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Abstract— The infrastructure built in the City of Oulu 

provides rich information about the city environment and objects 

moving in it. We utilize this infrastructure in building an IoT 

system for data-intensive smart city services; by collecting data 

from real city environment and developing analysis methods for 

these data. We are building Smart City Traffic Pilot on top of the 

infrastructure to provide the functionality to collect the data and 

perform the analysis. Based on this experience, we present in this 

article requirements for data-intensive smart city services. 

Moreover, we describe four implemented use cases for utilizing 

rich data sources available in the smart city: situational picture, 

driving coach, real time reasoning, and mobile code. A lively 

collaboration between a large number of different actors is 

essential in realizing these use cases. Finally, we discuss how the 

use cases fulfill the requirements and the lessons we have learnt.   

Keywords— IoT, Smart City, digital, data fusion, decision 

making, Big IoT Data 

I.  INTRODUCTION  

mart cities offer services that are based on rich sets of 

sensory equipment and data they provide. Internet of 

Things (IoT) technologies can be used to connect this 

equipment into a city-scale network of heterogeneous devices 

that provides the information the services need. However, 

processing the streaming, near real time, heterogeneous digital 

data is challenging with ever-increasing data volumes. 

Moreover, in IoT systems with millions of devices, scalability 

and interoperability are concerns and centralized solutions 

cannot operate efficiently anymore.  

Within the European Initiative of Smart Cities in 2010-
20301, transport is one of the three leading topics along with 
buildings and energy networks. In this paper, we introduce our 
work on Smart City Traffic Pilot and present four realized use 
cases. We also list requirements for data-intensive services, 
discuss how the use cases fulfill these requirements, and 
present lessons learnt. Our contribution is in studying different 
approaches for enabling decision making from big, raw, 
multimodal real time IoT data and providing services based on 
the fusion of the data. In the first section, we emphasize the 
importance of pilots in making smart cities a reality. In addition 
to being a key enabler in our research, our Smart City Traffic 
Pilot has advanced collaboration among researchers, 
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companies and public organizations and it has helped us to 
identify the concrete challenges and opportunities of smart city 
development. Section III gives details on the general 
requirements we have identified for the data processing 
pipeline required in Smart City Traffic services and in section 
IV we present selected use cases that reflect and realize those 
requirements. In the final section of future work, we emphasize 
the importance of data models as well as analytics to enable 
more versatile set of services. 

II. BUILDING SMART CITY TRAFFIC PILOT 

In the City of Oulu Finland, smart city development was 
started already over 11 years ago with the set-up of a public 
wireless LAN network called panOULU, freely open for all 
citizens and visitors alike. Nowadays, the network has ca. 1300 
access points in Oulu and eight nearby towns [1]. The network 
has subsequently been expanded with a versatile set of sensory 
equipment, for example, pedestrian mobility can be monitored, 
among other things, with both Bluetooth (BT) and Wi-Fi data 
as over 30 000 unique mobile devices use the network each 
month. This data can be utilized in travel time predictions and 
when fused to other data, explain different phenomena in the 
city and distributing this knowledge to people can be done for 
example through the interactive public displays installed in the 
city [2].  

  The city infrastructure is updated frequently as needs to 
expand or renew are observed (Figure 1). Measurement sites 
are added to increase the quality, coverage and resolution to 
scale up the operation of the whole system.  For example, the 
city modernized the traffic control signaling system in 2014. 
Inductive magnetic loops under the pavement (at most 32 in 
one intersection, over 123 intersections) are utilized to control 
the traffic light sequences. The new system can detect and store 
the traffic light timeframes, in addition to the magnetic loop 
data, and other digital controlling data from the traffic light 
poles. Fusing this information to other information gathered 
from the environment, for example weather, emergency 
situations, cultural events and social data, enables new services 
and ways of supporting city traffic engineers [3],[4]. As an 
example, the traffic center provides a service of green traffic 
signal pre-emption for ambulances and police vehicles in case 
of an emergency [5]. In this service, a vehicle location from 
GPS is sent to the servers every second with the information on 
the usage of turn signals. This information and advanced  
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Fig. 1. Installing dual laser measurements sensors and cameras to detect 

traffic flows, amount of snow, and fleet speed in each lane. A local energy 
company assists in providing the electricity and connectivity. Companies 

provide the devices, whereas the data are processed in the companies and 

research institutes. City of Oulu, 2014.  

processing of spatial data is exploited to the on-the-fly 
controlling of the traffic lights the vehicle will bypass.  

 As weather data, we utilize the Finnish Meteorological 
Institute weather information and predictions of detailed 
current and forthcoming road weather. Most of the data is open 
but access to the detailed predictions is controlled. Our data 
sources and the related sampling frequencies are listed in Table 
I. The Oulu 3D model showing the variety of the information is 
depicted in Figure 2. All these efforts contribute to Smart City 
Traffic Pilot – collection of expertise and technological 
solutions to equip the city with sensing and analyzing 
capabilities to provide services for citizens. 

TABLE I.  DATA AVAILABLE IN OULU 

Data sources 

Data Source Volume/Sampling 

Magnetic loop data hundreds/5-15 min 

Bluetooth access point tens/real time 

Wi-Fi access point hundreds/real time 

Traffic cameras tens/real time 

Parking spaces tens/real time 

Open traffic data real time 

Public transport data (PT) tens/real time 

Road weather data main roads 

Road weather model predictions 2,5 km grids/2 min 

Dual laser measurements tens/real time 

Taxi data hundreds/real time 

OBDII tens/real time 

Traffic lights hundreds/real time 

Digital maps queried when needed 

GIS queried when needed 

Other open/crowdsourced data varies 

III. REQUIREMENTS 

The transport domain produces in smart cities 
heterogeneous and voluminous data with different granularity 
and velocities. For instance, geospatial information about roads 

and streets as fairly static elements does not change often but 
the information about moving objects, such as vehicles, 
changes rapidly. Moreover, some data should be processed on 
the fly, e.g. data for route recommendations, whereas other 
services do not require immediate analysis. In many cases, 
traditional solutions for data storage and analysis are not 
applicable due to the volume of the data. These challenges 
require different mechanisms to retrieve, store and process 
transport-related information. Our Smart City Traffic Pilot is a 
system of IoT nodes that produce and transmit their data that is 
refined for further processing and decision making. This 
section focuses on the requirements that data-intensive services 
set to such a system. 

The obvious requirement is a sufficient selection of data 
sources (R1). In a real city environment, meeting this 
requirement requires long-term systematic and collaborative 
work, both to deploy and maintain the infrastructure providing 
the data.  

To realize the full potential of the data sources, data storage 
supporting data variety, volume and velocity (R2) is needed in 
most cases. The storage should support collecting data over a 
long time span, aggregating different types of structured and 
unstructured data, and also cleaning and filtering data before 
storing it. Expert knowledge is required in the cleaning process 
to make sure all necessary but not redundant information is 
stored. 

Moreover, some data might be available only at the edge 
devices (or gateways). In a real, operational environment, 
many partners provide their own servers to ingest and expose 
data. It might also be necessary to process the data locally as it 
is not feasible to upload, for example, every second 50 000 
samples from a dual laser measurement device to the database. 
It is application-dependent, what is stored locally, what kind of 
analysis is done locally and what data features are uploaded to 
the databases. 

Utilizing the data calls for versatile data access (R3) as 
well. When system components query the data they need (i.e. 
pull), query interfaces are needed. Moreover, efficient 
mechanisms are needed for data delivery. The latter alone is 
sufficient if the data providers send the data when it is available 
(i.e. push), in this case tools for configuring data delivery are 
needed instead of query interfaces. 

To fulfill the needs of the services, we need rich data 
analytics (R4). The analysis can be centralized (i.e. in-
memory), distributed (i.e. edge analytics), or a combination of 
these. In all cases, integrating data coming from different 
sources is necessary in many applications for deriving useful 
knowledge. The information represented in different formats, 
various models and with different sampling need to be 
synchronized. For example, it is a challenge to directly utilize 
low level data provided by sensors with well-defined 
knowledge models. Data cleaning plays a central role when 
data from physical sensors is processed. 

For some data, the processing has to include anonymizing 
and fuzzification to remove sensitive information. This can be 
done already in the device (e.g. due to person register 
legislations), or it can be performed after analysis before 



 

 

Fig. 2. An illustration of the city-wide sensing in the Smart City Traffic Pilot. 

presenting the information derived from the data. The 
guidelines for privacy are application specific and should be 
realized by the privacy by design principle [6].  

Finally, the system has to support timely decision making. 
First, decision making calls for comprehensible data 
visualization (R5). The information produced by the data 
analysis has to be presented in a clear manner to the users. A 
promising way of expressing location-dependent data is to 
utilize virtual worlds. Second, data access and analysis need to 
have acceptable latency (R6). The cleaned, analyzed and 
aggregated information needs to be available in time. 
Moreover, low latency reasoning to refine new knowledge 
from this information is required. This can lead to distributing 
reasoning as well, to meet local latency requirements. When 
data analysis and reasoning is distributed to the edges, 
performing computations with resource-constrained devices 
and systems becomes an issue. For instance, it is necessary to 
consider computing, storage, communication, and energy 
limitations of IoT devices and protocols and to provide global, 
scalable, and reliable solutions. 

IV. USE CASES 

The selected use cases demonstrate end-user services and 
research enabled by the Smart City Traffic Pilot. The first use 
case is targeted for a large user group whereas the second one 
includes more sophisticated data analysis and realizes a 
recommendation system for individual users. The third use 
case implements higher level reasoning and the fourth 
demonstrates the benefits of using mobile code to distribute 
computation at the edges of the system network.  

A. Situational Picture  

The first use case of Smart City Traffic Pilot offers a 
situation picture through Web clients [7]. Users can select the 
type of information they are interested in, for example average 
fuel consumption calculated on a road segment from the car 
engine data of several vehicles. 

 The service is built with the expertise provided by several 
partners. The equipment and services to track the movement of 
cars are provided by a telematics company. The information 
collected from the vehicle engines and location is sent to a 
database every second through GPRS. The devices are installed 

into the local taxi company’s cabs that operate according to 
their normal daily routines. We periodically fetch the data from 
the servers, clean the data, and process it for further analysis.  

At this point, we aggregate the data, but a company 
providing Algorithms-as-a-Service might fulfill this role. The 
cleaned data is analyzed, geocoded and sent to a map service 
for visualization. A company that provides integration of 
transportation related data visualizes the data with other data 
available. The requirements are fulfilled as follows: 

R1. Data sources: moving objects equipped with measurement 

devices. 

R2. Data storage: PostgreSQL database with data cleaning 

triggers. 

R3. Data access: data is pulled from the service providers. 

R4. Data fusion: software triggers to calculate statistics from 

data.  

R5. Visualization: MapServer on Apache HTTP server 

geocodes the data and it can be shown on UIs. 

R6. Latency: not yet emphasized. 

 
The visualized statistics include free speed (long time speed 

average outside rush hours), average speed, average fuel 
consumption, number of observations, and number of vehicles. 
In addition, we are developing a solution to visualize the 
collected information in the virtual 3D model of the city. 

B. Driving coach  

This recommendation system encourages to better driving 
behavior [8],[9]. The system includes more sophisticated data 
analysis than the first use case and adds adaptive models that 
continuously update their operation based on the behavior of 
the driver. Currently, the analysis is implemented in the R 
programming language, but to be able to scale the operation to 
thousands of drivers, we need to address the requirement (R4) 
with scalable data analysis. 

The prototype fuses car engine data, spatial database data, 
traffic density information from the major local roads, and 
weather data. Merging all these data together allows extracting 
essential driving behavior habits, like gear usage patterns, route 
selections, and aggressive behavior during the drive. The 
prototype generates general recommendations for fuel-efficient 
driving, as well as provides some fuel saving calculations.  

The information collected is compared to previous trips 
driven by the user to provide comprehensive statistics. 
Moreover, a sophisticated rule-based expert system fuses this 
information with weather information. The system monitors 
how the user responds to the comments given and adapts itself 
to provide comments expected to produce more fuel-efficient 
driving. Fuel economy hints are generated from fuel-
consumption models which update themselves to correspond 
better to changing user context. The system consists of multiple 
components implemented with diverse technologies as can be 
seen from the Figure 3.  

The requirements are fulfilled as follows: 



 

 

 

Fig. 3. The driving coach fuses a diverse set of data streaming from multiple 
service providers. The prototype infers higher level information and creates 

recommendations expected to lead to more economic driving. 

R1. Data sources: engine and location data from a car via 

GPRS/3G; spatial information about the route driven from a 

database; weather information from a national service; traffic 

situation information from a local traffic service. 

R2. Data Storage:  PostgreSQL database with data cleaning 

triggers; the storage synchronizes all data. 

R3. Data access: data is pulled from service providers. 

R4. Data analysis: fuel consumption model learning with R 

statistical tool; rule-based system generates comments to the 

user and controls system adaptation.  

R5. Visualization: API for application clients, e.g. phone apps 

and Web services; Web based application delivers information 

to the user. 

R6. Latency: not yet emphasized. 

 
This system demonstrates the potential in fusing diverse 

data. Visualization can be performed through different services 
(for example, like in Figure 4 [9]). Driving is a complex and 
personalized activity, hence understanding what makes it fuel-
inefficient and aggressive for each driver has personal as well 
as societal impact.  

C. Reasoning for detecting driving situations 

In this use case, a distributed semantic reasoner detects 
different events and situations from real time data of taxi cabs 
[10]. This kind of information could be useful for city traffic 
engineers, citizens and taxi fleet operators, for example. 
Furthermore, when fused to other data like information about 
the weather and accident data, predictions can be made. 

This prototype delivers IoT data with semantic 
representations to distributed reasoning engines. An ontology 
model and a set of rules are designed to reason driving 
situations. The ontology describes driving activities and traffic 
conditions, including traffic jams, turns, speeding, stopping for 
a long time, strong acceleration and deceleration, and areas 

Fig. 4. A mobile user interface showing the results of data analytics, the 
route of the trip, including both spatial characteristics, as well as driving 

behavior properties. 

where taxis often stop for a while. The ontology is lightweight 
to minimize the reasoning latency. Table II presents rule 
examples. For example, the first rule deduces from a velocity 
value that a car is driving at a low speed. We utilize simple 
rules to compose complex rules. Moreover, these rules are 
designed according to the input sequence of individual GPS 
observations dispatched by the IoT data sources (i.e. cars). 

 Reasoning engines are implemented with Jena, as it 
supports a comprehensive subset of OWL language and 
interprets most of the RDF syntaxes. Information is deduced 
from consecutive observations by comparing changes in 
direction and velocity. A sequence of observations is first 
aggregated and converted to RDF data, then the ontology and 
rules are applied for decision making. 

The focus of this use case is on scalability and efficiency, 
that is, on minimizing the latency of the whole process of 
delivering different volumes of data through aggregation and 
reasoning to storing reasoned facts into the database. The 
dataset incudes 5 543 348 observations and 72 063 524 RDF 
triples, from 65000 separate trajectories. An illustration of the 
reasoning system is depicted in Figure 5. 

The requirements are fulfilled as follows: 

R1. Data sources: vehicles equipped with measurement 

devices. 

R2. Data storage: RDF database. 

R3. Data access: a message broker distributes IoT data with 

semantic representations to physically distributed reasoning 

nodes; deduced knowledge can be retrieved from RDF 

storage. 

R4. Data analytics: rule-based reasoning engines process rule 

sets for detecting driving situations. 

R5: Visualization: not yet emphasized. 

R6: Latency: message broker balances the load of the 

distributed reasoning engines. 

 

 Our experimental results illustrate the scalability and 
latency of multiple reasoning nodes. Data formats do not make 
a big difference with distributed reasoning nodes. The data 
aggregation strategy has a considerable effect on reasoning 
performance. When looking at latencies in different stages, 



TABLE II.  RULE EXAMPLES (SLIGHTLY MODIFIED FROM [9])

Fact Triggering rule 

Low speed Observation hasVelocity<25km/h → LowSpeed 

Jam LowSpeed hasDuration>90s ˄  LowSpeed hasAverageSpeed<20km/h →  Jam 

Long stop LowSpeed hasVelocity<3km/h →Stop AND Stop hasDuration>3min → LongStop  

High speed Observation hasVelocity>80km/h → HighSpeed 

Speeding HighSpeed hasVelocity>100km/h → Speeding 

Left turn LowSpeed[1] hasDirection(a)  ˄ LowSpeed[2] hasDirection(b)  ˄ a=b-90deg ˅ a=b+270deg → LeftTurn 

Right turn LowSpeed[1] hasDirection(a)  ˄ LowSpeed[2] hasDirection(b)  ˄ a=b+90deg ˅ b=a-270deg → RightTurn 

U-turn LowSpeed[1] hasDirection(a)  ˄ LowSpeed[2] hasDirection(b)  ˄ a=b-180deg ˅ b=a+180deg → U-Turn 

High acceleration Observation[2] hasVelocity(v2) hasTmeStamp(t2)  ˄ (v2-v1)/(t2-t1)>2.5m/s2 → HighAcc 

Crossing zone LeftTurn hasLocation(x)  ˄ RightTurn hasLocation(x) → CrossingZone 

Stopping zone LongStop[1] hasLocation(x)  ˄ LongStop[2] hasLocation(x)  ˄ LongStop[3] hasLocation(x) → StoppingZone 

Jam zone Jam[1] hasLocation(x)  ˄ Jam[2] hasLocation(x)  ˄ Jam[3] hasLocation(x) → JamZone 

Pollution zone HighAcc[1] hasLocation(x)  ˄ HighAcc[2] hasLocation(x)  ˄ HighAcc[3] hasLocation(x) → PollutionZone 

Go-slow zone HighDeacc[1] hasLocation(x)  ˄ HighDeacc[2] hasLocation(x)  ˄ HighDeacc[3] hasLocation(x) → GoSlowZone 

 

 

such as data transmission, processing and reasoning, the total 
latency consists mostly of reasoning and message processing, 
including aggregation and transmission time and time taken to 
store results in the RDF database. 

D. Mobile code 

This prototype focuses on injecting mobile code, as mobile 
agents, into the Traffic Pilot [11]. The aim is to tackle the 
issues related to resource-constrained and heterogeneous IoT 
systems. Mobile agents, as software agents, autonomously 
control their own execution through migration, act on behalf of 
system entities, interact with agent and non-agent entities and 
abstract heterogeneous subsystems. Mobile agent-based task 
execution improves system robustness, fault tolerance and 
enables flexibility in system configuration, as communication 
and computation loads can be distributed into the edges of the 
network according to the application, task or agent based rules.  

Mobile agent-based (one-time or continuous) data queries 
are facilitated at multiple levels. Service providers and end-
users can inject their data queries directly into the system and 
receive results in real-time. Moreover, data processing at the 
data source decreases communication costs and latency. The 
requirements are fulfilled as follows: 

 

 

Fig. 5. The database storing the reasoned information has query interface 

(R3) and support for decision making (R6). 

R1. Data sources: the use case does not limit data sources. 

R2. Data storage: data is stored at the source, i.e. distributed 

in the edges of the network. 

R3. Data access: queries deployed as cooperative agents in a 

multi-agent system.  

R4. Data analysis: data is analyzed in runtime at the source. 

R5. Visualization: mobile agents can provide multiple 

application or task-specific presentations of the select data 

features in real-time, encapsulating the raw data into the 

device. 

R6. Latency: computational and communication resources are 

autonomously utilized where they are available; intermediate 

results can be locally shared in the system in real-time. 

V. DISCUSSION 

Traditionally data sources are utilized in silos where each 
service provider is attached to their own, limited portfolio of 
data sources and services. These silos need to be demolished to 
enable Smart Cities. Our Smart City Traffic Pilot is developed 
and used by the city, different companies and research 
institutes are involved in this innovative ecosystem. Within the 
ecosystem, trust is created between partners, they can learn 
each other’s way of doing business and also learn what data, 
technology and services each partner can offer or could utilize 
in their business. 

     From both business and research perspectives, authentic 
operating environment exposes the concrete challenges and 
opportunities. Collaboration can be brainstormed in meetings, 
but it is a completely different story to discuss about 
collaboration when, for example, two companies have installed 
their devices in the same environment. For example, our 
partners found a completely new way of operating traffic 
cameras when a laser measurement device was installed next to 
it: the camera is triggered when a vehicle is detected from the 



laser measurements. This resulted in more accurate results in 
license plate recognition.   

     The old technologies within the cities can and should be 
utilized in the development work, but solutions like data fusion 
are needed to tackle the limitations. Data transmission and 
sampling frequencies are not necessarily top-notch, increasing 
latencies.  Some sensors, for example, might be connected to 
proprietary, closed systems, hence work is needed to provide 
access to these components. In our Smart City Traffic Pilot, 
part of the data is produced by almost static, only infrequently 
updated data sources (e.g. geospatial information). Moreover, 
some data is produced with low frequency, often by sparsely 
located sensors. This is the case specifically when old 
infrastructure is connected to the system. The data storages 
need to support this large variety of the data streams: in some 
use case terabytes of data might be stored each second while in 
another case, most data process might be done at the edges by 
mobile agents and the storage should have minimal latency. 
Clearly the Big Data paradigm is not sufficient alone, but edge 
analytics is required as well.  

    Exploiting the full functionality of a spatial database 
often requires using a special platform. Such a platform might 
have limited support for real time processing. For example, in 
the smart city scenario, map matching the data – which is in 
some cases very sparse – in real time and reliably, required 
algorithms that are not available in the platform we used. A 
data query against a particular matched route or trajectory can 
require substantial processing. With our real world 
experiments, we gather expertise and can participate in 
developing also these platforms further to match the needs of 
Smart Cities. 

    Data models are keys for creating a foundation for a 
reusable, interoperable IoT in large scale. While IoT protocols 
are being developed and standardized, data models which 
enable integration and interoperability of large amounts of 
information are increasingly important. OMA Lightweight 
Machine To Machine (OMALWM2M) specifies a set of 
common interfaces and data models to enable plug and play 
interoperability between CoAP devices and local or remote 
services. IPSO Smart Objects introduces extensible application 
oriented web objects based on OMALWM2M and web object 
API. World Wide Web Consortium has efforts on developing 
the capability to exchange rich descriptions of Things and the 
context information of things. Moreover, large ecosystems are 
being developed based on protocols and data models. For 
example, OneM2M is creating a very broad set of standards for 
interworking with CoAP and OMALWM2M to enable 
interoperability. 

    The presented use cases illustrate our ongoing work. 
Most requirements are fulfilled at an adequate level for the 
targeted functionality, but more development is required to 
improve them in Smart City Traffic Pilot. The first use case 
presented the components required for delivering situational 
picture of traffic. The work will continue with improving the 
situational picture as new data sources become available and 
analysis methods are developed further. In this prototype, we 
realize the basic preprocessing need for data. An important 
topic will be to detect automatically, on-the-fly, erroneous 

measurements and not include them into the databases and 
further, in the final reasoning from the current situation.  

    The second use case is aimed for personal use, but the 
fuel consumption models can use the information from a pre-
defined user group similar to the driver, as well. A mobile 
application was also implemented to test the driver coach 
recommendation system in logistics to save time and money 
for a large fleet.  

    We have not yet targeted the acceptable latency 
requirement in all the cases of Smart City Traffic Pilot, but 
only in the reasoning and mobile code use cases. However, this 
is our current focus as we test our big data platform that 
supports streaming and batch processing. The ingested data is 
stored in several data nodes in a distributed file system. The 
platform already supports periodical data analysis and stores 
the results into the file system. Analysis is performed with 
RHadoop-library and Hadoop Map-Reduce programming 
framework. Currently, we test Spark Streaming capabilities to 
enable fault-tolerant streaming applications. We identify and 
implement seven functional phases; ingestion and aggregation; 
data pre-processing and fusion; real-time analysis; storage and 
metadata creation; periodic batch analysis; archiving, querying 
and post analysis and data provisioning. Our current 
architecture is depicted in Figure 6. More details on the 
functionalities can be found in [12]. 

    The third use case realizes distributed, low-latency 
reasoning using off-the-shelf technologies. This kind of higher 
level knowledge is useful, for example, in the analysis part of 
driving coach, but also in a variety of applications. The 
integration of semantic reasoning and big data analysis is a 
current research topic, as this functionality is not supported in 
the state of the art, yet.  

   The fourth use case illustrates the distribution of 
computing to the edges of the network. For constrained devices 
it provides an energy-efficient way to disseminate relevant 
data. For services, it addresses the limitations of bandwidth and 
connectivity. Integrating edge processing with big data analysis 
is a promising research direction, as it addresses application-
based data processing needs and enables location-based 
cooperation of different system entities. 

VI. CONCLUSIONS 

It goes without saying that data analytics is needed in the 
whole data processing chain from collecting the data to service 
provision. The data needs to be filtered, cleaned, the essential 
features need to be extracted – sometimes automatically, and 
higher level knowledge needs to be derived from the 
preprocessed data. We have explored different kinds of data 
analytics in our use cases. The necessary and basic 
functionality of cleaning, map matching and deriving simple 
statistics are realized with software triggers in the first use case 
of situational pictures. More advanced machine learning 
algorithms and adaptive models were provided in the second 
use case of driving coach for streaming data.  

We constantly develop visualization tools to enable the 
connection of virtual and physical world. We can already show 
the moving object traffic on 3D models in the city of Oulu.  



 

Fig. 6. A Platform for Big Data analytics on a Smart City. 

 

This research also aims at engaging citizens for the 
development of our home town as a visual effect can be very 
powerful when showing what is going on in the city. When the 
listed requirements are fulfilled for a large variety of data 
analysis tasks, data-intensive services can play a key role in 
future Smart Cities. We see significant potential in IoT domain 
in enabling decision making from big real time data.   
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