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Abstract—The problem of admission control in a multicell
downlink multiple-input single-output system is considered. The
objective is to maximize the number of admitted users subject to a
signal-to-interference-plus-noise ratio constraint at each admitted
user and a transmit power constraint at each base station.
We cast the admission control problem as an ℓ0 minimization
problem. This problem is known to be combinatorial, NP-
hard. Hence, we have to rely on suboptimal algorithms to solve
it. We approximate the ℓ0 minimization problem via a non-
combinatorial one. Then, we propose a distributed algorithm
to solve the non-combinatorial problem. The proposed algorithm
is derived by using alternating direction method of multipliers
in conjunction with sequential convex programming. We show
numerically that the proposed algorithm achieves a near-to-
optimal performance.

Index Terms—Admission control, alternating direction method
of multipliers (ADMM), distributed algorithm, ℓ0 minimization.

I. INTRODUCTION

The problem of user admission control in wireless networks
is a difficult combinatorial optimization problem, and it is
known to be NP-hard [1], [2]. The exhaustive search method is
one approach to find the global optimal solution of the admis-
sion control problem. However, the computational complexity
of the exhaustive search method increases exponentially with
the number of users. Systematic approaches like branch and
bound has been proposed to optimally solve this problem [2].
Although the solution in [2] is optimal, it is not suitable for
practical scenarios due to the complexity of this method [3].
Hence, fast suboptimal algorithms are desirable in practice [1].

For multi-input single-output (MISO) systems, the central-
ized implementation of the admission control problem has
been studied in [1]. Specifically, the authors in [1] have
formulated this problem as an integer nonlinear optimization
problem for a single cell. Then, two approximate solutions are
proposed via semidefinite-relaxation (SDR) method [4] and
second order cone programming [5, Ch. 4.4]. The work in [1]
can be directly applied to a multicell scenario, however, its dis-
tributed implementation is not straightforward, and there is no
reported work on that. In the context of multicell systems, this
problem has been cast as an ℓ0 minimization problem in [6].
Then, the ℓ1-norm relaxation technique [7] in conjunction with
SDR method is used to provide both centralized and distributed
algorithms. In particular, the distributed algorithm is based
on block coordinate descent method, where the subproblems
associated with the base stations (BSs) are solved in a cyclic
order. Both algorithms in [1] and [6] are derived by using the

deflation based approach, which relies on dropping users at
each iteration of the algorithm.

In this paper we propose a distributed algorithm to solve
the admission control problem for the downlink of a multicell
MISO system. The distributed algorithm is derived by using
the consensus-based alternating direction method of multi-
pliers (ADMM) [8] in conjunction with sequential convex
programming [9], [10]. In contrast to the existing distributed
algorithm in [6] (that solves the subproblems in a cyclic order),
our proposed algorithm solves the subproblems independently
in parallel at each BS. Numerically, we show that the proposed
algorithm achieves a near-to-optimal performance.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the downlink of a multicell MISO system
with K BSs. The set of all BSs is denoted by K and we
label them with the integer values k = 1, . . . , K . We assume
that each BS is equipped with T transmit antennas. We denote
the set of all users associated with kth BS by Uk, and we label
them with the integer values i = 1, . . . , Ik.

The received signal-to-interference-plus-noise ratio (SINR)
of ith user of BS k is given by
Γki(m) =

|(hk
ki)

Hmki|2
∑

j∈Uk,j 6=i

|(hk
ki)

Hmkj |2 +
∑

l∈K\{k}

∑

j∈Ul

|(hl
ki)

Hmlj |2 + σ2
, (1)

where mki ∈ CT is the transmit beamformer associated
with ith user of BS k, hl

ki ∈ CT is the channel vector from
BS l to ith user of BS k, and σ2 is the noise power at the
receiver. In expression (1), we use the notation m to denote a
vector obtained by stacking mki for all i ∈ Uk and k ∈ K on
top of each other, i.e., m = [mT

11,m
T
12, . . . ,m

T
KIK

]T.
We assume that the power allocation is subject to a maxi-

mum transmit power constraint at each BS, i.e.,
∑

i∈Uk
‖ mki ‖22≤ Pmax

k , k ∈ K, (2)
where Pmax

k is the maximum transmit power of kth BS.
Furthermore, we assume that the QoS of ith user of BS k
is assured if its SINR is greater than a threshold γki, i.e.,

Γki(m) ≥ γki. (3)
Let Ũk(m) denote a generic set of admissible users at kth

BS. Specifically, Ũk(m) denotes a set of users who satisfy
their SINR thresholds under the power constraint, i.e.,
Ũk(m)={ki|Γki(m)≥γki,

∑

i∈Uk

‖mki‖22≤ Pmax
k , i ∈ Uk}, (4)



for all k ∈ K. Our goal is to maximize the number of
admitted users to the system, i.e., to maximize the sum of the
cardinalities of Ũk(m) for all k ∈ K. We now formulate this
design problem as a mathematical optimization problem. To
do this, let us introduce the nonnegative auxiliary variables ski
for all k ∈ K, i ∈ Uk, and consider a set of relaxed SINR
constraints as follows:

Γki(m) ≥ γki − ski, i ∈ Uk, k ∈ K. (5)
In (5), when ski = 0 we recover constraint (3), i.e., the SINR
constraint of ith user of kth BS is satisfied. Furthermore, by
making ski large enough the set of relaxed SINR constraints
in (5) can be always made feasible.

Note that maximizing the number of admitted users that
satisfy the SINR constraints (3) is equivalent to minimizing the
number of users that requires a strictly positive value of ski
that satisfy constraint (5). Hence, by using expressions (2)
and (5) the problem of admission control can be expressed as

minimize
∑

k∈K ‖ sk ‖0
subject to Γki(m) ≥ γki − ski, i ∈ Uk, k ∈ K (6a)

∑

i∈Uk
‖ mki ‖22≤ Pmax

k , k ∈ K (6b)
ski ≥ 0, i ∈ Uk, k ∈ K, (6c)

where sk=[sk1, . . . , skIk ]
T, variables are {ski,mki}k∈K,i∈Uk

.

III. ALGORITHM DERIVATION

Problem (6) is a difficult combinatorial optimization prob-
lem [7] due to the ℓ0 objective function. In fact, this problem is
known to be NP-hard [7], [11]. Therefore, we have to rely on
suboptimal algorithms to solve it. In this section, we provide
a distributed algorithm to solve problem (6).

We start by approximating the objective function of prob-
lem (6) with a concave function

∑

k∈K

∑

i∈Uk
log(ski + ǫ),

where ǫ is a small positive constant and ski ≥ 0 for
all i ∈ Uk, k ∈ K [12]. Let us now define a new vari-
able βki to denote the interference-plus-noise experienced by
ith user of kth BS, i.e., βki =

∑

j∈Uk,j 6=i |(h
k
ki)

Hmkj |2 +
∑

l∈K\{k}

∑

j∈Ul
|(hl

ki)
Hmlj |2 + σ2

ki for all i ∈ Uk, k ∈ K.
Then, a solution of problem (6) can be approximated by
solving the following optimization problem:

minimize
∑

k∈K

∑

i∈Uk
log(ski + ǫ)

subject to γki−ski−
|(hk

ki)
Hmki|

2

βki
≤0, i ∈ Uk, k ∈ K (7a)

∑

j∈Uk,
j 6=i

|(hk
ki)

Hmkj |2 +
∑

l∈K\{k}

∑

j∈Ul

|(hl
ki)

Hmlj |2

+ σ2
ki ≤ βki, i ∈ Uk, k ∈ K (7b)

constraints (6b), (6c), (7c)

with variables {ski,mki, βki}k∈K,i∈Uk
. In constraint (7a), we

have replaced the interference-plus-noise term of Γki(m)
with βki. Note that the objective function of problem (7) is in-
creasing in ski, hence, it can be shown (e.g., by contradiction)
that constraint (7b) holds with equality at the optimal point.

Problem (7) is a non-combinatorial optimization problem.
However, it is still nonconvex because the objective function
is concave and constraint function (7a) is not convex. In
the sequel, we apply sequential convex programming [9] to
solve the problem (7). Here, we approximate the objective
function and constraint function (7a) with their best convex
approximations. Then, we iteratively solve the approximated
convex problem to find a solution for problem (7).

Let the objective function of problem (7) is denoted
by f(s) =

∑

k∈K

∑

i∈Uk
log(ski + ǫ), where s =

[s11, . . . , sKIK ]. Note that f(s) is a concave function. Hence,
the best convex approximation of function f(s) can be ob-
tained by replacing it with its first order approximation [9],
near an arbitrary positive point ŝ = [ŝ11, . . . , ŝKIK ] as follows:

f̂(s) = f(ŝ) +
∑

k∈K

∑

i∈Uk
(ski − ŝki)/(ŝki + ǫ). (8)

We now focus on constraint (7a). Let gki(mki, βki) be a
function defined as gki(mki, βki) = |(hk

ki)
Hmki|2/βki. It is

easy to see that constraint function (7a) is a difference of the
affine function γki−ski and the convex function gki(mki, βki).
The best convex approximation of constraint function (7a)
near an arbitrary point (m̂ki, β̂ki) can be obtained by replac-
ing gki(mki, βki) with its first order approximation [9] as

ĝki(mki, βki) = gki(m̂ki, β̂ki)+

∇gki(m̂ki, β̂ki)
T((mki, βki)− (m̂ki, β̂ki)), (9)

where ∇gki(m̂ki, β̂ki) is the gradient of gki(mki, βki) evalu-
ated at point (m̂ki, β̂ki), defined as

∇gki(m̂ki, β̂ki)=
(

2hkihki
Hm̂ki/β̂ki,−m̂ki

Hhkihki
Hm̂ki/β̂

2
ki

)

.

(10)
Now by using expressions (8) and (9), we approximate

problem (7) near arbitrary positive point (ŝki, m̂ki, β̂ki) for all
i∈Uk, k ∈K, as the following convex optimization problem:

minimize
∑

k∈K

∑

i∈Uk
wkiski

subject to γki − ski − ĝki(mki, βki) ≤ 0, i ∈ Uk, k ∈ K
∑

j∈Uk,
j 6=i

|(hk
ki)

Hmkj |2 +
∑

l∈K\{k}

∑

j∈Ul

|(hl
ki)

Hmlj |2

+σ2
ki ≤ βki, i ∈ Uk, k ∈ K

constraints (6b), (6c),
(11)

where wki = 1/(ŝki + ǫ), variables are ski,mki, βki for all
k ∈ K, i ∈ Uk, and wki acts as a weight associated with user i
of kth BS. Note that in the objective function of problem (11)
we dropped the constant term f(ŝ)− ŝki/(ŝki + ǫ), since it
does not affect the solution of problem (11).

A. An equivalent reformulation
In this subsection, we equivalently reformulate problem (11)

in a global consensus form. We start by introducing an
auxiliary variable zlki to denote the interference generated
by lth BS to ith user of BS k, i.e., zlki =

∑

j∈Ul
|(hl

ki)
Hmlj |2

for all i ∈ Uk, k ∈ K, and l ∈ K\{k}. Then problem (11) can
be equivalently written as



minimize
∑

k∈K

∑

i∈Uk
wkiski

subject to γki − ski − ĝki(mki, βki) ≤ 0, i ∈ Uk, k ∈ K
∑

j∈Uk,j 6=i

|(hk
ki)

Hmkj |2 +
∑

l∈K\{k}

zlki + σ2
ki

≤ βki, i ∈ Uk, k ∈ K
∑

j∈Ul

|(hl
ki)

Hmlj |2≤zlki, i∈Uk, k∈K, l∈K\{k}

constraints (6b), (6c),
(12)

with optimization variables {ski,mki, βki}k∈K,i∈Uk
and

{zlki}i∈Uk,k∈K,l∈K\{k}. Note that problem (11) and (12) are
equivalent as it can be easily shown (e.g., by contradiction)
that third inequality of problem (12) holds with equality at the
optimal point.
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Fig. 1. Illustration of BS coupling, and introducing local copies to decouple
a problem. BS2 and BS3 are coupled with BS1 by coupling variables z2

1i

and z3
1i

, respectively. To distribute the problem, local copy x2

1i,1
of z2

1i
at

BS1 and local copy x2

1i,2
of z2

1i
at BS 2 are introduced. Similarly, local copy

x3

1i,1 of z3
1i at BS1 and local copy x3

1i,3 of z3
1i at BS3 are introduced.

In problem (12), variable zlki represents the power of
intercell interference caused by lth BS to ith user of BS k; thus
variable zlki couples BS l and k. We use consensus technique
[8, Ch.7] to distribute problem (12) over the BSs. The method
consists of introducing local copies of coupling variables zlki
for all i∈Uk, k∈K, and l∈K\{k}, at each BS (see Fig. 1).

Let us define xl
ki,k as the local copy of zlki saved at kth BS,

and xl
ki,l as the local copy of zlki saved at lth BS. Thus for each

zlki we make two local copies (see Fig. 1). Then, problem (12)
can be written equivalently in global consensus form as

minimize
∑

k∈K

∑

i∈Uk
wkiski

subject to γki−ski− ĝki(mki, βki) ≤ 0, i∈Uk, k∈K (13a)
∑

j∈Uk,j 6=i |(h
k
ki)

Hmkj |2 +
∑

l∈K\{k} x
l
ki,k+

σ2
ki ≤ βki, i ∈ Uk, k ∈ K (13b)
∑

j∈Ul
|(hl

ki)
Hmlj |2 ≤ xl

ki,l, i ∈ Uk, k ∈ K,

l ∈ K\{k} (13c)
xl
ki,k = zlki, i ∈ Uk, k ∈ K, l ∈ K\{k} (13d)

xl
ki,l = zlki, i ∈ Uk, k ∈ K, l ∈ K\{k} (13e)

constraints (6b), (6c), (13f)

with optimization variables {ski,mki, βki}k∈K,i∈Uk
, and

{xl
ki,k, z

l
ki}i∈Uk,k∈K,l∈K\{k}. Note that in constraint (13b)

we have replaced zlki by the local copy xl
ki,k . In con-

straints (13c), we have replaced zlki by the local copy xl
ki,l.

Constraints (13d) and (13e) are called consistency constraints
and they enforce the local copies xl

ki,k and xl
ki,l to be equal

to the corresponding global variable zlki.

We now express problem (13) more compactly. To do this,
we first express the consistency constraints of problem (13)
more compactly by using vector notation. The set of lo-
cal variables associated with kth BS includes two compo-
nents: 1) copies of the interference experienced by all the
users associated with kth BS from all the other BSs, i.e.,
{xl

ki,k}l∈K\{k},i∈Uk
, and 2) copies of the interference gener-

ated by kth BS to all the other users, i.e., {xk
li,k}l∈K\{k},i∈Ul

.
Thus, we can compactly write the local copies of intercell
interference terms associated with kth BS as

xk =
(

{xl
ki,k}l∈K\{k},i∈Uk

, {xk
li,k}l∈K\{k},i∈Ul

)

. (14)

Similarly, we can compactly write the global variables asso-
ciated with kth BS as

zk =
(

{zlki}l∈K\{k},i∈Uk
, {zkli}l∈K\{k},i∈Ul

)

. (15)

It is worth noting that some components of zk are also in the
components of zl for all l ∈ K\{k}. For example, components
{zlki}i∈Uk

and {zklj}j∈Ul
are common to both zk and zl. With

the compact notations introduced above we equivalently write
the equality constraints (13d) and (13e) as

xk = zk, k ∈ K. (16)

Now, for the sake of brevity, let us define the following set

Ok={sk,mk,βk,xk | constraints (13a)−(13c), (13f)} , (17)

where βk = [βk1, . . . , βkIk ], and the following function

fk(sk,mk,βk,xk) =
{ ∑

i∈Uk
wkiski (sk,mk,βk,xk) ∈ Ok

∞ otherwise. (18)

Then by using notations in (14), (15), (17), and (18), consensus
problem (13) can be compactly written as

minimize
∑

k∈K fk(sk,mk,βk,xk)
subject to xk = zk, k ∈ K,

(19)

with variables sk,mk,βk, xk, and zk for all k ∈ K.

B. Distributed algorithm via ADMM
In this section, we derive a distributed algorithm for prob-

lem (19). The proposed algorithm is based on ADMM [8]. Let
ylki,k and ylki,l for all i ∈ Uk, k ∈ K, l ∈ K\{k}, be the dual
variables associated with constraints (13d) and (13e) of prob-
lem (13). Specifically, the dual variables associated with kth
BS in constraints (13d) and (13e) can be compactly written as

yk =
(

{ylki,k}l∈K\{k},i∈Uk
, {ykli,k}l∈K\{k},i∈Ul

)

. (20)

Now we write the augmented Lagrangian for problem (19) as

Lρ({sk,βk,xk,mk, zk}k∈K) =
∑

k∈K

(

fk(sk,βk,xk,mk)

+ yk
T(xk − zk) +

ρ

2
‖ xk − zk ‖22

)

, (21)

where {yk}k∈K are the dual variables associated with the
equality constraint of (19).

Each iteration of the ADMM algorithm consists of the
following three steps [8, Ch. 3]:



s
q+1
k ,βq+1

k ,xq+1
k ,mq+1

k =

argmin
sk,βk

,xk,mk

Lρ(sk,βk,xk,mk, z
q
k,y

q
k), k ∈ K (22a)

{zq+1
k }k∈K =

argmin
zk∈K

Lρ({s
q+1
k ,βq+1

k ,xq+1
k ,mq+1

k , zk,y
q
k}k∈K) (22b)

y
q+1
k = y

q
k + ρ(xq+1

k − z
q+1
k ), k ∈ K, (22c)

where the superscript q is the iteration counter. Note that
steps (22a) and (22c) can be carried out independently in
parallel at each BS. Recall that components of zk couple with
two local variables that are associated with the interfering BSs
(see constraints (13d) and (13e)). Thus, step (22b) requires
gathering the updated local and dual variables from all BSs.
In the sequel, we first explain the way to solve steps (22a)
and (22b). Then, we present the proposed ADMM based
distributed algorithm.

We start by providing a method to compute step (22a). The
local variables update (sq+1

k , βq+1
k , xq+1

k , mq+1
k ) in (22a) is

a solution of the following optimization problem:
minimize fk(sk,βk,xk,mk) + yk

qT(xk − z
q
k)

+ ρ
2 ‖ xk − z

q
k ‖22,

(23)

with variables sk,βk,xk,mk. Here we use y
qT
k instead of

(yq
k)

T to lighten the notation. Let vn be a scaled dual variable,
i.e., vn = (1/ρ)yn. By using the notations (17) and (18),
problem (23) can be equivalently written as

minimize
∑

i∈Uk
wkiski +

ρ
2 ‖ xk − z

q
k + v

q
k ‖22

subject to γki − ski − ĝki(mki, βki) ≤ 0, i ∈ Uk
∑

j∈Uk,j 6=i |(h
k
ki)

Hmkj |2 +
∑

l∈K\{k} x
l
ki,k

+σ2
ki ≤ βki, i ∈ Uk

∑

i∈Uk
|(hk

lj)
Hmki|

2 ≤ xk
lj,k, j ∈ Ul, l ∈ K\{k}

∑

i∈Uk
‖ mki ‖22≤ Pmax

k

ski ≥ 0, i ∈ Uk,
(24)

with variables sk, βk, xk, and mk. Note that the second
term of the objective function of problem (24) is obtained by:
1) combining the linear and quadratic terms of the objective
function of problem (23) as yk

qT(xk−z
q
k)+

ρ
2 ‖ xk−z

q
k ‖22=

ρ
2 ‖ xk−z

q
k+v

q
k ‖22 − ρ

2 ‖ v
q
k ‖22, and 2) dropping the constant

term ρ
2 ‖ v

q
k ‖22. This constant term is dropped since it does

not affect the solution of the problem. Let us denote by s⋆k, β⋆
k,

x⋆
k, and m⋆

k a solution of problem (24); and we set sq+1
k = s⋆k,

β
q+1
k = β⋆

k, xq+1
k = x⋆

k, and m
q+1
k = m⋆

k.
We now consider the second step of ADMM algorithm,

i.e., (22b), and provide a solution for global variable update.
The update {zq+1

k }k∈K is a solution of the following problem:

minimize
∑

k∈K y
qT
k (xq+1

k − zk)+
ρ
2 ‖xq+1

k − zk ‖
2
2, (25)

with variables {zk}k∈K. The solution of problem (25) is

z
l[q+1]
ki = (x

l[q+1]
ki,l +x

l[q+1]
ki,k )/2, i∈Uk, k∈K, l∈K\{k}, (26)

Due to space limitation we have omitted detailed derivation
in obtaining expression (26); we refer the interested reader
to [13] for more details.

Finally, we summarize the proposed distributed algorithm
for problem (7) in Algorithm 1.

Algorithm 1 Distributed algorithm for solving problem (7)
1: initialization:

{

s0ki,m
0
ki, β

0
ki

}

i∈Uk,k∈K
, {wki =

1}i∈Uk,k∈K, iteration index q = 0.
repeat

2: Set {m̂ki = m
q
ki, β̂ki = βq

ki}i∈Uk,k∈K. Form
{ĝki(mki, βki)}i∈Uk,k∈K using expression (9).

3: ADMM Algorithm:
repeat
a. Each BS k ∈ K updates the local variables
(sq+1

k ,βq+1
k ,xq+1

k ,mq+1
k ) by solving (24).

b. BS k and l exchange local copies xl
ki,k and xl

ki,l

for all i ∈ Uk, k ∈ K, l ∈ K\{k}.
c. Each BS k updates global variable z

q+1
k using (26).

d. Each BS k updates dual variable y
q+1
k by solv-

ing (22c). Set q = q + 1.
until stopping criterion is satisfied

4: Updatewki=1/ (sqki + ǫ)}i∈Uk,k∈K.
until stopping criterion is satisfied

We refer to each execution of the steps 2-4 as an outer
iteration and to each execution of the ADMM algorithm (i.e.,
steps 3a-3d) as an inner iteration. In each outer iteration,
the algorithm approximates problem (7) as a convex function
at step 2, and this can be done individually in parallel at
each BS. In the inner iteration, steps 3a, 3c, and 3d are
decentralized over the BSs. Step 3b requires a coordination
between the BSs to exchange the updated values of the local
variables. In ADMM algorithm, the standard stopping criteria
is to check the primal and dual residuals [8, Ch. 3.3]. As
ADMM can produce acceptable results of practical use within
a few iterations, a finite number of iterations is used to stop
the ADMM algorithm in step 3 [8].

IV. NUMERICAL RESULTS

In our simulations, we consider a setup with K = 3 BSs,
each one consists of T = 4 transmit antennas. The BSs
are placed in such a way that the distance between any two
adjacent BSs is equal, and we denote this distance by DBS. We
assume circular cells, where the radius of each one is denoted
by RBS. Furthermore, we consider each BS serves four users.

We use an exponential path loss model, where the channel
gains between BS l and ith user of BS k is modeled as hl

ki =
(

dlki/d0
)−η/2

clki, where dlki is the distance from lth BS to ith
user of BS k, d0 is the far field reference distance, η is the
path loss exponent, and clki ∈CT is arbitrarily chosen from the
distribution CN (0, I). We assume that {Pmax

k = Pmax
0 }k∈K,

{γki = γ}i∈Uk,k∈K. We define the SNR operating point
at a distance d as SNR(d) =

(

Pmax
0 /σ2

)

(d/d0)
−η. In our

simulations, we set SNR(RBS) = 5dB, d0 = 1, η = 4,
Pmax
0 /σ2 = 45dB, and DBS = 1.6RBS.
Fig. 2 shows the convergence behavior of the distributed

Algorithm 1. As a benchmark we obtain a centralized solution



for problem (6), by iteratively solving problem (11) (we refer
the reader to [13] for more detail). Fig. 2 also shows the
number of admitted users in each iteration of the distributed
Algorithm 1 compared to that of a centralized algorithm. Here
we set the maximum number of ADMM iterations to 10.
We denote by F q

D =
∑

k∈K

∑

i∈Uk
log(sqki + ǫ) the objective

value of problem (7) calculated at iteration q of Algorithm 1,
where sqki is the auxiliary variable of ith user of base station k
in qth iteration. The markers “square” and “circle” in Fig. 2 are
to indicate FD and the number of admitted users, respectively.
Furthermore, these markers represent the start of ADMM
algorithm for a new point {m̂ki, β̂ki}i∈Uk,k∈K that is set
at step 2 of the algorithm. Results show that the proposed
distributed algorithm converges to the centralized algorithm,
and it also admits the same number of users as the centralized
algorithm.
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Fig. 2. Objective value F
q

D versus iterations, and the number of admitted
users versus iterations for with γ = 9dB

Next, we evaluate the average number of admitted users
versus SINR target γ of the proposed Algorithm 1 in Fig. 3.
As benchmarks, we consider an exhaustive search algorithm, a
centralized algorithm, and the distributed algorithm in [6] (we
name as Alg. [6]-distributed). The average number of admitted
users obtained by distributed Algorithm 1 is plotted by running
ADMM algorithm for Q = 1, 5, 10, and 50 iterations. Results
show that for Q = 5, 10, and 50 proposed Algorithm 1
outperforms Alg. [6]-distributed for all the considered SINR
targets. When Q = 1, our Algorithm 1 slightly performs
better than Alg. [6]-distributed at low SINR targets. However,
for large SINR targets, proposed Algorithm 1 outperforms
Alg. [6]-distributed when Q = 1. Furthermore, results show
that when γ is low, a centralized algorithm admits more users
on average than that of the distributed Algorithm 1. But for
all the simulated cases, when γ is high the average number of
admitted users obtained by using Algorithm 1 is getting closer
to that of the centralized algorithm, for considered values of Q.

V. CONCLUSIONS

We have considered the admission control problem for the
downlink of a multicell multiple-input single-output system.
We have cast this problem as an ℓ0 minimization problem,
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Fig. 3. Distributed algorithm comparison for average number of admitted
users versus the SINR target

which is combinatorial, NP-hard. This ℓ0 minimization prob-
lem has then been approximated as a non-combinatorial one.
Then, we have proposed a suboptimal distributed algorithms
based on sequential convex programming and alternating di-
rection method of multipliers to solve it. Numerically, we
show that the proposed algorithm achieves near-to-optimal
performance.
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