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Abstract

In recent years, software-based face presentation at-
tack detection (PAD) methods have seen a great progress.
However, most existing schemes are not able to general-
ize well in more realistic conditions. The objective of this
competition is to evaluate and compare the generalization
performances of mobile face PAD techniques under some
real-world variations, including unseen input sensors, pre-
sentation attack instruments (PAI) and illumination condi-
tions, on a larger scale OULU-NPU dataset using its stan-
dard evaluation protocols and metrics. Thirteen teams from
academic and industrial institutions across the world par-
ticipated in this competition. This time typical liveness
detection based on physiological signs of life was totally
discarded. Instead, every submitted system relies practi-
cally on some sort of feature representation extracted from
the face and/or background regions using hand-crafted,
learned or hybrid descriptors. Interesting results and find-
ings are presented and discussed in this paper.

1. Introduction

The vulnerabilities of face based biometric systems to
presentation attacks have been widely recognized but still
there is a lack of generalized software-based PAD meth-
ods performing robustly in practical (mobile) authentication
scenarios [ 10, 26]. In recent years, many face PAD methods
have been proposed and remarkable results have been re-

ported on the existing benchmark datasets. For instance, in
the first [6] and second [8] face PAD competitions, several
methods have achieved perfect performances on the used
databases. However, recent studies [4, 10, 22, 26] have re-
vealed that most of these methods are not able to generalize
well in more realistic scenarios, thus face PAD is still an
unsolved problem in unconstrained operating conditions.

Focused large scale evaluations on the generalization of
face PAD have not been conducted or organized after the
issue was first pointed out by de Freitas Pereira ef al. [10]
in 2013. The aim of this competition is to compare and
evaluate the generalization abilities of state-of-the-art PAD
schemes under some real-world variations, including cam-
era, attack, and illumination. Compared with the previous
competitions, we observe that the number of participants
has increased from six and eight in the first and second com-
petitions, respectively, to 13 in this competition. Moreover,
in the previous competitions, all the participated teams were
from academic institutes and universities, while in this com-
petition, we have registered the participation of three com-
panies. This also highlights the importance of the topic for
both academia and industry. The name and the affiliation of
the participating teams are summarized in Table 1.

2. Database and evaluation protocols

The competition was carried out on the recent and
publicly available! OULU-NPU face presentation attack
database [5]. The dataset consists of 4950 real access and

I'The dataset was not yet released at the time of the competition.



Table 1: Names and affiliations of the participating systems

| Team | Affiliations ‘
Baseline University of Oulu, Finland
MBLPQ University of Ouargla, Algeria

University of Biskra, Algeria

PML University of the Basque Country, Spain
University of Valenciennes, France
Massy_HNU Changsha University of Science and Technology]|
Hunan University, China

MFT-FAS | Indian Institute of Technology Indore, India
GRADIANT Qa11c1an Research and Devglopment Cer}ter
in Advanced Telecommunications, Spain
. Ecole Polytechnique Federale de Lausanne
Idiap

Idiap Research Institute, Switzerland
VSS Vologda State University, Russia

SZUCVI Shenzhen University, China.
MixedFasNet FUJITSU laboratories LTD, Japan
NWPU Northwestern Polytechnical University, China
HKBU Hong Kong Baptist University, China
Recod University of Campinas, Brazil
CPgD CPqD, Brazil

attack videos that were recorded using front facing cameras
of six different smartphones in the price range from €250
to €600 (see Figure 1). The real videos and attack mate-
rials were collected in three sessions with different illumi-
nation conditions (Session 1, Session 2 and Session 3). In
order to simulate realistic mobile authentication scenarios,
the video length was limited to five seconds and the sub-
jects were asked to hold the mobile device like they were
being authenticated but without deviating too much from
their natural posture while normal device usage. The attack
types considered in the OULU-NPU database are print and
video-replay. These attacks were created using two print-
ers (Printer 1 and Printer 2) and two display devices (Dis-
play 1 and Display 2). The videos of the real accesses and
attacks, corresponding to the 55 subjects, are divided into
three subject-disjoint subsets for training, development and
testing with 20, 15 and 20 users, respectively.

During the system development phase of two months,
the participants were given access to the labeled videos of
the training and the development sets that were used to train
and fine tune the devised face PAD methods. In addition
to the provided training set, the participants were allowed
to use external data to train their algorithms. In the evalua-
tion phase of two weeks, the performances of the developed
systems were reported on anonymized and unlabeled test
video files. To assess the generalization of the developed
face PAD methods, four protocols were used:

Protocol I: The first protocol is designed to evaluate the
generalization of the face PAD methods under previously
unseen environmental conditions, namely illumination and
background scene. As the database is recorded in three ses-

sions with different illumination condition and location, the
train, development and evaluation sets are constructed using
video recordings taken in different sessions.

Protocol II: The second protocol is designed to evaluate
the effect of attacks created with different printers or dis-
plays on the performance of the face PAD methods as they
may suffer from new kinds of artifacts. The effect of attack
variation is assessed by introducing previously unseen print
and video-replay attacks in the test set.

Protocol III: One of the critical issues in face PAD and
image classification in general is sensor interoperability. To
study the effect of the input camera variation, a Leave One
Camera Out (LOCO) protocol is used. In each iteration, the
real and the attack videos recorded with five smartphones
are used to train and tune the algorithms, and the general-
ization of the models is assessed using the videos recorded
with the remaining smartphone.

Protocol IV: In the most challenging protocol, all above
three factors are considered simultaneously and generaliza-
tion of face PAD methods are evaluated across previously
unseen environmental conditions, attacks and input sensors.

Table 2 gives a detailed information about the video
recordings used in the train, development and test sets of
each test scenario. For every protocol, the participants were
asked to provide separate score files for the development
and test sets containing a single score for each video.

For the performance evaluation, we selected the recently
standardized ISO/IEC 30107-3 metrics [15], Attack Presen-
tation Classification Error Rate (APCER) and Bona Fide
Presentation Classification Error Rate (BPCER):

1 Npar
APCER = 1 — Res; 1
PAL= ; ( ) (D
NgFr )
BPCER — 2=t esi )
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where, Np 41, is the number of the attack presentations for
the given PAI, Npp is the total number of the bona fide
presentations. Res; takes the value 1 if the ith presenta-
tion is classified as an attack presentation and 0 if classified
as bona fide presentation. These two metrics correspond to
the False Acceptance Rate (FAR) and False Rejection Rate
(FRR) commonly used in the PAD related literature. How-
ever, APCER p 4 is computed separately for each PAI (e.g.
print or display) and the overall PAD performance corre-
sponds to the attack with the highest APCER, i.e. the "worst
case scenario”.

To summarize the overall system performance in a sin-
gle value, the Average Classification Error Rate (ACER) is
used, which is the average of the APCER and the BPCER
at the decision threshold defined by the Equal Error Rate
(EER) on the development set:



(a) Phone 1

Table 2: The detailed information about the video recordings in the train, development and test sets of each protocol

(b) Phone 2

(c) Phone 3

(d) Phone 4

(e) Phone 5

Figure 1: Sample images showing the image quality of the different camera devices.

(f) Phone 6

Protocol |Subset| Session Phones |Users | Attacks created using | # real videos | # attack videos |# all videos
Train | Session 1,2 |6 Phones| 1-20 |Printer 1,2; Display 1,2 240 960 1200
Protocol I | Dev | Session 1,2 |6 Phones|21-35|Printer 1,2; Display 1,2 180 720 900
Test Session 3 |6 Phones | 36-55 | Printer 1,2; Display 1,2 120 480 600
Train |Session 1,2,3 |6 Phones| 1-20 | Printer 1; Display 1 360 720 1080
Protocol I1 | Dev |Session 1,2,3|6 Phones|21-35| Printer 1; Display 1 270 540 810
Test |Session 1,2,3|6 Phones|36-55| Printer 2; Display 2 360 720 1080
Train |Session 1,2,3 |5 Phones| 1-20 |Printer 1,2; Display 1,2 300 1200 1500
Protocol III| Dev |Session 1,2,3|5 Phones|21-35|Printer 1,2; Display 1,2 225 900 1125
Test |Session 1,2,3| 1 Phone |36-55 | Printer 1,2; Display 1,2 60 240 300
Train | Session 1,2 |5 Phones| 1-20 | Printer 1; Display 1 200 400 600
Protocol IV| Dev | Session 1,2 |5 Phones|21-35| Printer 1; Display 1 150 300 450
Test Session 3 | 1 Phone |36-55| Printer 2; Display 2 20 40 60
color spaces. The local binary pattern (LBP) texture fea-
max (APCERpar) + BPCER tures [20] are ext‘racted from each channel of the C(.)IOI'
ACER = PAI=1...8 3) spaces. The resulting feature vectors are concatenated into
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where S is the number of the PAIs. In Protocols III and IV,
these measures (i.e. APCER, BPCER and ACER) are com-
puted separately for each mobile phone, and the average
and standard deviation are taken over the folds to summa-
rize the results. Since the attack potential of the PAls may
vary across the different folds, the overall APCER does not
necessarily correspond to the highest mean APCERp 4.

3. Brief description of the participating sys-
tems

Baseline In addition to the training and development
data, the participants were given the source code of the
baseline face PAD method that could be freely improved
or used as it is in the final systems. The baseline face PAD
method is based on the color texture technique [4], which
has shown promising generalization abilities. The steps of
the baseline method are as follows. First, the face is de-
tected, cropped and normalized into 64 x64 pixels. Then,
the RGB face image is converted into HSV and YCbCr

an enhanced feature vector which is fed into a Softmax clas-
sifier. The final score for each video is computed by aver-
aging the output scores of all frames.

MBLPQ After the face pre-processing step, cropped
and normalized 128 x 128 face images are obtained. These
RGB face images are then converted into YCbCr color
space and divided into multiple blocks [3]. The local phase
quantization (LPQ) [23] features are extracted from each
block and then concatenated into a single feature vector.
The LPQ features extracted from each channel are concate-
nated to form the overall face representation. Each video is
represented with a single vector by averaging feature vec-
tors extracted from the first ten frames. The score for each
video is then computed using a Softmax classifier.

PML After sampling the video every four frames, the
detected face is aligned, cropped and resized to 224 x244
image and the resulting RGB image is converted to HSV
color space. The face image is then transformed into a
Pyramid Multi-Level (PML) representation [2] (six levels in
our case). LPQ descriptor [23] is applied on each level and
the resulting features are concatenated into a single feature



vector. Subsequently, the features extracted from the three
channels are concatenated to form the overall face repre-
sentation. Each video is represented with a single vector by
averaging all PML vectors over the sampled frames. The
aggregated feature vector is fed into a non-linear support
vector machine (SVM) classifier to obtain the final score.

Massy HNU First, the faces are detected, cropped and
normalized into 64 x 64 images using the provided eye loca-
tions. Then, the RGB face images are converted into HSV
and YCbCr color spaces and guided image filtering [13] is
applied on the face images. After dividing the normalized
facial images into 32x32 blocks with 16 pixels overlap,
LBP features [20] are extracted from each channel of the
color spaces. The LBP coding maps are calculated for each
channel, and chromatic co-occurrence matrices [21] are ex-
tracted from the LBP coding maps as final features vectors.
A Softmax classifier is used to compute the scores for 30
randomly selected frames. The scores are averaged to ob-
tain the final score for a video.

MFT-FAS This face PAD method relies essentially on
the texture information. First, the mean frame of the video
is computed by averaging intensities of the corresponding
pixels in the input video sequence. In order to reduce the
computation time, the resulting mean video frame is resized
to 480x270x%3 pixels. Inspired by the baseline method [4],
the resized image is then mapped to the YCbCr color space.
Each channel of the resultant mean image in the YCbCr
space is partitioned vertically into two parts resulting in a
total of six sub-images. The binarized statistical image fea-
tures (BSIF) [17] are then computed using two filter sets
of size 5x5 and 13x13. This process generates four 256-
dimensional feature vectors for every channel. Finally, the
individual feature vectors are concatenated to obtain the fi-
nal feature vector, which is fed to a Softmax classifier.

GRADIANT GRADIANT system fuses color [4], tex-
ture and motion information, exploiting both HSV and
YCbCr color spaces. Computational restrictions have been
taken into account during algorithm design, so that the fi-
nal system can operate fully embedded into mobile devices.
The system extracts dynamic information over a given video
sequence and maps the temporal variations into a single im-
age. This method is applied separately to all channels in
both HSV and YCbCr color spaces, thus resulting in a pair
of 3-channel images. For each image, ROl is cropped based
on eye positions over the sequence and rescaled to 160x 160
pixels. Each ROI is divided into 3x3 and 5x5 rectangu-
lar regions from which uniform LBP histogram features
are extracted and concatenated into two 6018-length fea-
ture vectors. Recursive Feature Elimination [12] is applied
to reduce feature dimensionality from 6018 to 1000. SVM-
based supervised classification is performed for each feature
vector, and fusion through the sum rule is applied to the re-
sulting scores in order to obtain the decision result. Two

versions were submitted: the first one (GRADIANT) was
trained only with the train subset available in each protocol,
while the second one (GRADIANT _extra) was trained also
on external data, namely Replay-Mobile database [O].

Idiap This method is a score fusion of three other face
PAD methods: Motion [1], Texture (LBP) [7] and Quality
[11,26]. The scores of these systems are first calibrated us-
ing logistic regression separately for each method. Then,
the calibrated scores are used as three-dimensional features
for the fusion system. The features are mean and standard
deviation normalized so that their mean is zero and their
standard deviation is one for each dimension. Then, a Gaus-
sian mixture model (GMM) model with four mixtures is
trained on the bona-fide samples only. The number of mix-
tures was chosen on the development set. All the calibra-
tion, normalization, and GMM training are done using the
training set. Later, log-likelihood of a test sample belonging
to the bona-fide GMM is reported as the final score.

VSS In the VSS face PAD method, first, the faces are
detected, cropped and normalized into 128 x 128 gray-scale
images, which are then fed into a CNN. The architecture of
the CNN model consists of five convolution layers and two
fully connected layers. Each convolution layer is combina-
tion of two independent convolution parts calculated from
the input. The fully connected layers have 512 and two di-
mensions, respectively. The output of the second fully con-
nected layer is used as an input to a Softmax classifier. Two
sets of scores have been submitted. In the first set (VSS),
only the provided train videos were used to train the model,
while extra-training data was used to train the model in the
second set (VSS_extra). The real faces, in this extra-data,
were taken from the CASIA-WebFace database, while the
fake faces were captured from magazines and movies dis-
played on monitor and TV using two mobile devices.

SZCVI After sampling the videos every six frames, the
video frames were resized into 216x384 images and fed
into a CNN model. The architecture of this model consists
of five convolutional layers and one fully connected layer.
The convolutional layers were inspired by the VGG model
[24]. The scores of the sampled frames were averaged to
obtain the final score for each video file.

MixedFASNet In the MixedFASNet method, the face
images picked up every five frames are cropped and nor-
malized to 64 x64 images. These images are then converted
to the HSV color space. To emphasize the differences be-
tween the real and fake face images, contrast limited adap-
tive histogram equalization [28] is applied. The feature ex-
traction has some deep learning architectures trained with
not only face images but also the specific background image
patches. The number of layers is over 30 and several models
are trained using different inputs, e.g. original and contrast-
enhanced images. The extracted features are finally fed into
MLP classifier and the final score for a video is computed



by averaging the scores of the sampled frames.

NWPU Since texture features have the potential to dis-
tinguish the real and fake faces, we built an end-to-end deep
learning model, which auto-extracts the LBP features [20]
from the convolutional layers. Compared with many pre-
vious deep learning methods, our method contains fewer
parameters, thus does not require an enormous training
dataset. First, the faces are detected, cropped and normal-
ized into 64 x64 RGB images, which are then fed into the
network. The models are trained on the provided training
set using back propagation algorithm and the error terms
of the models are generated by the LBP features extracted
from the convolutional layers. In testing stage, the obtained
LBP features are fed into an SVM classifier and the final
score for a video is computed by averaging the scores of
individual video frames.

HKBU The basic idea of the proposed method is to
extract the intrinsic properties of the presentation attack,
which are located on the subtle differences of printed matter
or screen. Three appearance-based features, namely image
distortion analysis (IDA) features [26], multi-scale local bi-
nary patterns (msLBP) [19] and deep feature [16] are fused
to give a robust representation. The steps of the method are
as follows. First, the faces are located, aligned and then
normalized into 256 x256 RGB images. Then, the IDA and
msLBP features are extracted from the preprocessed face
images as distortion and texture components. To further un-
dermine the fine-grained visual information, deep features
are extracted through the lower convolutional layers (conv5)
of a AlexNet model trained on the ImageNet object classifi-
cation database. The lower convolution layers are used be-
cause they represent low-level subtle appearance features.
Finally, multiple kernel learning [16] is employed to fuse
the three types of features in a kernelised (RBF kernel) man-
ner so that each component can optimally contribute to the
final classification according to its discriminability. The fi-
nal score is based solely on the first video frame.

Recod The SqueezeNet [14], which was originally
trained with ImageNet, is the foundation of the Recod
method. Since this CNN was trained to perform a differ-
ent task, a transfer learning strategy is applied to fine-tune
the pre-trained network to the binary problem of PAD. For
this, two datasets were used: CASIA [27] and UVAD [22].
The faces were first detected and resized to 224 x 224 pixels.
To select the best model during the fine tuning process, sev-
eral checkpoints have been evaluated and the one with high-
est accuracy on the development sets is chosen, considering
several frames from each video. For each protocol of the
competition, the previously selected network was further
fine tuned on the corresponding training sets. During the
second fine tuning process, the best ten checkpoints were
selected, based on their average error rate. These check-
points are stored and used to generate the scores for the

Table 3: Categorization of the proposed systems based on
hand-crafted, learned and hybrid features

l Category \ Teams ‘
Baseline, MBLPQ, PML, Massy_HNU,
MFT-FAS, GRADIANT, Idiap
VSS, SZCVI, MixedFASNet

NWPU, HKBU, Recod, CPqD

Hand-crafted features

Learned features
Hybrid features

competition. From each video of the test set, roughly ev-
ery seventh frame is selected and forwarded through the ten
CNNs. The resulting scores are averaged to obtain the final
score. To further improve the performance, the obtained
score is fused with the aggregated score of the provided
baseline method.

CPqD The CPgD method is based on the Inception-v3
Convolutional Neural Network (CNN) model [25]. This
model is trained for object classification on the ImageNet
database. To adapt it for face PAD problem, the pre-trained
model is modified by replacing the last layer with a one-
way fully connected layer and a sigmoid activation func-
tion. The face regions are cropped based on the eye loca-
tions and resized into 224 x 224 RGB images. The modified
model is then fine-tuned on the training face images (sam-
pled at 3 fps) using binary cross-entropy loss function and
Adam optimizer [ 8]. Since the provided database is unbal-
anced, class weights inversely proportional to class frequen-
cies are adopted. To avoid overfitting, training is limited to
ten epochs, and data augmentation is employed. The model
with lowest EER on the development set among all epochs
is selected. A single score for a video is obtained by aver-
aging scores obtained on sampled frames. For each video,
the final score is given by the average between the scores of
the described method and the provided baseline method.

4. Results and Analysis

In this competition, typical “liveness detection” was not
adopted as none of the submitted systems is explicitly aim-
ing at detecting physiological signs of life, like eye blinking,
facial expression changes and mouth movements. Instead,
every proposed face PAD algorithm relies on one or more
types of feature representations extracted from the face
and/or the background regions. The used descriptors can be
categorized into three groups (see Table 3): hand-crafted,
learned and hybrid (fusion of hand-crafted and learned).
The performances of the submitted systems under the four
test protocols are reported in Tables 4, 5, 6 and 7.

It appears that the analysis of mere grayscale or even
RGB images does not result in particularly good general-
ization. In the case of hand-crafted features, every algo-
rithm is based on the recently proposed color texture analy-
sis [4] in which RGB images are converted into HSV and/or
YCbCr color spaces prior feature extraction. The only well-



Table 4: The performance of the proposed methods under different illumination and location conditions (Protocol I)

Dev Test
Methods EER(%) Display Print Overall
APCER(%) | APCER(%) APCER(%) | BPCER(%) | ACER(%)

GRADIANT _extra 0.7 7.1 3.8 7.1 5.8 6.5
CPgD 0.6 1.3 2.9 29 10.8 6.9
GRADIANT 1.1 0.0 1.3 1.3 12.5 6.9

Recod 2.2 33 0.8 33 13.3 8.3
MixedFASNet 1.3 0.0 0.0 0.0 17.5 8.8
PML 0.6 7.5 11.3 11.3 9.2 10.2
Baseline 4.4 5.0 1.3 5.0 20.8 12.9
Massy_ HNU 1.1 54 33 54 20.8 13.1
HKBU 43 9.6 7.1 9.6 18.3 14.0
NWPU 0.0 8.8 7.5 8.8 21.7 15.2
MFT-FAS 2.2 04 33 33 28.3 15.8
MBLPQ 22 31.7 44.2 44.2 3.3 23.8
Idiap 5.6 9.6 13.3 13.3 40.0 26.7
VSS 12.2 20.0 12.1 20.0 41.7 30.8
SZUCVI 16.7 11.3 0.0 11.3 65.0 38.1
VSS_extra 24.0 9.6 11.3 11.3 73.3 423

Table 5: The performance of the proposed methods under novel attacks (Protocol II)
Dev Test
Methods EER(%) Display Print Overall
APCER(%) | APCER(%) APCER(%) | BPCER(%) | ACER(%)

GRADIANT 0.9 1.7 3.1 31 1.9 2.5
GRADIANT _extra 0.7 6.9 1.1 6.9 2.5 4.7
MixedFASNet 1.3 6.4 9.7 9.7 2.5 6.1
SZUCVI 4.4 39 33 39 94 6.7
MFT-FAS 2.2 10.0 11.1 11.1 2.8 6.9
PML 0.9 11.4 9.4 11.4 39 7.6
CPgD 2.2 9.2 14.7 14.7 3.6 9.2
HKBU 4.6 13.9 12.5 13.9 5.6 9.7
Recod 3.7 13.3 15.8 15.8 4.2 10.0
MBLPQ 1.9 5.6 19.7 19.7 6.1 12.9
Baseline 4.1 15.6 22.5 22.5 6.7 14.6
Massy HNU 1.3 16.1 26.1 26.1 39 15.0
Idiap 8.7 21.7 7.5 21.7 11.1 16.4
NWPU 0.0 12.5 5.8 12.5 26.7 19.6
VSS 14.8 25.3 13.9 25.3 23.9 24.6
VSS _extra 233 36.1 339 36.1 33.1 34.6

generalizing feature learning based method, MixedFASNet,
is using HSV images as input, whereas the networks op-
erating on gray-scale or RGB images are not generalizing
very well. On the other hand, it is worth mentioning that
VSS and SZCVI architectures consist only of five convo-
lutional layers, whereas the MixedFASNet is much deeper.
The best performing hybrid methods, Recod and CPqD, are

fusing the scores of their deep learning based method and
the provided baseline in order to increase the generalization
capabilities. Since only the scores of hybrid systems were
provided, the robustness of the proposed fine-tuned CNN
models operating on RGB images remains unclear. Among
the methods solely based on RGB image analysis, HKBU
fusing IDA, LBP and deep features is the only one that gen-



Table 6: The performance of the proposed methods under input camera variations (Protocol IIT)

Dev Test
Methods EER(%) Display Print Overall

APCER(%) | APCER(%) APCER(%) \ BPCER(%) \ ACER(%)

GRADIANT 0.9+0.4 1.0+1.7 2.6+3.9 2.6£3.9 5.0+5.3 3.8+24

GRADIANT _extra 0.7£0.2 1.4+£19 1.4+2.6 24128 5.6+4.3 4.0£1.9

MixedFASNet 1.4+0.5 1.74£3.3 5.3+6.7 5.3£6.7 7.8+£5.5 6.5+4.6

CPgD 0.9+£0.4 44+3.4 5.0+£6.1 6.81+5.6 8.1+6.4 7.4+£3.3

Recod 2.94+0.7 42438 8.6£14.3 10.1+13.9 8.9£9.3 9.5+6.7
MFT-FAS 0.8+£0.4 0.8+£0.9 10.8£18.1 10.8+£18.1 9.4+12.8 10.1£9.9
Baseline 3.9+0.7 9.3+4.3 11.8£10.8 14.2+£9.2 8.61+5.9 11.4£4.6
HKBU 3.84+0.3 7.9+5.8 9.9+12.3 12.8£11.0 11.4+9.0 12.1£6.5
SZUCVI 7.0£1.6 10.0£8.3 7.5+9.5 12.1£10.6 16.1£8.0 14.1+4.4
PML 1.1£0.3 8.2+12.5 15.3£22.1 15.7£21.8 15.8£15.4 15.8£15.1
Massy_HNU 1.9£0.6 5.8+£5.4 19.0£26.7 19.3£26.5 14.2£13.9 16.7£10.9
MBLPQ 2.3+0.6 5.8£5.8 12.9£4.1 12.9£4.1 21.9+224 17.4£10.3
NWPU 0.0£0.0 1.9+0.7 1.9+3.3 3.24+2.6 33.9+10.3 18.5+4.4
Idiap 7.9+1.9 8.3£3.0 9.3+10.0 12.9+8.2 26.9+24.4 19.9+11.8
VSS 14.6£0.8 21.4£7.7 13.8£7.0 21.4£7.7 25.3£9.6 23.3£2.3
VSS_extra 259+1.7 25.0+11.4 3224279 40.3£22.2 35.3+27.4 37.8+6.8

Table 7: The performance of the proposed methods under environmental, attack and camera device variations (Protocol IV)

Dev Test

Methods EER(%) Display Print Overall
APCER(%) | APCER(%) APCER(%) \ BPCER(%) \ ACER(%)
GRADIANT 1.1+0.3 0.0+£0.0 5.0+4.5 5.0+4.5 15.0£7.1 10.0+5.0
GRADIANT _extra 1.1£0.3 27.5+24.2 5.8+£4.9 27.5+£24.2 3.3+4.1 15.4+£11.8
Massy_HNU 1.0+£0.4 20.0£17.6 26.7£37.5 35.8£35.3 8.3+4.1 22.1£17.6
CPgD 22+1.7 16.7£16.0 2424394 32.5£37.5 11.7£12.1 22.1£20.8
Recod 3.7+0.7 20.0£19.5 23.3+40.0 35.0£37.5 10.0£4.5 22.5+18.2
MFT-FAS 1.6+0.7 0.0+£0.0 12.5+£12.9 12.5£12.9 33.3+23.6 22.948.3
MixedFASNet 2.8+1.1 10.0£7.7 4.2+49 10.0£7.7 35.8+£26.7 22.9+15.2
Baseline 4.7+0.6 19.2+17.4 22.5+38.3 29.2+437.5 23.3+£13.3 26.3+16.9
HKBU 5.0+0.7 16.7£24.8 21.7£36.7 33.3£37.9 27.5£20.4 30.4+20.8
VSS 11.8+0.8 21.7+£8.2 9.2+5.8 21.7+£8.2 442+11.1 32.9+45.8
MBLPQ 3.6+0.7 35.0£25.5 45.0£25.9 49.2+£27.8 24.2£27.8 36.7£4.7
NWPU 0.0+0.0 30.8+7.4 6.7+11.7 30.8+7.4 4424233 37.5+9.4
PML 0.8+0.3 59.2424.2 38.3+41.7 61.7£26.4 13.3£13.7 37.5£14.1
SZUCVI 9.1£1.6 0.0+0.0 0.8+2.0 0.8+2.0 80.8+28.5 40.8+13.5
Idiap 6.8+0.8 26.7£35.2 13.3£8.2 33.3+£30.4 54.2£12.0 43.84+20.4
VSS_extra 21.1£2.7 13.3+£17.2 15.8£21.3 25.8+20.8 70.0£22.8 47.9+12.1

eralizes fairly well across the four protocols.

In general, the submitted systems are processing each
video frame (of a video sequence) independently then the
final score for a given video is obtained by averaging the re-
sulting scores of individual frames. None of the deep learn-
ing or hybrid methods were exploiting temporal variations
but in the case of hand-crafted features two different tempo-

ral aggregation approaches were proposed for encoding the
dynamic information, e.g. motion, within a video sequence.
MBLPQ and PML averaged the feature vectors over the
sampled frames, whereas GRADIANT and MFT-FAS map
the temporal variations into a single image prior feature ex-
traction. The approach by GRADIANT turned out to be par-
ticularly successful as the achieved performance was simply



the best and most consistent across all the four protocols.

In this competition, the simple color texture based face
descriptions were very powerful compared to deep learning
based methods, of which the impressive results by GRA-
DIANT are a good example. On the other hand, the cur-
rent (public) datasets may not probably provide enough data
for training CNNs from scratch or even fine-tuning the pre-
trained models to their full potential. NWPU extracted LBP
features from convolutional layers in order to reduce the
number of trainable parameters, thus relieving the need for
enormous training sets. Unfortunately, the method was not
able to generalize well on the evaluation set.

Few teams used additional public and/or proprietary
datasets for training and tuning their algorithms. VSS
team augmented the subset of real subjects with CASIA-
WebFace and collected own attack samples. The useful-
ness of these external datasets remains unclear because the
grayscale image analysis based face PAD method was not
very efficient. Recod used publicly available datasets for
fine tuning the pre-trained network but the resulting gen-
eralization was comparable to similar method, CPqD, not
using any extra-data. GRADIANT submitted two systems
with and without external training data. Improved BPCER
was obtained in unseen acquisition conditions but APCER
is much better in general when using only the provided
OULU-NPU training data.

Since unseen attack scenarios will be definitely expe-
rienced in operation, the problem of PAD could be eas-
ily ideally solved using one-class classifiers for modeling
the variations of the only known class, i.e. bona-fide.
Idiap method is based on the idea of anomaly detection
but it lacked generalization mainly because the individual
grayscale image analysis based methods were performing
poorly?. Thus, one-class modeling would be worth investi-
gating when combined with more robust feature representa-
tions.

Few general observations can be concluded based on the
results of protocols I, II and III assessing the generalization
of the PAD method across unseen conditions, i.e. acquisi-
tion conditions, attack types and input sensors, separately:

Protocol I: In general, a significant increase in BPCER
can be noticed compared to APCER when the PAD systems
are operating in new acquisition conditions. The reason
behind this may be in the data collection principles of the
OULU-NPU dataset. Legitimate users have to be verified
in various conditions, while attackers aim probably at high-
quality attack presentation in order to increase the chance of
successfully fooling a face biometric system. From the us-
ability point of view, the bona-fide samples were collected
in three sessions with different illumination. In contrast,
the bona-fide data matching to each session was used to
create face artifacts but the attacks themselves were always

2Idiap submitted also the scores of the individual sub-systems.

launched with short standoff and captured in the same labo-
ratory setup. Thus, the intrinsic properties of the attacks do
not vary too much across the different sessions.

Protocol II: In most cases, previously unseen attack
leads into dramatic increase in APCER, which is not un-
expected as only one PAI of each print and video-replay
attacks is provided for training and tuning purposes.

Protocol III: It is also interesting to notice that the stan-
dard deviation of APCER across different input sensors is
much larger in the case of print attacks compared to video-
replay attacks, which suggests that the nature of print at-
tacks seems to vary more although both attack types can be
detected equally well on average.

Based on the results of the protocol IV, it is much harder
to make general conclusions because all the factors are com-
bined and different approaches seem to be more robust to
different covariates. The last protocol reveals, however, that
none of the methods is able to achieve either reasonable
trade-off between usability and security. For instance, in the
case of GRADIANT, either the APCER or BPCER of the
two systems is too high for practical applications. Neverthe-
less, the overall performance of GRADIANT, MixedFAS-
NET, CPgD and Recod is very impressive considering the
conditions of the competition and the OULU-NPU dataset.

5. Conclusion

The deployment of face recognition applications in mo-
bile authentication has created a necessity for robust face
PAD solutions. Despite the recent progress, the existing
mobile face PAD methods have shown lack of generaliza-
tion in real-world operating conditions. This was the first
large-scale competition to evaluate the generalization capa-
bility of state-of-the-art countermeasures for face presenta-
tion attacks on a publicly available database.

Also this competition was a huge success in consoli-
dating and benchmarking the state-of-the-art approaches in
face PAD. The number of participants, from both academic
and industrial institutions, is growing with respect to previ-
ous competitions. As a matter of fact, 13 entries were sub-
mitted from ten academic institutes and three companies.
All submitted systems relied on one or more features of
three different kinds: hand-crafted, learned and hybrid, i.e.
fusion of both. All in all, though deep learning-based meth-
ods achieve impressive results, hand-crafted features cou-
pled with appropriate color spaces can generalize remark-
ably well not only against previously unseen input cameras
but also across environmental conditions and attack types.

A possible future study would be combining match
scores with both PAD and quality measures to improve the
resilience of face verification systems. The OULU-NPU
database could be expanded to increase variability in user
demographics and mobile devices, and introduce uncon-
trolled outdoor conditions and new attacks, e.g. 3D masks.
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