L‘GNk,t

Wi i1

2

wi)
— VL (W),

where ¢€; is the consensus step-size while the terms

oki = Ei/ (ZiENk,t ; | are the mixing weights. Finally,
VL (W (a)) = V@ Lk(W,(Cat )} represents the gradient

of the local loss Ly observed by the k-th device w.r.t. the
aggregated model W,(”) The SGD step size u; can be tuned
on consecutive epochs ¢ to improve convergence [3]. The

consensus step-size ¢; is chosen as ¢, € (0,1/A), where
A = maxy (ZieNk,t lgk=i>0>, namely the maximum degree
of the graph G [12], being 1, the indicator function. Gos-
sipgrad, or sum-weight gossip, [5] uses ¢; = >, , Ei / E,
and Vk,t a single neighbor, |Ny:| = 1, chosen randomly
on every new communication round. Generalizing gossip, the
consensus model update equation (2) exploits the cooperation
with more neighbors to improve model averaging [6] on each
round, at the cost of additional network resources. This trade-
off is explored in Sect. IV, where a consensus update with
INitl < 2, (up to 2 neighbors chosen randomly on each
round) is compared with gossip FL. .

The model updates are compressed as Wy, ; = P, [Wy, (]
by the non-linear operator P,[-] before being forwarded to
the neighbors for a new consensus round. Finally, a stopping
criteria, e.g. on learning loss or convergence time, is then
applied to end the diffusion of updates after some rounds.

B. Model pruning and communication of model parameters

Decentralized FL requires an intensive use of D2D commu-
nications for the synchronous diffusion of the model parame-
ters. In particular, in what follows, we assume that the devices
forward the model updates to the neighbors satisfying half-
duplex constraints. They thus multiplex a digital representation
of the model parameters into one (or more) frame(s) of
B bits and transmit such frame(s) using an orthogonal, or
interference free, channel of bandwidth W assigned by the
MAC layer scheduler (described in Sect. III). Any wireless link
between a pair of devices (k,7) at distance dj; is impaired,
at the physical layer, by frequency-flat fading with baseband
complex-valued channel gain hk i ~ CN(0,1), and average

power E {|h;“\ ] =1 ( do_ )

Y9, path loss index v, and the path loss terms d,_; at reference
distance dy, respectively. Considering the dev1ce transmission

that accounts for shadowing

and noise power Pr and Ny, respectively, the instantaneous
Signal to Noise Ratio (SNR) for the link (k, )

Priy
Ny

i = hi.i 3
Vi, dk?) |k| 3)

can be used to assess the spectral efficiency of the link B <
W xlog(1+k,:) as well as the quality of the communication
channel. In particular, the link (k,4) is assigned as potential
edge (k,i) € £ of the graph G if v;,; > [ where 3 is the
receiver-side sensitivity threshold [19].

Considering the IEEE 802.15.4e physical layer, for links
whose SNR is above the sensitivity threshold 8 = —90 dBm,
the standard supports frames of up to 127 bytes (% = 0.08
bit/s/Hz), and Transmission Time Intervals (TTI) equal to
TTI = 4 ms, leaving about B = 100 bytes [18] as payload to
be used by FL. Considering such small frame size, pruning and
quantization of model parameters is fundamental. Typical NN
models, targets of this paper, might contain > 20K parameters
per layer, often extremely sparse. Effective solutions to limit
the communication overhead are sparsification and distilla-
tion [13]. Model quantization in SGD algorithms has been
addressed in [14] and, more recently, in [15] for application
to FL.

Here, the proposed framework implements a compress and
forward policy. Compression of model parameters combines
a model pruning stage and deterministic quantization. Model
pruning Wy, = P,[Wy ] drops out all non-informative
model parameters (i.e., weights, biases or NN units) and uses
the (configurable) sparsity constraint o, such that Yw,q €
{Wy+} that satisfy wq q < 0, wq,q are set to zero. Threshold
o sets the compression rate and the number of ML model
parameters to be digitalized. The resulting sparsified model
W, is quantized to by, = by (o) bits. The quantization
scheme encodes the position of the non-zero model parameters
and assigns a fixed number of bits (here 16 bits) to each
parameter [7]. Notice that device k sending the model updates

encoded by by, bits, and using frame payloads of size B,

requires the multiplexing of [% frames. Model pruning

and quantization therefore affect both the learning loss and
the time span of each communication round.

III. NETWORKING FRAMEWORK FOR DECENTRALIZED FL

A communication round for FL, i.e. from time ¢ to ¢t + 1,
requires the exchange of all the model parameter updates (2)
using the links

K
=> > oo )

k=1 jENk,t

that are chosen at time ¢ to contribute to the cooperative
training session. The duration, or time span, of each round
depends on the MAC policy of the underlying wireless net-
work. Diffusion of model parameters is rooted here at the
TSCH MAC layer of the IEEE 802.15.4e [17]. Notice that the
proposed approach is general enough for application to both
existing and future emerging industrial wireless standards,
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Fig. 2. TSCH MAC layer resource scheduling examples for a communication
round of decentralized FL. From top to bottom: network graph, TX and
RX scheduling maps. Left column: gossip FL using Vk,¢ one neighbor,
ie. |Nk,t| = 1 per node, selected randomly on each round. Right column:
consensus FL using Vk, ¢ up to 3 neighbors, i.e. {Nk7t{ < 3, on each round.
Active links, slots ¢; and frequency f; offsets, are highlighted in both cases.

all defined on top of the TSCH MAC, such as IETF IPv6
(6TiSCH) [18], WirelessHART and ISA100.11a standards [16]
and recent amendments. Diffusion of model parameter updates
(2) is regulated by a time-frequency scheduler that complies
with the channel hopping capabilities of the radio devices and
assigns transmission resources based on an (input) graph G.
Notice that scheduler runs on the Host, or server, station that
acts as network manager and is in charge of distributing the
synchronization information [19].

A. TSCH MAC and communication round scheduling

The time slotted channel hopping mode was originally
addressed in the 2015 revision of the IEEE 802.15.4 standard.
TSCH splits time in multiple Time Slots (TS) and Super-
Frames (SFs) that repeat over time. For each TS, a set of F'
frequencies (IEEE 802.15.4 standard orthogonal channels) can
be assigned for simultaneous transmission of multiple devices.
A SF generally consists of a number 7" of consecutive TS and
identifies a transmission session where slots and frequencies
can be reserved to individual devices, or shared to broadcast
control, synchronization or transmission session information.
For each SF, a time-frequency scheduler assigns a transmission

resource, namely one (or more) TS(s) and frequenc(ies), or
cells, to an individual device ¢ to communicate with its
neighbor(s) according to the graph G. Each cell is identified by
the slot offset ¢; € 1,...,T and the channel offset f; € 1,..., F'
coordinates, respectively.

As depicted in the Figure 2, a decentralized FL. commu-
nication round spans a number of consecutive SFs, or time
slots. In this example, the model parameters exchange runs
on top of TSCH MAC and considers K = 15 networked
field devices implementing gossip and consensus FL in (2).
In particular, gossip FL (on the left) uses Vk,¢ one neigh-
bor, or parent, per node i.e. [Ny = 1), that may change
every new communication round. Consensus based FL (on
the right) performs model averaging from up to 3 neighbors,
i.e. [Ng:| < 3, varying on each round (if available). For an
assigned graph G and a specified number of channels (here
F = 6), the scheduler optimizes the number of TS (7') in
each SF to provide a slot ¢; and a channel f; offset to each
device ¢. In particular, the scheduler should guarantee that: i)
no couple of connected devices are scheduled to transmit in
the same cell (¢;, f;) resource; ii) no devices can be scheduled
to simultaneously transmit and receive using the same slot c¢;
offset (i.e., device are equipped with a single radio receiver
chain); iii) no couple of devices sending model updates to the
same device are scheduled to transmit using the same slot ¢;
offset. It can be easily shown that the number of slots 7" scales
with the network degree A and on the number of links L; in
(4). For the considered example, T' = 3 slots are required by
gossip to visit all the devices, while T' = 5 slots are required
by consensus. For k-regular networks (i.e., all network devices
have the same number of neighbors, or degree A), the total
number of slots required at round ¢ is bounded by

L
L (5)

T=T(A)> ——
min[F, A—H]

where we highlighted the dependency of 7" on the network
degree A and the active links L;. Notice that gossip FL
uses A = 1, L; = K, and forces the network to be
k-regular, therefore 7' > W Practical solutions to
the TSCH scheduling problem considering more complex
graph structures can adopt graph coloring schemes [7] or ad
hoc approaches [20]. In what follows, we use the Minimal
Scheduling Function (MSF), recently proposed as standard
[21].

Based on the example of Fig. 2, every FL communication
round consists in general of [%f“(g)—‘ SFs of T =T(A)
time slots each. The sparsity constraint ¢ rules the network
load, namely the number of bits by ; = by (0) produced by
the individual devices on each communication round, and thus
the duration of the round. To keep track of all FL round
information, additional shared time slots are used in each SF
to broadcast specific information about the FL session such as:
i) ML model training information, e.g. the NN model structure
to be trained in the specific round and the FL stopping criteria
(here a max. number of rounds); ii) the number of SFs for
the completion of the FL. communication round; iii) the link



related information, i.e. the active neighbor set and the offset
assignments, notifications of packet losses (ACK/NACK) and
re-transmissions (that would delay the whole FL round).
Shared channels are reserved to the Host station that is in
charge of the supervision of the learning process. Notice that,
although decentralized FL does not require a PS server, it is
assumed here a centralized coordination of the learning rounds.

B. FL and network simulation

The decentralized FL (2) tool is written in Python and uses
the TensorFlow library. The virtual environment creates an
arbitrary number of devices, each configured to process an
assigned training dataset and exchanging model parameters
‘W, ; that are pruned and quantized before forwarding using
as described in Sect. II. Transmission time intervals and TSCH
MAC access are simulated on a Matlab environment integrated
in Python while all the exchanged parameters are saved in
real-time on temporary cache files. The FL software takes
as input an arbitrary (user-defined) graph G and a maximum
number of neighbors to choose for averaging A. It allows also
to configure the consensus ¢;, the SGD step size p; and the
federated data distribution Ej.

Once both network structure and learning parameters have
been assigned, the framework runs a real-time simulation of
the decentralized FL for a configurable number of communi-
cation rounds. Each round consists of a number of SFs used by
devices to exchange model parameters. For the considered ML
model training scenario (see the Sect. IV), the computational
time required to issue a model update, mostly due to SGD,
is in the order of few seconds, and it is negligible compared
to the communication overhead. The time span of each FL
communication round is thus quantified based on both TSCH
constraints and scheduler decisions. The simulator outputs are:
i) the FL learning loss for each round and device; ii) the
number of TS, and the SFs, that were necessary to diffuse
the model parameters on each communication round; iii) the
computational time for local SGD on mini-batches.

IV. A CASE STUDY INSIDE AN INDUSTRIAL ENVIRONMENT

Decentralized FL is attracting interest in autonomous in-
dustrial systems where the centralized server orchestration
is typically uncommon. A relevant example is in the field
of collaborative robotics where human-robot co-presence risk
mitigation is obtained by accurate Human-Robot (HR) dis-
tance monitoring. The example in Fig. 3 shows an assembly
line consisting of interconnected industrial manipulators. The
goal is to learn a ML model for the detection (classification)
of the position of the human operators sharing the workspace,
namely the HR distance d and the Direction Of Arrival (DOA)
6. Model learning is supervised while labeled data can be
obtained independently by each device. The operator location
information (d, 8) is used as input to the robot local control
loop. The robot can re-plan its activity, stop or lower its speed,
if the HR distance is smaller than a protective separation
distance. Although the robots have direct connection with a
Programmable Logic Controller (PLC) server, the direct link

1/0

Robot (manipulator)

) )
5]
d,0)
e —

® ®
f“@i
® @

Collaborative

@3‘ situations

(classes)

Raw data
(range-azimuth map)

Fig. 3. Human-robot work-space (assembly line) environment, decentralized
FL setup and human-robot distance (d) and direction of arrival - azimuth -
(0) classification over C' = 6 different situations.

Layer #1 (trainable): 4 2D conv. (3 X 3 taps)
Layer #2 (non trainable): ReLu, AvgPool (5, 5)
Layer #3 (trainable): FC (4096 x 6)

Layer #4 (non trainable): Softmax

B =100 bytes, WW =3 MHz

TTI = 4 ms (time slot duration 10 ms)

Pr :=[0+5 dBm]

B = —90 dBm

F =16, T (optimized)

K =15

20 slots: max SF duration

TABLE I
NN MODELS AND TRAINABLE PARAMETERS W FOR 6 CLASSES; PHY
IEEE 802.15.4E AND TSCH MAC LAYER CONFIGURATIONS.

NN model

PHY layer

TSCH

must be typically reserved for the robot control loop. This
motivates the use of a decentralized FL policy.

A. Federated data and ML model

The robotic manipulators are equipped with 3 Multiple-
Input-Multiple-Output (MIMO) Frequency Modulated Con-
tinuous Wave (FMCW) radars, namely A, B, C, working in
the 77 GHz band. Radars implement a Time-Division (TD)
MIMO system with 2 transmit and 4 receive antennas each,
and a field-of-view of 120 deg. A direct link connects the
manipulators with a PLC server reserved for emergency robot
stop. During the on-line workflow, the distance d and DOA 6
information are classified independently by individual robots
using a trained ML model and then sent to the PLC server via
direct URLLC links for safety control. The ML model is here
trained to classify C' = 6 potential HR collaborative situations
characterized by different HR distances and DOA ranges,
corresponding to safe or unsafe conditions. These are detailed
in the Fig. 3. The implemented ML model takes as input the
raw range-azimuth data (after background subtraction) of size
256 x 63 from the radars. It consists of 2 trainable neural
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Fig. 4. Gossip FL }N’kt} = 1 vs. consensus implementing model averaging
over ‘./\/' k,t‘ < 2 neighbors. Effect of different sparsity constraints, namely
0= 10"% and ¢ = 1073, on the (total) number of TS, or the number of
SF, considering two network graphs G with AC 0.35 and 0.68, respectively
(additional links are highlighted in red). Bottom: FL validation loss versus
communication rounds for both network graphs, using gossip (red), consensus
(dark) and both sparsity constraints (dashed and solid lines), respectively.

Rounds Duration Loss Decentralized FL
84 s. 12+ 16 Gossip (0 = 1073)
115 95 s. 7T+14 Gossip (0 = 107%)
; 126 s. 13+ 16 Consensus (¢ = 1073)
143 s. 6+ 14 Consensus (o = 10~%)
18 s. 512 Gossip (¢ = 1073)
20 = 35 63 s. 0.8+3 Gossip (o = 107%)
: 27 s. 4-+10 Consensus (o = 1073)
95 s. 0.25 + 0.7 Consensus (o = 10~%)
8's. 0.15 +0.35 Gossip (o = 1073)
40 = 60 41 s. 0.1+0.2 Gossip (0 = 10~%) )
' 12 s. 0.1+0.2 Consensus (p = 1073)
53 s. 0.07 =0.13 Consensus (o = 10~%)
TABLE II

COMMUNICATION ROUND TIME SPANS (IN SECONDS) AND FL LOSS FOR
GOSSIP AND CONSENSUS OVER A NETWORK WITH AC = 0.68 AND
VARYING p. PHY AND MAC PARAMETERS ARE IN TABLE I.

network layers of 25.000 parameters: details are given in Table
I. D2D communications are regulated by the TSCH MAC
and IEEE 802.15.4e physical layers with parameters listed in
the same table. Decentralized FL uses model averaging (2)
with consensus ¢; = 1/A and SGD step size p; = 0.025.
A simplified database for testing, and some Python scripts as
well, are available in the repository [22].

B. Communication overhead in TSCH networks

Learning loss of gossip using |[Ni¢ = 1 (red lines)
and consensus using |Nj | < 2 neighbors (dark lines) are
compared in Fig. 4 over two networks of K = 15 robots and
characterized by increasing number of connected components
(from left to right), measured by Algebraic Connectivity (AC)
[23]. For all cases, the loss is computed for 60 consecutive
communication rounds, over a validation dataset and averaged
over all the K = 15 devices. Local data is Independent and
Identically Distributed (IID) among the robots using 2% of
the full training dataset £. The quality of the information flow
is measured by AC, being the second smallest eigenvalue of
the Laplacian of graph G [23]. Small AC, i.e. AC = 0.35 in
the example on the left, indicates a weakly connected graph,
a larger AC value, i.e. AC = 0.68 on the right, indicates
the presence of a larger number of connected components.
Large AC allows to reduce the learning loss as increasing the
population of links that can be chosen for gossip/consensus
operations. However, such benefit comes at the price of a more
intensive use of the radio resources, that results in a increase
of the time span of each communication round.

With respect to a TSCH MAC implementation, gossip FL
uses a (sub)graph characterized by A = 1, and L; = K:
it requires 1" = 12 slots per SF, of which 9 are reserved for
model parameters exchange and 3 for shared cells (to exchange
information about FL stages). Consensus implements model
averaging over up to 2 neighbors and needs more cells, namely
T = 18 slots per SF, of which 15 are used for parameters
diffusion and 4 for shared cells. For the two cases, in the same
Fig. 5, we highlighted the number of SFs, or equivalently,
the total number of TS, that are necessary to diffuse the
model parameters on each communication round. First rounds
are more critical as they need more transmission resources
compared to the last ones. In fact, during FL training, major
changes of ML model parameters happen during initial rounds,
while most of them stabilize after some rounds, thanks to
model averaging. Two different sparsity constraints for model
pruning are compared, namely ¢ = 10~* (dashed lines) that
drops out the 20% of the parameters Wy, ;, on average, and
0 = 1073 (solid lines) that drops the 30% of the parameters.

Considering the above choices, and assuming a TS duration
of 10 ms, the duration of the initial (rounds 1--15), intermedi-
ate (rounds 20--35) and final (rounds 40-+60) communication
rounds are reported in Table II as well as the corresponding
average FL losses. The sparsity constraint can be increased,
e.g. from o = 107 to o = 1073, to limit the round duration in
exchange for a larger loss. For the considered case study, the
use of gossip with a sparsity constraint of o = 1072 is effective
for the weakly connected graph characterized by AC = 0.35.
For networks with larger AC, i.e. AC = 0.68, decentralized FL
should implement a model averaging with more neighbors to
leverage the additional links. Consensus obtains a loss of 0.1,
corresponding to an human-robot distance estimation accuracy
of 95%. The use of a model pruning with ¢ = 107 is a
reasonable choice, even if increasing the number of SFs per
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Fig. 5. Analysis of decentralized FL validation loss (max and min values)
for varying network structures measured by Algebraic Connectivity (AC).

round. Although the paper focuses on a specific case study,
we found that gossip FL is less sensitive to model pruning
choices and it is a practical choice for the implementation of
decentralized FL on weakly connected networks, characterized
by few neighbors per device. Consensus is more sensitive
to model pruning choices while it generally converges faster,
compared to gossip, over strongly connected networks.

C. Impact of graph structure on convergence

In Fig. 5, decentralized FL loss is analyzed for varying net-
work structures characterized by AC ranging from 0.1 to 6.5.
Error bars for each network structure account for maximum
and minimum loss values across K = 15 devices. The analysis
considers 90 random graphs featuring different connectivity
structures and it is relevant to highlight useful scaling laws on
convergence. As done previously, we compare the learning loss
of gossip [Ny ¢| = 1 and consensus FL [N}, ;| < 2 observed
after 30 min of simulation time in both cases. The observed
loss is comparable, typically for AC < 0.4. Consensus using
multiple neighbors reveals to be more effective when strongly
connected components emerge in the network, i.e. for AC > 1.
Deploying networks featuring large AC is always beneficial in
terms of learning loss as expected; however, improvements are
marginal when considering networks with large components
(AC > 4). It is expected that increasing the number of
neighbors to be considered for consensus on each round
would provide further benefits, at the price of an increased
convergence time.

V. CONCLUSIONS

The paper introduced a joint learning and network sim-
ulation framework for the implementation of decentralized
federated learning (FL) policies on top of a TSCH compliant
wireless interface rooted at the IEEE 802.15.4e industrial stan-
dard. An extensive analysis inside a real industrial workspace
environment is proposed to verify the proposed tool. The
analysis focused in particular on how ML model parameter
quantization, in-network processing, and connectivity affect

the FL loss and the latency trade-off. Although not considered
in this paper, the number of devices (K), the distribution of
the federated training data (E},), and the ML model complexity
should be also accounted for to infer more general conclusions.
These are left for future work.
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