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Zhanpeng Jin‖, Vir V. Phoha∗, Seppo Vainio† and Juha Roning†

∗Syracuse University, {akamathb,vvphoha}@syr.edu
†University of Oulu, {tirthankar.paul,seppo.vainio,juha.roning}@oulu.fi
‡Florida International University, {lwang059,iyengar}@cs.fiu.edu
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Abstract—Expressing Keystroke Dynamics (KD) in form of
sound opens new avenues to apply sound analysis techniques
on KD. However this mapping is not straight-forward as varied
feature space, differences in magnitudes of features and human
interpretability of the music bring in complexities. We present a
musical interface to KD by mapping keystroke features to music
features. Music elements like melody, harmony, rhythm, pitch
and tempo are varied with respect to the magnitude of their
corresponding keystroke features. A pitch embedding technique
makes the music discernible among users. Using the data from 30
users, who typed fixed strings multiple times on a desktop, shows
that these auditory signals are distinguishable between users by
both standard classifiers (SVM, Random Forests and Naive Bayes)
and humans alike.

Index Terms—Keystroke, Mapping, Music, Authentication

I. INTRODUCTION

Behavioral biometrics has seen an upsurge in research and
applications in the recent past. Behavioral biometrics such
as keystrokes [1]–[3], touch and swipe [4]–[6], gait patterns
[7]–[9] and wrist movement patterns [10], [11] have been
shown to be good second-factor authentication techniques. As
humans have well developed auditory sense, representation
of visual information in sound and vice versa has been of
great interest to researchers [12]–[15]. But such alternative
interfaces to convey biometric information have not been
explored. Mapping of information to sound can lead to deeper
interpretations of user biometrics which motivates our work.
But various issues like varied feature space, keystroke latency
timings and human interpretability of the music complicate
this mapping.

A. Contributions

Our key contributions are; a) Keystroke signature to musi-
cal signature: We present a method to map keystroke features
to music notes which can be used as a musical signature.
Using two modified functions to compute a note’s duration
and pitch, we are able to derive the musical equivalent of
a keystroke signature. b) Analysis of inter-user and intra-
user distances between music samples: We analyze the
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efficiency of music files for user verification using inter-user
and intra-user distances between two key vectors; note-pitch
and note-duration. c) Human discretion results: Results from
human subjects with little to no formal background in music,
performing verification based on the music files of user are
presented. Human classifiers were trained by listening to music
files to verify users. User-wise accuracies, Type 1 errors (false
rejects) and Type 2 errors (false accepts) are presented. d)
Extendable to other biometrics: Our designed procedure to
map keystroke features to musical signatures for a user is
portable to other forms of behavioral biometrics, such as gait,
swipes and wrist movements, with some modifications.

II. RELATED WORK

The benefits of transforming information between the visual
and aural senses has been studied in various contexts other
than biometrics. Meijer [14] designed and evaluated a system
that represented image information in form of sound. Inverse
mapping (sound-to-image) mapping experiments showed con-
vincing evidence for the preservation of visual information
through the transformation. Kim [12] explored the other
direction of information mapping by presenting techniques
to represent sound in form of visual images. A few studies
use such mapping techniques and extend existing systems
to be more accessible to the visually impaired. Matta et al.
[13] proposed a theoretical system that provided auditory
image representations as an approximate substitute for vi-
sion, whereas Rigas and Memery [15] used both audio-visual
stimuli to communicate information in browsing e-mail data.
Both studies found auditory representation of data to be useful
not only for the blind but also to maximize the volume of
information communicated.

The association of keystrokes to sound has been explored
by few researchers, only in context of the acoustic emanations
that occur while a user is typing. Zhuang et al. [16] show
how keyboard acoustic emanations from 10 minute recordings
can be used to attack and recover up to 96% of typed
characters. Roth et al. [17] proposed keystroke sound as a
modality of authentication of users in a continuous authenti-
cation scenario and discuss the shortcomings and possibility
of better features in their work. In another attack focused



work by Zhu et al. [18], off-the-shelf smartphones are used to
record keystroke emanations. The authors use Time Difference
of Arrival (TDoA) method and show that more than 72%
of keystrokes can be recovered without any context-based
information. A similar study by Liu et al. [19] performed better
by recovering 94% of keystrokes with acoustic emanations and
discrimination of mm-level position differences that help lo-
cate origin of keys on a keyboard. Another work by Roth et al.
[20] investigated the discriminative power of these keystroke
emanations, with an EER of 11% they conclude that there is
promising discriminative information in the keystroke sound to
be further explored. These works primarily focus on acquiring
sound at the point of typing, which might not be audible or
easily understandable to make meaningful interpretations by
humans.

In a similar musical mapping work by Paul et al. [21]
proposed a method to generate personalized music from De-
oxyriboNucleic Acid (DNA) signatures of users. The number
of Short Tandem Repeats (STRs) and the STR sequences were
used as the units mapped to musical elements.

III. METHODS

A. Data Collection

The typing data was collected from 30 participants at our
University after the IRB approval. The participants consisted
of 13 females and 17 males, aged from 19 to 28. All partici-
pants were right-hand dominant and fluent in English. Twelve
participants indicated that they were touch typists while the
rest indicated to be visual typists. The participants performed
the following activities on a desktop, with a standard QW-
ERTY keyboard: multiple brief and interleaved sections of
transcription, free-text typing, browsing and online shopping.
This is a subset of SU-AIS BB-MAS dataset [22].

We focus on the transcription activities and only extract the
data generated from the users while typing the phrase ”this
is a test” (hereinafter referred to as ”test-phrase”). All users
typed the test-phrase at many different points in their session,
a minimum of 30 occurrences for each user were extracted
from the data. We consider each occurrence of the test-phrase
as one sample from the user.

B. Keystroke features

For any two consecutive keys Ki and Ki+1 the following
values are recorded: KiPress and Ki+1Press, the UNIX
standard time at which Ki and Ki+1 are pressed respectively.
KiRelease and Ki+1Release, the UNIX standard time at
which Ki and Ki+1 are released respectively. From these
recorded time-stamps , the following temporal features are
extracted:

• KeyholdKi
: KiRelease - KiPress

• Flight1KiKi+1 : Ki+1Press - KiRelease
• Flight2KiKi+1

: Ki+1Release - KiRelease
• Flight3KiKi+1

: Ki+1Press - KiPress
• Flight4KiKi+1 : Ki+1Release - KiPress

The features are in milliseconds and Figure 1 illustrates
these temporal features. A dictionary Dus where u and s

Fig. 1: Features extracted from the temporal data of keys Ki

and Ki+1.

are the user and sample numbers respectively, both ranging
from 1 to 30. Dus consists of multiple Key : V alue pairs in
form Xf : v. In case of the unigraphs (t, h, i, s, a, e, space in
test-phrase) in the sample X is the unigraph, f = Keyhold
and v is the respective duration (in milliseconds). In case
of digraphs ((t, h), (h, i), ..., (s, t)), X is the digraph, f ∈
{Flight1, Flight2, Flight3, Flight4} and v is the respective
duration. v is averaged, if unigraph or digraph has multiple
occurrences in sample (for example t, h, space in test-phrase).

C. Music features

Keystroke data consists of keyhold times and inter-key
(flight) latencies grouped by their keys of origin whereas music
is generated from notes of different pitch and duration played
in a certain pattern. Mapping data between these two very
different modes of information is complicated as the magni-
tudes of the keystroke features, information of their different
keys of origin, repeating key presses and many other such
peculiarities cannot be expressed with simple equivalencies in
the music domain.

Therefore, we shortlist the elements of music [23] that can
be manipulated to create music from the keystroke features.
We chose the following; Melody: the tune generated due
to successive single notes affected by pitch and rhythm.
Harmony: sound produced by two or more notes played
simultaneously. Rhythm: combinations of sounds of varied
length. Pitch: sound varied with the frequency of vibrations.
Tempo: speed at which the music is played. By controlling
the pitch and duration of musical notes, we can manipulate
these five elements of music.

The MIDI protocol is a message-based communication
between computer and equipment. The MIDI protocol was
initially made to create polyphonic sound by using multiple
musical devices once, linked with cable, in the music industry
[24]. To create music that complies with MIDI standard we
use Ken Schutte MIDI Matlab Toolbox [25]. The matrix2midi
module takes a N ∗ 6 matrix and converts it to MIDI format
which is then written to a MIDI file using the writemidi
module. N rows of the matrix represent the notes (one for
each note) and the 6 columns represent the track number,
channel number, note number (midi encoding of pitch),
velocity (volume), start time (seconds), end time (seconds)



Fig. 2: Music notes and their placement, generated from a digraph Ki,Ki+1 using functions T (v) and P (v) for duration and
pitch respectively.

respectively. For simplicity, we set track number = 1,
channel number = 1(piano), and volume = 75 to be
constants. By varying the pitch of a note and its duration we
generate MIDI files Mus for each Dus.

D. Mapping keystroke features to music

To generate Mus we compute their MIDI matrices of shape
N ∗ 6, we can denote Mus as:

Mus = [ ~tnus, ~cnus, ~pus, ~vus, ~stus, ~etus] (1)

Where ~tnus is track number, ~cnus is channel number, ~pus is
pitch, ~vus is volume, ~stus is start time, and ~etus is end time and
all the vectors are of the same length N (number of notes). As
explained earlier, ~tnus = ~1, ~cnus = ~1 and ~vus = ~75. ~pus, ~stus
and ~etus are mapped from Dus using our embedding technique
to enhance the user-specific information held in Dus.

Each digraph < Ki ,Ki+1 > in Dus (in alphabetic order)
is mapped to music notes by converting its six associated
keystroke values ( Keyhold of Ki, Ki+1 and their four flight
values) with duration function T (v) and pitch function
P (v). T (v) is a simple scaling function, to scale the keystroke
feature (in milliseconds) to practical music note duration (in
seconds). P (v) is a modified form of MIDI Tuning Standard
(MTS) which is specified in the MIDI protocol [26]. The two
functions are shown below:

T (v) = v/100 (2)

P (v) = 69 + 12log2

(
v

440

)
(3)

where v is the value from the Xf : v pairs in Dus. We
substitute v in place of the frequency in the standard MTS
equation. Since 440 Hz is a widely used standard concert A
(musical note), equation (3) uses the term log2 (v/440) to
compute the number of octaves above or below the concert A.
This term is multiplied by 12 to compute the semitones above
the concert A. MIDI represents the concert A with integer
69 which is added for a MIDI compliant pitch number.

After computing duration and pitch of the notes, the notes
are arranged similar to their occurrences over the duration
of a digraph to obtain the vectors ~pus, ~stus and ~etus. As
Flight4 translates to the longest duration, all other notes
overlap with it at different points. ~etus is computed as ~stus
+ T (v), notes corresponding to KeyholdKi

, Flight3KiKi+1
,

Flight4KiKi+1
, have the same values in ~stus (same start

time). Flight1KiKi+1
and Flight2KiKi+1

have the same val-
ues in ~stus equal to ~etus values of KeyholdKi

. KeyholdKi+1

has its ~stus value equal to the ~etus value from Flight1KiKi+1
.

Figure 2 illustrates the mapping, start time and end time
of music notes generated using digraphs from Dus. These
notes (from all digraphs in alphabetical order) when played in
a sequence produce a musical tune. Figure 3 shows a collection
of piano roll plots which were generated for different samples
of test-phrase using our procedure. The highlighted sections
represent a played note. We can observe that plots 3a and 3b
appear to be similar (similar sounding music) to each other.
Both were generated from different samples by the same user.
Figures 3c and 3d show the same for a different user. This
example is representative of observations on our entire dataset.

IV. ANALYSIS ON MUSIC FROM KEYSTROKES

We performed inter-user and intra-user distance analysis and
user-music verification using random forests, naive bayes and
SVM. But as standard classifiers do not differentiate between
musical notes and other forms of data, we also preform
verification experiments with three human-classifiers detailed
below.

A. Inter-user and intra-user analysis

In each music file Mus, vectors ~tnus = ~1, ~cnus = ~1 and
~vus = ~75 are constant. Therefore we perform the inter-user and
intra-user analysis using only the ~pus, ~stus and ~etus vectors.
As order of the notes in all music files are same, vectors ~stus
and ~etus can be simplified to a single vector ~dus = ~etus -
~stus. ~pus denotes the pitch of the notes and ~dus denotes their
duration. We chose Canberra distance as it is most suitable



Fig. 3: Examples of the piano roll plots that are obtained after mapping the keystroke features to the music features. We
illustrate the piano roll plots of two test-phrase samples from two random users from our data-set, Figures 3(a) and 3(b) are
from samples of user A and Figures 3(c) and 3(d) are from user B.

(a) Distances using note-pitch vectors ~pus.

(b) Distances using note-duration vectors ~dus.

Fig. 4: Plot of density functions for inter-user and intra-user
Canberra distances of the note-pitch vectors (4a) and note-
duration vectors (4b) between all music files.

when dealing with vectors. The Canberra distance between
two vectors ~a and ~b is given by:

c(~a,~b) =
n∑

i=1

|ai − bi|
ai + bi

(4)

Figure 4 shows the density functions of the inter-user and
intra-user distances from all music files. Figure 4a is plotted

with distances using ~pus while figure 4b is using ~dus from
all the music files respectively. We observe that the density
curves for intra-user distance falls majorly towards the left,
implying lesser intra-user differences in music, for both cases.
In contrast, the density curves for inter-user distances are fall
towards the right with higher distance values. We can also
observe the overlapping regions between the intra-user and
inter-user density curves is small. Small intra-user distances,
large inter-user distances and small overlap among these
curves are all desirable qualities for user verification. These
qualities imply that music files of a user are fairly separable
from other users.

B. Verification experiments with standard classifiers

Even though We use the note-pitch vector ( ~pus) and the
note-duration vector ( ~dus) as feature vectors for the music
files. For the verification experiments, we use three different
classifiers; Random Forests, Naive Bayes and SVM. Due to
our dataset consisting of 30 music files for each user, we run
the experiments with two different configurations; two-fold
and three-fold cross validation. For each session 30 imposter
samples are sampled randomly from users other than the
genuine user.

Random forest classifier with five trees, maximum depth
was restricted to five and number of child nodes was restricted
to two. GINI impurity was used for the split criterion. In SVM
classifier we use a RBF kernel, penalty parameter = 1 and
gamma = 0.01. The Gaussian Naive Bayes (GNB) classifier
implements the Gaussian Naive Bayes algorithm as shown by
the following equations:

ŷ = argmax
y

P (y)
n∏

i=1

P (xi|y) (5)

P (xi|y) =
1√
2πσ2

y

exp

(
− (xi − µy)

2

2σ2
y

)
(6)



TABLE I: The average FAR, FRR and Accuracy; for the three standard classifiers with two-fold and three-fold cross validation
experiments (on the left) and for human classifiers (on the right) on user verification.

Standard Classifiers Human Classifiers

Metrics
Average

Random
Forest

Naive
Bayes SVM HC1 HC2 HC3

FAR

2-
Fo

ld 0.06 ± 0.05 0.12 ± 0.07 0.14 ± 0.08

In
di

vi
du

al 0.18 ± 0.11 0.20 ± 0.10 0.17 ± 0.11

FRR 0.09 ± 0.07 0.10 ± 0.09 0.14 ± 0.10 0.18 ± 0.10 0.19 ± 0.11 0.17 ± 0.12

Accuracy 0.92 ± 0.0 0.89 ± 0.06 0.89 ± 0.07 0.81 ± 0.09 0.83 ± 0.10 0.81 ± 0.12
FAR

3-
Fo

ld 0.06 ± 0.07 0.05 ± 0.06 0.04 ± 0.07

O
ve

ra
ll 0.18 ± 0.11

FRR 0.03 ± 0.05 0.03 ± 0.05 0.04 ± 0.08 0.18 ± 0.11

Accuracy 0.96 ± 0.04 0.94 ± 0.05 0.96 ± 0.05 0.81 ± 0.10

(a) False rejection rates or Type-1 error.

(b) False acceptance rates or Type-2 error.

(c) User-wise accuracies for verification.

Fig. 5: Results from the Human-Classifier (HC) based verifi-
cation experiments.

C. Verification experiments with human classifiers

where, y is the class, ŷ is the predicted class, x1, x2, ...,xn
are the features, σy and µy are the standard deviation and
mean estimated using maximum likelihood. Table I presents
the results of our verification experiments. We observe that
the Naive Bayes and SVM classifiers perform slightly better
with more number of training instances. However, all three
classifiers performed similarly with high accuracy between
89% to 96%. The False Rejection Rates (FRR) and False
Acceptance Rates (FAR) were low (≤ 10%) in all cases except
for two-fold experiments with Naive Bayes and SVM.

As these classifiers do not differentiate between music and
other numerical data, these results do not highlight the merits
of converting a user’s keystroke data into music. Therefore, a
human classifier based experiments were carried out, detailed
below.

The true test and application of our work is to see if an
average human can differentiate between the music generated
from one user’s typing sample to another. We recruited three
volunteers (hereinafter referred to as human-classifier or HC)
with little to no formal education in music. Each experiment
session had a training phase and a testing phase. A user
number was selected for each session and all the samples
from that user were labeled ”genuine” for the session. In the
training phase the HC was made to listen to 15 music files from
the genuine user. In the following testing phase a set of 30
music files, consisting of 15 genuine (not used in training) and
15 imposter (randomly selected from other users) files were
played one after the other. At the end of each file HC classified
it as either genuine user or as an imposter. The classification
decisions were recorded and analyzed.

Figure 5 and Table I summarize the results of our veri-
fication experiments carried out with three HCs. Figures 5a
and 5b show the Type-1 and Type-2 errors committed by
the HCs respectively. Type-1 error is the case where a HC
falsely rejected a genuine music sample (rejection of a true
null hypothesis). Whereas, Type-2 error is the case where a HC
falsely accepted an imposter’s music sample (failure to reject a
false null hypothesis). Figure 5c shows the user-wise accuracy
of the HCs in the verification task. We observe that verifying
a few users was challenging for all three HCs, especially users
6,12 and 25, reflected in the high FAR and FRR for these users.



For all other users, the FAR and FRR values are low, within
range of 10% to 15% in most cases. In a few cases the FAR
and FRR values are 0, indicating a perfect classification by
the HC. The accuracies shown in the figure 5c reflect similarly
with most being in the range of 75% to 85% while being low
on users 6, 12 and 25. Overall, all three HCs could easily
verify the music files of users with high accuracies for most
users.

V. CONCLUSION

Our work shows that information from keystroke dynamics
can be translated to other representations that maintain or
enhance the human interpretability of the data. A theoretical
system to convert keystroke features to the aural sense has
been proposed. Information on KD is conveyed through audi-
tory music files. We show that user-specific music files exhibit
high inter-user distance and low intra-user distance which is a
desired quality in a feature vector to be used for authentication.
Verification experiments with standard classifiers (Random
Forests, Naive Bayes and SVM) show that these music files
can be verified with high accuracies despite treating music as
any other numerical data. Experiments with different devices,
types of text and music fluency of the human classifiers are
part of our future research direction.

Results from human-classifiers reveal that a user’s keystroke
behavior can be converted to music which is humanly verifi-
able. The musical melody created from each user’s keystroke
data using our approach has a clearly distinguishable tune
unique to a user. The approach and findings of this work can be
used in a variety of ways such as; a new mode of second-factor
user authentication, a complementary form of data presentation
for audible user specific keystroke signatures. The concept of
mapping biometrics features to music can be reused with some
modifications to suit other forms of biometrics such as gait,
touch, swipe and fingerprints to name a few.
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