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Abstract—Many fault-tolerant algorithms are based on de-
cisions made by a quorum of nodes. Since the algorithms
are utilised in safety critical applications such as distributed
databases, it is necessary to make sure that they operate
reliably under every possible scenario. We introduce a generic
compositional formalism, based on parameterised labelled
transition systems, which allows us to express safety properties
of parameterised quorum systems. We prove that any param-
eterised verification task expressible in the formalism collapses
into finitely many finite state refinement checking problems.
The technique is implemented in a tool, which performs the
verification completely automatically. As an example, we prove
the leader election phase of the Raft consensus algorithm
correct for an arbitrary number of terms and for a cluster
of any size.

1. Introduction

Many fault-tolerant distributed algorithms are based on
decisions made by a quorum of nodes. Consensus and
atomic broadcast protocols, Paxos [1], Zab [2], and Raft [3],
are examples of such algorithms. They are used in dis-
tributed databases and key-value stores, which are from
time to time under a heavy load. In these circumstances,
seemingly rare combinations of events become frequent [4],
which implies that it is necessary to make sure that the
algorithms operate reliably under every possible scenario.
Consequently, the verification of fault-tolerant distributed
systems has gained a lot of attention recently [5], [6], [7],
[8], [9], [10], [11].

We introduce a formal theory for modelling and
analysing quorum systems. The key characteristics of such
systems is that their topology evolves over time and connec-
tivity is defined by quorum sets, subsets which cover more
than a half of the base set, which can be, e.g., the set of
all servers. As a running example, we consider the leader

∗. A. Siirtola: Refinement Checking Parameterised Quorum Sys-
tems. In A. Legay, K. Schneider, eds.: 17th International Confer-
ence on Application of Concurrency to System Design (ACSD), pp.
39–48, Zaragoza, Spain, June 28–30, 2017. IEEE, 2017. Available:
https://doi.org/10.1109/ACSD.2017.15 c©2017 IEEE. Personal use of this
material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

election phase of the Raft consensus algorithm [3]. In Raft,
time is divided into terms of arbitrary length, numbered with
consecutive integers, and a server can crash at any moment.
When a server is running, it is in one of three states, a
follower, candidate, or leader. A server always (re)starts as
a follower. A follower can vote for at most one server in
a term. If a follower does not regularly receive messages
from the leader, it increases its term and promotes itself to
a candidate. A candidate sends vote requests to the other
servers and if it receives a quorum of votes, it becomes a
leader. However, if a server learns that another server has
a higher term, it updates its term and reverts back to the
follower. Our goal is to formally prove that in each term,
there is at most one leader independent of the number of
terms and the size of the cluster.

Technically, our approach is based on parameterised
labelled transition systems (PLTSs) [12], where a system
implementation and specification are basically expressed
as the parallel composition of labelled transition systems
(LTSs). On the implementation side, one can use hiding,
too, and correctness is understood as trace refinement, which
allows for the analysis of safety properties. The current
theory allows for compositional reasoning and lends support
to multiple parameters controlling the number of replicated
LTSs. It also allows for the specification of the system
topology by using the universal fragment of first order
logic. This includes systems with, e.g., a star, bipartite,
and totally (un)connected topology. However, systems with
a quorum topology are not supported since in order to
specify a quorum set, we should be able to say that for
each element not in the set, there is a unique element in
the set. This requires the use of existential quantification,
which makes the verification problem undecidable [12].
Another possibility to model quorum sets is to use a counter
over replicated components, but also this quickly leads to
undecidability.

In this paper, we equip the PLTS formalism with pa-
rameters of a new kind, quorum function variables (QFVs),
while maintaining compositionality. QFVs can be thougth as
functions from tuples of the ids of replicated components to
quorum sets of the ids of replicated components. By using
a QFV which assigns a quorum set for each server in each
term, we can model, e.g., the leader election phase of Raft
where the connectivity of the servers may change from term
to term. After that, we prove that for each verification task
expressible in our formalism, there are upper bounds, cut-



offs, to the parameters such that if the system meets the
specification for all parameter values up to the cut-offs, then
the system is correct with respect to the specification for
all parameter values. The cut-offs are computable and often
very tight, because they are not shared by all verification
tasks expressible in the formalism as in [13], but deter-
mined for each implementation and specification process
separately. After obtaining the cut-offs, the verification can
be completed by using efficient, existing tools for finite state
systems. The whole process is implemented by extending
Bounds tool, earlier introduced in [14]. In order to handle the
QFVs, the results of [12] are not only adapted to take QFVs
into account but several completely new results (Proposi-
tion 21, Lemma 23, Proposition 24, and Proposition 26) on
the cut-offs of quorum sets are introduced.

The unique features of our formalism are its ability
to express parameterised quorum systems, the support for
compositional reasoning, and decidability. We are not aware
of other formalisms with all these features.

In terms of compositional parameterised verification, the
closest related works are the data independence (DI) re-
sults [15], the behavioural fixed point (BFP) technique [16]
(similar to the network invariant method [17]), and the
combination of these, the data independent induction [18].
DI applies to systems with parameterised data types but
a fixed number of processes and the BFP technique can
handle systems with a linear topology, whereas our focus
is on systems with an arbitrary number of processes with a
quorum topology. Actually, both the techniques are already
combined with our original verification technique without
the QFVs in [19], [20], but the same extensions should
work with our QFV-enabled formalism, too. That is because
the BFP technique is applied before and the DI results
after our approach. Our verification technique is previously
adapted to modal interface automata [21], too, but neither
this formalism lends support to the analysis of systems with
a quorum topology.

From the viewpoint of quorum systems, the closest
related work is probably the parametric interval abstrac-
tion (PIA) [8]. PIA applies to parameterised systems with
threshold transitions, which can be used to model quorum
systems. However, the technique does not lend support to
compositional reasoning and since it is abstraction-based,
termination is not guaranteed. In [9], quorum transitions
are introduced in order to treat a parameterised Paxos
protocol, but this approach only enables verification with
respect to some parameters. Theorem proving techniques,
which typically involve some degree of user intervention, for
the formal verification of the Raft protocol are considered
in [10], [11], and the efficient verification of the small
instances of parameterised quorum systems in [5], [6], [7].

There are also several other approaches to parameterised
verification based on cut-offs [13], [22], induction [16],
[17], [18], abstraction [23], [24], [25], and infinite state
verification algorithms [26], [27]. However, most cut-off
results and infinite state verification algorithms do not lend
support to quorum topologies or topologies that evolve over
time because it often breaks decidability. On the other hand,

induction and abstraction methods are typically incomplete
and not guaranteed to terminate.

In the next section, we recall the calculus of LTSs.
After that, we equip LTSs with parameters and show that
the resulting parameterised formalism is compositional. In
Section 4, we present our main result, the cut-off theorem
for PLTSs with QFVs. The paper concludes with discussion
on future work.

2. Labelled Transition Systems

In this section, we briefly recall a CSP-like LTS-based
process calculus with parallel composition and hiding opera-
tors and trace refinement [28]. Basically, the only difference
with the usual LTS notation is that events have an explicit
data part which makes adding parameterisation convenient.

We assume that there is a countably infinite set of events.
One of them is the invisible event, denoted τ , and the other
events are visible. The visible events have an explicit channel
and data part; we assume countably infinite sets C and A
of respectively channels and constants and that each visible
event is of the form c(e), where c is a channel and e is a
finite tuple of constants.

A labelled transition system (LTS) is a four-tuple L :=
(S,E,R, ṡ), where (1) S is a non-empty set of states, (2)
E is a set of visible events, (3) R ⊆ S× (E ∪{τ})×S is a
set of transitions, and (4) ṡ is the initial state. The second
component E is called the alphabet (of L).

Let Li be an LTS (Si, Ei, Ri, ṡi) for both i ∈ {1, 2}.
The parallel composition (of L1 and L2) is an LTS

L1 ‖ L2 := (S1 × S2, E1 ∪ E2, R‖, (ṡ1, ṡ2)) ,

where R‖ is the set of all triples ((s1, s2), α, (s′1, s
′
2)) such

that either (1) α 6= τ and (si, α, s
′
i) ∈ Ri for both i ∈ {1, 2};

(2) (s1, α, s
′
1) ∈ R1, α /∈ E2, s2 ∈ S2 and s′2 = s2; or (3)

(s2, α, s
′
2) ∈ R2, α /∈ E1, s1 ∈ S1 and s′1 = s1.

Let L be an LTS (S,E,R, ṡ) and E′ a set of visible
events. The LTS L after hiding E′ is an LTS L \ E′ :=
(S,E \ E′, R\, ṡ), where R\ is the set of (1) all triples
(s, α, s′) ∈ R such that α /∈ E′; and (2) all triples (s, τ, s′)
such that (s, α, s′) ∈ R for some α ∈ E′.

A finite alternating sequence (s0, α1, s1, . . . , αn, sn) of
states and events of L is an execution of L if s0 is the
initial state and (si−1, αi, si) is a transition of L for every
i ∈ {1, . . . , n}. A finite sequence of visible events is a trace
(of L), if there is an execution of L such that the sequence
can be obtained from the execution by erasing all the states
and the invisible events. The set of all the traces of L is
denoted by tr(L). An LTS L1 is a trace refinement of an
LTS L2, denoted L1 �tr L2, if L1 and L2 have the same
alphabet and tr(L1) ⊆ tr(L2) [29]. The LTSs L1 and L2

are trace equivalent, denoted L1 ≡tr L2, if and only if
L1 �tr L2 and L2 �tr L1. Clearly, �tr is a preorder (i.e.,
a reflexive and transitive relation) and ≡tr an equivalence
relation on the set of LTSs.

The operators and the trace refinement relation have
many useful properties [12], [28], [29], which are exploited



in the proofs. The parallel composition is commutative, asso-
ciative, and idempotent with respect to ≡tr (i.e., L ‖ L ≡tr

L for all LTSs L) and a single-state LTS Lid := ({ṡ}, ∅, ∅, ṡ)
with the empty alphabet and no transition is the identity
element of ‖. This allows us to extend ‖ to every finite set
I = {i1, . . . , in} and all LTSs Li1 , . . . , Lin by defining

‖
i∈I

Li :=

{
Li1 ‖ (‖i∈I\{i1} Li), when n > 0 ,

Lid , when n = 0 .

Moreover, distributing hiding over parallel composition re-
sults in an LTS greater in the preorder; (L1 ‖ L2) \ E �tr

(L1 \ E) ‖ (L2 \ E) for all LTSs L1, L2 and every set E
of visible events [12]. Finally, �tr is compositional with
respect to the parallel composition and hiding operators; if
L1 �tr L2, then L1 ‖ L3 �tr L2 ‖ L3 and L1\E �tr L2\E
for all LTSs L1, L2, L3 and every set E of visible events.

3. Parameterised Labelled Transition Systems

In this section, we equip LTSs with parameters while
preserving compositionality. This will be done in the same
fashion as in [12], but here we also introduce parameters of
a new kind, quorum function variables.

Definition 1 (Quorum set). Let M be a subset of B. The
set M is a quorum set (of B) if and only if 2|M | > |B|.

We write Pq(B) for the set of all the quorum sets of B,
i.e., the set of all subsets of B which cover more than half
of B, and Pqe(B) for the set Pq(B) ∪ {∅}, which includes
the empty set, too.

In order to model Raft, we parameterise LTSs and oper-
ators with types, variables, and quorum function variables
(QFVs). A type represents a finite non-empty set of con-
stants that are typically used as the identifiers of replicated
components of a certain kind. A variable represents a single
constant, i.e., it typically refers to an individual component
of a certain type. A QFV represents a function which maps
a tuple of constants to a quorum set of a certain type or
to the empty set. Hence, a QFV typically maps a tuple
of component ids to a quorum set of component ids or to
the empty set. The sets of types, variables, and QFVs are
denoted by T, X, and F, respectively.

Formally, we assume that (1) for each type T there is
a countably infinite set IT ⊆ A denoting the elements of
the type T such that IU and IV are disjoint for different
types U and V , (2) for each variable x there is a type Tx
determining the domain of x, and (3) for each QFV Π there
is a type TΠ denoting the image of Π and a (possibly empty)
tuple TΠ := (T 1

Π, . . . , T
nΠ

Π ) of types denoting the domain
of Π. The possible values of types, variables, and QFVs are
determined by a valuation.

Definition 2 (Valuation). A valuation is a function φ whose
domain is a finite set of types, variables, and QFVs such that

1) for each type T ∈ dom(φ), φ(T ) is a finite non-
empty subset of IT ,

2) for every variable x ∈ dom(φ), Tx ∈ dom(φ) and
φ(x) ∈ φ(Tx), and

3) for every QFV Π ∈ dom(φ), TΠ, T
1
Π, . . . , T

nΠ

Π ∈
dom(φ) and φ(Π) is a function: φ(T 1

Π) × . . . ×
φ(TnΠ

Π )→ Pqe(φ(TΠ)).

A valuation is extended to sets and tuples of types,
variables, and QFVs in the usual way, by applying it to each
tuple componentwise and to each set elementwise. Note that
the value of a QFV may be a function that maps some of
its arguments to the empty set instead of a quorum set. This
is needed to carry out the proof of Proposition 18.

Example 3. For our Raft model, we pick a type TS to
represent the set of the identifiers of servers and a type TT
to represent the set of the identifiers of terms. We also use
a QFV ΠS with TΠS = TS and TΠS = (TS , TT ) to assign
each server and each term a set of servers from which the
server needs a vote in order to become a leader in the term.
Variables x0, x1, and x2 of the type TS are used to refer to
individual servers and a variable y of the type TT is used
to refer to a specific term.

If we want to consider an instance of Raft with three
servers and a single term, we can use, for instance, a
valuation φ such that φ(TS) = {s1, s2, s3}, φ(TT ) = {t1},
φ(x0) = s1, φ(x1) = φ(x2) = s2, φ(y) = t1, and φ(ΠS) =
{((s1, t1), {s1, s2}), ((s2, t1), {s2, s3}), ((s3, t1), ∅)}. Note
that φ(ΠS) maps, e.g., a tuple (s1, t1) to {s1, s2}, which
is a quorum set of φ(TS). In the context of our model, it
means that in order for the server s1 to become a leader in
the term t1, it needs a vote from itself and the server s2. On
the other hand, (s3, t1) is mapped to the empty set, which
means that the server s3 should not be able to become a
leader in the term t1.

We use guards to represent (i) (in)equality tests between
variables and (ii) inclusion tests between a variable and a
quorum set. Formally, a guard G is a propositional formula
which is formed from atomic expressions of the form >
(true), x = y (equality test), x 6= y (inequality test),
z ∈ Π(x1, . . . , xnΠ

) (inclusion test), and binary connectives
∨ (or) and ∧ (and). Above, x, y are variables such that
Tx = Ty, Π is a QFV, z a variable such that Tz = TΠ, and
x1, . . . , xnΠ

are variables such that TΠ = (Tx1
, . . . , TxnΠ

).
The parameters of a guard G are the variables and the

QFVs occurring in G. The set of all the parameters of G is
denoted by par(G) and

par(G) := par(G) ∪ {Tx | x ∈ par(G) ∩ X}∪
{TΠ, T

1
Π, . . . , T

nΠ

Π | Π ∈ par(G) ∩ F}

is the set of all the parameters of G plus the types of the
parameters. A valuation φ is said to be compatible (with G)
if and only if par(G) ⊆ dom(φ).

Let G be a guard and φ a compatible valuation. The φ-
instance of G or the instance of G (generated by φ), denoted
by [[G]]φ, is the value of the proposition which is obtained
from G by substituting true for >, φ(x) for every variable
x, and φ(Π) for every QFV Π occurring in G.

Example 4. Let us consider a guard G := (x0 6= x1)∧(x1 ∈
ΠS(x0, y)), where ΠS is a QFV and x0, x1, and y are the



variables of Example 3. The guard represents a claim: “the
server x0, which is different from x1, needs a vote from x1

in order to become a leader in the term y.” The guard has
four parameters, namely the variables x0, x1, y and the QFV
ΠS , which implies that par(G) = {x0, x1, y,ΠS , TT , TS}.
Let φ be the valuation of Example 3. Obviously, φ is
compatible with G and since φ(x0) 6= φ(x1) and φ(x1) ∈
φ(ΠS)(φ(x0), φ(y)), [[G]]φ evaluates to true.

A structure c(x), where c is a channel and x a tuple
of variables, is a parameterised visible event. The sim-
plest PLTSs are basically LTSs where parameterised visible
events are substituted for the ordinary ones.

Definition 5 (EPLTS). An elementary parameterised LTS
(EPLTS) is a four-tuple (S,Σ,∆, ṡ), where (1) S is a finite
non-empty set of states, (2) Σ is a finite set of parameterised
visible events, (3) ∆ ⊆ S × (Σ∪ {τ})× S is a finite set of
parameterised transitions, and (4) ṡ is the initial state.

Example 6. In order to model the Raft specification, we first
consider it from the viewpoint of two servers, x0 and x1,
and a term y. We use a parameterised event leader(xi, y),
where i ∈ {0, 1}, to denote that the server xi is chosen as a
leader in the term y. Here, leader is a channel and x0, x1,
and y are variables of the type TS , TS , and TT , respectively.

Now, the specification from the viewpoint of two servers
and a term can be formalised as an EPLTS Spec2 (x0, x1, y)
in Figure 1, which formally says that no two servers can
become a leader during the same term but repeating a leader
announcement is fine.

leader(x0, y)

leader (x0, y)

leader(x1, y)

leader (x1, y)

Figure 1. EPLTS Spec2 (x0, x1, y) representing the Raft specification from
the viewpoint of two servers, x0 and x1, and a term y

More complicated PLTSs are constructed from elemen-
tary ones by using guards and (replicated) parallel compo-
sition and hiding operators.

Definition 7 (PLTS). Parameterised LTSs (PLTSs) are gen-
erated inductively as follows:

1) An EPLTS is a PLTS.
2) If P is a PLTS and G a guard, then ([G]P ) is a

PLTS.
3) If P1 and P2 are PLTSs, then (P1 ‖ P2) is a PLTS.
4) If P is a PLTS and C a finite set of channels, then

(P \C) is a PLTS.
5) If P is a PLTS and x a variable, then (‖x P ) is a

PLTS.

A variable x is bound in a PLTS P if it occurs in P and
its every occurrence is within a substructure ‖x P ′ of P . The
other variables occurring in P are free in P . The parameters
of P are the free variables, the types of bound variables, and
the QFVs occurring in P . Now, the sets par(P ) and par(P )

and the notion of compatibility can be defined like in the
case of guards: par(P ) is the set of all parameters of P and
par(P ) is the set of all parameters of P plus the types of
the parameters. We may also write P (x,T,Π) to emphasise
that P is a PLTS the parameters of which are the variables
in the tuple x, the types in the tuple T, and the QFVs in the
tuple Π. A valuation φ is compatible with P if and only if
par(P ) ⊆ dom(φ).

Each PLTS represents (infinitely) many LTSs obtained
by fixing the values of parameters and evaluating the op-
erators. Let φ be a valuation and x a variable such that
Tx ∈ dom(φ). We write ext(φ, x) for the set of all
valuations φ′ with the domain dom(φ) ∪ {x} such that
φ′(x) ∈ φ(Tx) and φ′|dom(φ)\{x} = φ|dom(φ)\{x}, i.e., φ
and φ′ agree on the values of parameters outside x.

Definition 8 (Instance of a PLTS). Let P be a PLTS and φ
a compatible valuation. The φ-instance of P or the instance
of P (generated by φ) is denoted by [[P ]]φ and determined
inductively as follows:

1) [[(S,Σ,∆, ṡ)]]φ = (S, {c(φ(x))|c(x) ∈ Σ},
{(s, c(φ(x)), s′)|(s, c(x), s′) ∈ ∆} ∪
{(s, τ, s′) ∈ ∆}, ṡ),

2) [[[G]P ′]]φ =

{
[[P ′]]φ, if [[G]]φ is true,
Lid , if [[G]]φ is false,

3) [[P1 ‖ P2]]φ = [[P1]]φ ‖ [[P2]]φ,
4) [[P ′ \C]]φ =

[[P ′]]φ \ {c(a1, . . . , an) | c ∈ C, a1, . . . , an ∈ A},
5) [[‖x P ′]]φ = ‖φ′∈ext(φ,x)[[P

′]]φ′ .

We can also write P (φ(x), φ(T), φ(Π)) for the φ-instance
of a PLTS P (x,T,Π).

Example 9. Recall the EPLTS Spec2 of Figure 1 represent-
ing the partial Raft specification. As we let the variable y to
range over all term identifiers and x0 and x1 over all servers
identifiers, we obtain the model of the full specification

Spec := ‖
x0

‖
x1

‖
y
[x0 ∈ ΠS(x0, y)∧

x1 ∈ ΠS(x1, y)]Spec2 (x0, x1, y) ,

which says that for each term, there can be at most one
leader. Moreover, the guard guarantees that the leader is
a server that voted for itself in this term. Note that since
Spec2 has no bound variable, par(Spec2 ) = {x0, x1, y} but
par(Spec2 ) = {x0, x1, y, TS , TT }. On the other hand, Spec
has no free variable. That is why par(Spec) = par(Spec) =
{ΠS , TS , TT }.

In order to visualize Spec, let us consider a valuation
φ such that φ(TT ) = {t1}, φ(TS) = {s1, . . . , sn} and
si ∈ φ(ΠS)(si, t1) for all i ∈ {1, . . . , n}. Obviously, the
valuation is compatible with Spec and the φ-instance of
Spec is a star-shaped LTS in Figure 2, which indeed says
that there can be at most one leader for the term t1.

We complete our parameterised formalism by extending
the trace refinement relation to the set of PLTSs while
preserving compositionality.



leader (s1 , t1)

leader (s1, t1)

leader (sn, t1)

leader (sn, t1)

lea
d
er

(s
2 ,t

1 )

leader (s2, t1)

. . .

Figure 2. The instance of Spec representing the Raft specification from the
viewpoint of n servers s1, . . . , sn and a term t1

Definition 10 (Trace refinement on PLTSs). A PLTS P1 is
a trace refinement of a PLTS P2, denoted P1 �tr P2, if and
only if [[P1]]φ �tr [[P2]]φ for all compatible valuations φ.

Proposition 11. The trace refinement relation �tr is a
compositional preorder on the set of PLTSs.

Parameterised verification tasks can be now expressed
with the aid of PLTSs and the relation above. Given a system
implementation PLTS P and a system specification PLTS Q,
we consider P to be correct (with respect to Q) if and only
if P �tr Q.

Example 12. In order to model the Raft implementation,
we use a parameterised event vote(x0, y, x1) to denote that
the server x0 votes for the server x1 in the term y and
a parameterised event candidate(x0, y) to denote that the
server x0 promotes itself to a candidate in the term y.

The behaviour of the implementation of Raft is modelled
in the same fashion as the specification. First, we capture
it in the follower/candidate mode from the viewpoint of
servers x0, x1, x2 and a term y in an EPLTS Flw3 in
Figure 3. The EPLTS says that in the term y, the server
x0 can vote for either x1 or x2, but not both, or become a
candidate. When we let the variables x1, x2, and y to range
over all values in their domain (with the restriction that the
values of x1 and x2 are different), we obtain the model of a
single server x0 running in the follower mode as the PLTS

Flw := ‖
x1

‖
x2

[x1 6= x2] ‖
y
Flw3 (x0, x1, x2, y) ,

which formally states that a server can vote for at most one
server in the term or become a candidate.

vote(x0, y, x1)

vote(x0, y, x1)

vote(x0, y, x2)

vote(x0, y, x2)

candidate(x0, y)

Figure 3. EPLTS Flw3 (x0, x1, x2, y) representing the Raft implementa-
tion in the follower/candidate mode from the viewpoint of servers x0, x1,
x2 and a term y

Second, we model the Raft implementation in the candi-
date/leader mode from the viewpoint of servers x0, x1 and

a term y as an EPLTS Ldr2 in Figure 4. This model says
that once the server x0 becomes a candidate and receives a
vote from the server x1, it can promote itself to a leader in
the term y. As we let y to range over all term ids and x1 to
range over all values in a quorum set of the server x0 for
the term y, the model of a single server x0 running in the
leader mode is obtained as the PLTS

Ldr := ‖
y
‖
x1

[x0 ∈ ΠS(x0, y) ∧ x1 ∈ ΠS(x0, y)]Ldr2 ,

which says that in order for a server to become a leader, it
needs to become a candidate and then receive a vote from
a quorum of servers, including itself.

candidate(x0, y) vote(x1, y, x0)

vote(x1, y, x0)

leader (x0, y)

Figure 4. EPLTS Ldr2 (x0, x1, y) representing the Raft implementation in
the candidate/leader mode from the viewpoint of servers x0, x1 and a term
y

When we compose the partial models in parallel and
let x0 to range over all server ids, we obtain the model of
the Raft implementation with an arbitrary many servers and
terms as the PLTS

Raft := ‖
x0

(Ldr ‖ Flw) .

In order to analyse the correctness of Raft, we hide
the events which are irrelevant to the specification. We
write LE for the set {vote, candidate} and Raft ′ for the
PLTS Raft \ LE . Now, the problem whether the protocol
operates correctly can be formalised as the question whether
Raft ′ �tr Spec holds.

Note that in our model, a quorum set needed by a server
to become a leader can change from term to term. Hence,
the formalism enables the specification of parameterised
systems where the topology evolves over time but for each
instance, the changes in the topology are fixed a priori. This
is not a restriction though since every possible combination
of topology changes is covered by some valuation. Hence,
every trace of the protocol is contained in some instance
of the model, which is sufficient for the analysis of safety
properties.

4. Refinement Checking PLTSs

In this section, we show how to compute structural cut-
offs for types such that to prove a parameterised system
correct for all the parameter values it is sufficient to check
only finitely many instances up to the cut-offs, provided the
specification does not involve hiding. The requirement on
not using hiding in specifications is necessary for decidabil-
ity [12]. However, the restriction is not severe since hiding
is typically only applied on the implementation side. Hence,
from now on, an implementation PLTS refers to any PLTS,



whereas a specification PLTS means a PLTS which does not
involve hiding.

Intuitively, the main steps of our reduction technique are
the following:

1) First, we show that if a big instance of the imple-
mentation PLTS P (resp., a specification PLTS Q)
is composed of the same components as a set of
small instances and each small instance of P is a
trace refinement of the corresponding instance of
Q, then the big instance of P is a trace refinement
of the big instance of Q, too (Proposition 18).

2) Second, we prove that there is an upper limit for
the size of small instances which is obtained by
a structural analysis of the system implementation
and specification (Propositions 21 and 26).

3) By combining the above results, we see that a
trace refinement checking task on PLTSs reduces
to finitely many refinement checking tasks on finite
state LTSs (Theorem 28).

Next, we present the technique formally.

Definition 13 (Set of the processes of an instance). Let R
be a PLTS and φ a compatible valuation. The set of the
processes (of the φ-instance of R), denoted by prc(R,φ), is
defined inductively as follows:

1) prc(R,φ) = {[[R]]φ}, when R is an EPLTS,
2) prc(R1 ‖ R2, φ) =

⋃
i∈{1,2}

(
{i} × prc(Ri, φ)

)
,

3) prc(R \ C, φ) = prc(R,φ),

4) prc([G]R′, φ) =

{
prc(R′, φ), if [[G]]φ is true,
∅, otherwise,

5) prc(‖xR′, φ) =
⋃
φ′∈ext(φ,x)

{
φ′(x)}×prc(R′, φ′).

Example 14. Let θ be a valuation with the domain
{TS , TT ,ΠS} such that θ(TS) = {s1, . . . , sn}, θ(TT ) =
{t1, . . . , tm}, and for all i ∈ {1, . . . , n} and all k ∈
{1, . . . ,m}, θ(ΠS)(si, tk) is a quorum set of θ(TS) such
that si ∈ θ(ΠS)(si, tk). Then prc(Spec, θ) is

n⋃
i=1

n⋃
j=1

m⋃
k=1

{(
si,
(
sj ,
(
tk,Spec2 (si, sj , tk)

)))}
and prc(Raft ′, θ) is
n⋃
i=1

m⋃
k=1

n⋃
j=1

sj∈φ(ΠS)(si,tk)

{(
si,
(
1,
(
tk,
(
sj ,Ldr2 (si, sj , tk)

))))}
∪

n⋃
i=1

n⋃
j=1

n⋃
k=1
j 6=k

m⋃
l=1

{(
si,
(
2,
(
sj ,
(
sk,
(
tl,Flw3 (si,sj ,sk,tl)

)))))}
.

Definition 15 (Subvaluation). Let Γ be a set of types. A
valuation φ1 is a Γ-subvaluation of a valuation φ2 if and
only if the valuations have the same domain,

1) φ1(T ) ⊆ φ2(T ) for all types T ∈ Γ,
2) φ1|X = φ2|X and φ1|T\Γ = φ2|T\Γ, that is, φ1 and

φ2 agree on the values of the variables and the other
types in the domain, and

3) for all QFVs Π ∈ dom(φ1) and for all
(c1, . . . , cn) ∈ dom(φ1(Π)), φ1(Π)(c1, . . . , cn) =
φ2(Π)(c1, . . . , cn) ∩ φ1(TΠ), provided it is a quo-
rum set of φ1(TΠ), otherwise φ1(Π)(c1, . . . , cn) =
∅.

We say that the φ1-instance of a PLTS R is smaller
than (or equal to) the φ2-instance of R if and only if φ1 is
a T-subvaluation of φ2.

Example 16. Let θ be as in Example 14 and Θ the set of
all valuations θ′ with the domain {TS , TT ,ΠS} such that
θ′(TT ) = {tl} and θ′(TS) = {si, sj , sk} for some l ∈
{1, . . . ,m} and i, j, k ∈ {1, . . . , n} and for all s ∈ θ′(TS),
θ′(ΠS)(s, tl) = θ(ΠS)(s, tl) ∩ {si, sj , sk}, provided it is
a quorum set of {si, sj , sk}, otherwise θ′(ΠS)(s, tl) = ∅.
Then Θ is a finite set of T-subvaluations of θ and [[Spec]]θ′
is smaller than [[Spec]]θ for all θ′ ∈ Θ.

Since a valuation and its subvaluations map the variables
in the same way, it is obvious that an instance of an EPLTS
equals the instance of the EPLTS generated by a smaller
valuation. A similar result holds for guards as well.

Lemma 17. Let R be an EPLTS, G a guard, T a type, and
ψ, φ valuations compatible with R and G such that φ is a
{T}-subvaluation of ψ. Then the following holds.

1) [[R]]ψ = [[R]]φ.
2) If [[G]]ψ is false, then [[G]]φ is false.
3) If [[G]]ψ is true and φ(Π)(φ(x)) = ∅ if and only

if ψ(Π)(ψ(x)) = ∅ whenever Π(x) with TΠ = T
occurs in G, then [[G]]φ is true.

Proof. 1. Since φ|X = ψ|X and an instance of R is com-
pletely defined by the values of free variables, the claim is
evident. 2. & 3. By induction on the structure of G by using
the claim as the induction hypothesis.

Recall that specification PLTSs Q do not involve hiding.
It implies that each instance of Q is just the parallel com-
position of the LTSs, which are the instances of the EPLTSs
occurring in Q. Hence, if the set of the processes of a (big)
instance [[Q]]ψ equals the set of the processes of (smaller)
instances in {[[Q]]φ | φ ∈ Φ}, then by the commutativity,
associativity, and idempotence of the parallel composition,
the big instance is trace equivalent to the parallel composi-
tion of the small instances, i.e., ‖φ∈Φ[[Q]]φ ≡tr [[Q]]ψ. For
an implementation PLTS P , which may involve hiding, we
can show a weaker result: if the set of the processes of a
(big) instance [[P ]]ψ equals the set of the processes of the
(smaller) instances in {[[P ]]φ | φ ∈ Φ}, the big instance is
a trace refinement of the parallel composition of the small
instances, i.e., [[P ]]ψ �tr ‖φ∈Φ[[P ]]φ. By the compositionality
of the trace refinement, this implies that we can derive the
correctness of a big system instance from the correctness of
small instances.

Proposition 18. Let P be an implementation PLTS and
Q a specification PLTS, ψ a valuation compatible with
both the PLTSs, and Φ a finite set of T-subvaluations of
ψ such that prc(P,ψ) =

⋃
φ∈Φ prc(P, φ) and prc(Q,ψ) =



⋃
φ∈Φ prc(Q,φ). If [[P ]]φ �tr [[Q]]φ for all valuations φ ∈ Φ,

then [[P ]]ψ �tr [[Q]]ψ.

Proof. Similar to the proof of Proposition 27 in [12].

Example 19. Let θ and Θ be as in Examples 14 and
16. Since every element of prc(Spec, θ) depends on the
identifiers of two servers and one term, it is easy to see that
prc(Spec, θ) equals

⋃
θ′∈Θ prc(Spec, θ′), i.e., the θ-instance

of Spec is composed of the same components as the set
of θ′-instances, where θ′ ∈ Θ. Similarly, we can see that
every element of prc(Raft ′, θ) depends on the identifiers
of at most three servers and one term, which implies that
prc(Raft ′, θ) equals

⋃
θ′∈Θ prc(Raft ′, θ′). Since Θ is finite,

by Proposition 18, it means that if [[Raft ′]]θ′ �tr [[Spec]]θ′
for all θ′ ∈ Θ, then [[Raft ′]]θ �tr [[Spec]]θ, too.

The proposition allows us to discard (big) instances but
it does not clearly say which instances we should keep.
This piece of information is hidden in the condition which
requires the set of the processes of the big instance to be
the same as the set of the processes of the small ones. Since
each element in prc(R,ψ) depends on the values of finitely
many variables as well as the values of finitely many QFVs,
the size of the valuations we should keep is determined by
the number of free and bound variables and the number of
QFVs in R.

To put it more formally, we write freeT (R) for the set
{x ∈ X ∩ par(R) | Tx = T} of the free variables of the
type T occurring in R, bndT (R) for the maximum number
of the nested bound variables of the type T in R, formally
defined as

1) bndT (R) = 0 for an EPLTS R,
2) bndT ([G]R′) = bndT (R′ \C) = bndT (R′),
3) bndT (R1 ‖ R2) = max(bndT (R1),bndT (R2)),

4) bndT (‖xR′) = bndT (R′) +

{
1, if Tx = T,
0, if Tx 6= T,

and degT (R) for the maximum number of the structures of
the form Π(x) in a branch of the syntax tree of R such that
TΠ = T , formally defined as

1) degT (R) = 0 for an EPLTS R,
2) degT ([G]R′) = degT (G) + degT (R′), where

– degT (G) is the number of structures Π(x) in G
such that TΠ = T (multiple occurrences of the same
structure Π(x) are not counted),

3) degT (R1 ‖ R2) = max(degT (R1),degT (R2)),
4) degT (R′ \C) = degT (‖xR′) = degT (R′).

Example 20. Recall the Raft specification Spec. It involves
three substructures of the form ‖x R′, one with Tx = TT
and two with Tx = TS , which means that bndTT (Spec) = 1
and bndTS (Spec) = 2. Similarly, there are two structures
of the form Π(x), both with TΠ = TS , which gives
degTT (Spec) = 0 and degTS (Spec) = 2. Since Spec has
no free variable, freeTT (Spec) = freeTS (Spec) = ∅.

As regards the Raft implementation Raft ′, it has six
substructures of the form ‖x R′. For Tx = TS , three of them

are nested and for Tx = TT , only one of them is nested,
which gives bndTT (Raft ′) = 1 and bndTS (Raft ′) = 3.
Moreover, as only one structure of the form Π(x) occurs in
Raft ′ and in this case TΠ = TS , we get degTT (Raft ′) = 0
and degTS (Raft ′) = 1. Since Raft ′ has no free variable,
freeTT (Raft ′) = freeTS (Raft ′) = ∅.

Proposition 21. Let R be a PLTS, ψ a valuation com-
patible with R, T a type in dom(ψ), and Φ a set of
{T}-subvaluations of ψ. Moreover, let us assume that for
every F ⊆ ψ(T ) such that ψ(freeT (R)) ⊆ F and |F | ≤
|freeT (R)|+bndT (R) and for all quorum sets M1, . . . ,Mk

of ψ(T ) such that k ≤ degT (R), there is φ ∈ Φ such that
F ⊆ φ(T ) and M1∩φ(T ), . . . ,Mk ∩φ(T ) are quorum sets
of φ(T ). Then prc(R,ψ) =

⋃
φ∈Φ prc(R,φ).

Proof. We argue by induction on the structure of R by using
the lemma as an induction hypothesis.

In the base step, R is an EPLTS. First, note that Φ is
non-empty. Secondly, since each φ ∈ Φ is a subvaluation
of ψ, by Lemma 17, it means that [[R]]ψ = [[R]]φ for every
φ ∈ Φ. Then, by definition, it is evident that prc(R,ψ) =⋃
φ∈Φ prc(R,φ).

In the induction step, there are four cases to consider.
1. First, let us assume that R is [G]R′. 1.1 If [[G]]ψ is

false, then by Lemma 17, [[G]]φ is false for all φ ∈ Φ. It
implies that then prc(R,ψ) = ∅ =

⋃
φ∈Φ prc(R,φ). 1.2 Let

us then assume that [[G]]ψ is true and let Φt be the set of val-
uations φ ∈ Φ such that [[G]]φ is true. Let F ′ ⊆ ψ(T ) such
that ψ(freeT (R′)) ⊆ F ′ and |F ′| ≤ |freeT (R′)|+bndT (R′)
and let M ′1, . . . ,M

′
k′ be quorum sets of ψ(T ) such that

k′ ≤ degT (R′). Moreover, let M1, . . . ,Ml be the non-empty
sets ψ(Π)(ψ(x)) such that Π(x) occurs in G and TΠ = T .
Now, M1, . . . ,Ml are quorum sets of ψ(T ) and k′ + l ≤
degT (R′) + degT (G) ≤ degT (R). Since freeT (R′) ⊆
freeT (R) and bndT (R) = bndT (R′), we also know that
|F ′∪ψ(freeT (R))| ≤ |freeT (R)|+bndT (R). Hence, by as-
sumption, there is φ ∈ Φ such that F ′∪ψ(freeT (R)) ⊆ φ(T )
and M ′1∩φ(T ), . . . ,M ′k′ ∩φ(T ),M1∩φ(T ), . . . ,Ml∩φ(T )
are quorum sets of φ(T ). This means that φ(Π)(φ(x)) = ∅
if and only if ψ(Π)(ψ(x)) = ∅ whenever Π(x) with TΠ = T
occurs in G. Since [[G]]ψ is true, by Lemma 17, it implies
that [[G]]φ is true as well. Hence, φ ∈ Φt which, in turn,
means that the induction hypothesis is applicable to R′, ψ,
and Φt. Therefore, prc(R′, ψ) =

⋃
φ∈Φt

prc(R′, φ), which
implies that

prc(R,ψ)
def.
= prc(R′, ψ)

i.h.
=

⋃
φ∈Φt

prc(R′, φ)

def.
=

⋃
φ∈Φt

prc(R,φ) =
⋃
φ∈Φ

prc(R,φ) .

2. Next, we consider the case when R is R1 ‖ R2. Let
i ∈ {1, 2} and Fi ⊆ ψ(T ) such that ψ(freeT (Ri)) ⊆ Fi
and |Fi| ≤ |freeT (Ri)| + bndT (Ri), and let M1, . . . ,Mk

be quorum sets of ψ(T ) such that k ≤ degT (Ri). Since
freeT (Ri) ⊆ freeT (R), bndT (Ri) ≤ bndT (R), and
degT (Ri) ≤ degT (R), we know that |Fi ∪ ψ(freeT (R))| ≤



|freeT (R)|+bndT (R) and k ≤ degT (R). By assumption, it
means that there is φ ∈ Φ such that F∪ψ(freeT (R)) ⊆ φ(T )
and M1 ∩ φ(T ), . . . ,Mk ∩ φ(T ) are quorum sets of φ(T ).
Therefore, the induction hypothesis is applicable to R1

and R2. Hence, prc(Ri, ψ) =
⋃
φ∈Φ prc(Ri, φ) for both

i ∈ {1, 2}, which implies that

prc(R,ψ)
def.
=

⋃
i∈{1,2}

(
{i} × prc(Ri, ψ)

)
i.h.
=

⋃
i∈{1,2}

(
{i} ×

⋃
φ∈Φ

prc(Ri, φ)
)

=
⋃
φ∈Φ

⋃
i∈{1,2}

(
{i} × prc(Ri, φ)

) def.
=
⋃
φ∈Φ

prc(R,φ) .

3. Let us then assume that R is ‖xR′. For every
ψ′ ∈ ext(ψ, x), let Φψ′ be the set of all valuations
φ′ ∈

⋃
φ∈Φ ext(φ, x) such that φ′(x) = ψ′(x). Obviously,

Φψ′ is a set of subvaluations of ψ′. Let F ⊆ ψ′(T )
such that ψ(freeT (R′)) ⊆ F and |F | ≤ |freeT (R′)| +
bndT (R′) and let M1, . . . ,Mk be quorum sets of ψ′(T )
such that k ≤ degT (R′). Since ψ(T ) = ψ′(T ) and
freeT (R) ⊆ freeT (R′), then ψ(freeT (R)) ⊆ F ⊆ ψ(T ),
M1, . . . ,Mk are quorum sets of ψ(T ), and k ≤ degT (R).
Moreover, if Tx 6= T , then it is obvious that |F | ≤
|freeT (R′)| + bndT (R′) = |freeT (R)| + bndT (R). Oth-
erwise, if Tx = T , then bndT (R) = bndT (R′) + 1 and
freeT (R′) ⊆ freeT (R) ∪ {x}, which implies that also in
this case |F | ≤ |freeT (R′)| + bndT (R′) ≤ |freeT (R)| +
bndT (R). By assumption, it means that there is φ ∈ Φ such
that F ⊆ φ(T ) and M1 ∩φ(T ), . . . ,Mk ∩φ(T ) are quorum
sets of φ(T ). Since ψ′(freeT (R′)) ⊆ F ⊆ φ(T ), we know
that ψ′(x) ∈ φ(T ) and therefore there is φ′ ∈ ext(φ, x) such
that φ′ ∈ Φψ′ . Since φ′(T ) = φ(T ), we see that F ⊆ φ′(T )
and M1∩φ′(T ), . . . ,Mk ∩φ′(T ) are quorum sets of φ′(T ).
Hence, the induction hypothesis is applicable to R′, ψ′, and
Φψ′ , which means that prc(R′, ψ′) =

⋃
φ′∈Φψ′ prc(R′, φ′)

for all ψ′ ∈ ext(ψ, x). Therefore,

prc(R,ψ)
def.
=

⋃
ψ′∈ext(ψ,x)

(
{ψ′(x)} × prc(R′, ψ′)

)
i.h.
=

⋃
ψ′∈ext(ψ,x)

(
{ψ′(x)} ×

⋃
φ′∈Φψ′

prc(R′, φ′)
)

=
⋃

ψ′∈ext(ψ,x)

⋃
φ′∈Φψ′

(
{φ′(x)} × prc(R′, φ′)

)
=
⋃
φ∈Φ

⋃
φ′∈ext(φ,x)

(
{φ′(x)} × prc(R′, φ′)

)
def.
=
⋃
φ∈Φ

prc(R,φ).

4. Finally, the case when R is R′ \C is trivial, be-
cause freeT (R) = freeT (R′), bndT (R) = bndT (R′), and
degT (R) = degT (R′).

Hence, by the induction principle, the lemma is correct.

In order to put the assumption of Proposition 21 into a
more explicit form, we need a function q : N × N → N,
which can be described as follows. Let us suppose that we
have n quorum sets of B, a subset F of B, and we want
to reduce the size of B by removing from B \ F as many
elements as possible such that the n sets remain quorum
sets. Then q(n, |F |) gives an upper bound for the size of
the reduced B. Consequently, q is called a quorum bound
function.

Definition 22 (Quorum bound function). A function q :
N×N→ N is a quorum bound function if for all (n,m) ∈
N × N the following holds: Given a set B, quorum sets
M1, . . . ,Mn of B, and a subset F of B with |F | = m, there
is a subset B′ of B such that |B′| ≤ q(n,m), F ⊆ B′, and
M1 ∩B′, . . . ,Mn ∩B′ are quorum sets of B′.

The existence of a quorum bound function is a combi-
natorial problem, which resembles Ramsey theoretic ques-
tions [30] and the Zarankiewicz problem, an unsolved prob-
lem in extremal graph theory [31]. Fortunately, we can
restrict our attention to minimal quorum sets and formulate
the problem in terms of linear algebra. After that, a quorum
bound function can be defined with the aid of the maximum
of the component-wise sum of the minimal elements of a
semi-linear set.

Lemma 23. Let B be a set, M1, . . . ,Mn and M ′1, . . . ,M
′
n

quorum sets of B such that M ′i ⊆Mi for all i ∈ {1, . . . , n},
and B′ a subset of B. If M ′1∩B′, . . . ,M ′n∩B′ are quorum
sets of B′, then M1 ∩B′, . . . ,Mn ∩B′ are quorum sets of
B′, too.

Proof. The claim is obvious because M ′i∩B′ ⊆Mi∩B′ and
M ′i ∩B′ is a quorum set of B′ for all i ∈ {1, . . . , n}.

Proposition 24. Let n be a non-negative integer and
v1, . . . ,vk the vectors in {−1, 1}n, i.e., k = 2n. Let A
be the set of all vectors (a1, . . . , ak) ∈ Nk such that
a1v1 + . . . + akvk = 0 (n-dimensional zero vector), Amin

the set of all the minimal elements in A, and

qn := max{a1 + . . .+ ak | (a1, . . . , ak) ∈ Amin} .

Then q(n,m) := (m+ 1) · qn − 1 for all m ∈ N.

Proof. Let B be a set, M1, . . . ,Mn quorum sets of B, and
F a subset of B with |F | = m. By Lemma 23, we may
assume that the quorum sets M1, . . . ,Mn are minimal, i.e.,
2|Mi| = |B|+1 for all i ∈ {1, . . . , n}. Let b0 be an element
not in B. Each element b ∈ B ∪ {b0} can be considered
as a vector vb := (v1, . . . , vn) ∈ {−1, 1}n, where for all
i ∈ {1, . . . , n}, vi = 1 if and only if b ∈ Mi. Then∑

b∈B∪{b0} vb = 0. Now, B ∪ {b0} can be partitioned
into sets B1, . . . , Bm such that for all i ∈ {1, . . . , n},∑

b∈Bi vb = 0 and |Bi| ≤ qn. Note that by König’s
lemma, Amin is finite, which implies that qn exists. Let
B′ be the union of all Bi, where i ∈ {1, . . . , n}, such that
Bi∩(F∪{b0}) 6= ∅. Then F ⊆ B′\{b0} and

∑
b∈B′ vb = 0.

This implies that M1∩(B′ \{b0}), . . . ,Mn∩(B′ \{b0}) are



quorum sets of B′ \{b0} and |B′ \{b0}| ≤ (|F |+1) ·qn−1.
Hence, q(n,m) can be defined as (m+ 1) · qn − 1.

For each n, the value of qn can be determined by using
an SMT solver for linear arithmetic. By using the SMT
solver Z3 [32], we have learned that q0 = 0, q1 = q2 = 2,
q3 = 4, q4 = 6, and q5 = 10. Computing q0, . . . , q4 took less
than a second whereas the computation of q5 took an hour
on Intel i7-4770 with 8GB of memory. For greater values
of n, Z3 run out of memory. Fortunately, these values are
sufficient for many practical verification tasks, including our
Raft example, where for each type T , the sum of degT (G)
over nested guards G is small. Nevertheless, in future, we
hope to be able to prove an explicit formula for qn.

With the aid of a quorum bound function, we can
define explicit structural cut-offs for each verification task
expressible in the formalism.

Definition 25 (Cut-off). The cut-off (size) for a type T , an
implementation PLTS P , and a specification PLTS Q is

coT (P,Q) := max
(
1,

q(degT (P ),bndT (P ) + |freeT (P ‖ Q)|),
q(degT (Q),bndT (Q) + |freeT (P ‖ Q)|)

)
.

Proposition 26. Let P be an implementation PLTS, Q
a specification PLTS, ψ a valuation with the domain
par(P ‖ Q), T a type in dom(ψ), and Φ the set of all
{T}-subvaluations φ of ψ such that |φ(T )| ≤ coT (P,Q).
Then for both R ∈ {P,Q} and every F ⊆ ψ(T ) such
that ψ(freeT (R)) ⊆ F and |F | ≤ |freeT (R)| + bndT (R)
and for all quorum sets M1, . . . ,Mk of ψ(T ) such that
k ≤ degT (R), there is φ ∈ Φ such that F ⊆ φ(T ) and
M1 ∩ φ(T ), . . . ,Mk ∩ φ(T ) are quorum sets of φ(T ).

Proof. The claim follows relatively straightforwardly from
the definition of a cut-off and a quorum bound function.

Without affecting the result of verification, it is suffi-
cient to consider valuations which are non-isomorphic, i.e.,
cannot be obtained from each other by bijective renaming
of constants. We write φ1 6 'φ2 to denote that the valuations
φ1 and φ2 are non-isomorphic.

Definition 27 (Cut-off set). Let P be an implementation
PLTS and Q a specification PLTS. A set Φ of valuations
is a cut-off set (for P and Q) if Φ is a maximal set
of valuations φ with the domain par(P ‖ Q) such that
|φ(T )| ≤ coT (P,Q) for every type T ∈ dom(φ) and φ1 6'φ2

whenever φ1 and φ2 are different elements of Φ.

By combining the results above, we get the main result
of the paper, which allows for reducing a trace refinement
task among PLTSs to finitely many refinement checks be-
tween finite state LTSs.

Theorem 28 (Cut-off theorem). Let P be an implementation
PLTS, Q a specification PLTS, and Φ a cut-off set for P and
Q. Then (1) the set Φ is finite and (2) P �tr Q if and only
if [[P ]]φ �tr [[Q]]φ for all φ ∈ Φ.

Proof. Obviously, the cut-off set Φ is finite. It is also evident
that if P �tr Q then [[P ]]φ �tr [[Q]]φ for all φ ∈ Φ.

Let us then assume that [[P ]]φ �tr [[Q]]φ for all φ ∈ Φ,
and let ψ be any valuation compatible with P and Q.
Obviously, we may assume that dom(ψ) = par(P ‖ Q).
By isomorphism, we know that then [[P ]]φ �tr [[Q]]φ for all
valuations φ such that dom(φ) = par(P ‖ Q) and |φ(T )| ≤
coT (P,Q) for every type T ∈ dom(φ). By Proposition 26,
we can proceed like in the proof of Theorem 4.11 in [21] and
inductively apply Proposition 21 to all types T ∈ dom(ψ).
Therefore, we get that prc(P,ψ) =

⋃
φ∈Φ prc(P, φ) and

prc(Q,ψ) =
⋃
φ∈Φ prc(Q,φ), which by Proposition 18

means that [[P ]]ψ �tr [[Q]]ψ. Since the choice of ψ was
arbitrary, this implies that P �tr Q, i.e., also the opposite
claim holds.

Example 29. By Ex. 20, we can see that
coTS (Raft ′,Spec) = 7 and coTT (Raft ′,Spec) = 1.
By Theorem 28, this implies that in order to prove Raft
correct for any number of servers and terms, it is sufficient
to show that all its instances up to seven servers and one
term behave correctly.

Theorem 28 gives rise to a completely automatic param-
eterised verification approach which we have implemented
by extending our Bounds tool [14]. The tool inputs an
implementation and specification PLTS and computes cut-
offs for the types by using Theorem 28. Since the cut-offs
provided by the theorem are only rough structural ones,
the tool tries to improve them further by checking the
assumptions of Proposition 18 up to the rough bounds and
by discarding the big instances which satisfy the assump-
tions of the proposition. After that, Bounds produces the
trace refinement checking tasks up to the improved cut-
offs. Finally, the outputted finite state verification questions
are solved by using the refinement checker FDR3 [33],
which gives the answer to the parameterised verification
task. Bounds is publicly available at [34].

Example 30. When applied to our example, Bounds first
generates all non-isomorphic valuations up to the cut-offs
of seven servers and one term. There are altogether 395,790
of them, since the value of the QFV ΠS can be chosen
in numerous ways. Enumerating all valuations takes 47
seconds. After that, the tool applies Proposition 18, which
reveals that only 18 instances have to be actually verified.
These are the instances up to three servers, and this phase
takes 262 seconds. Finally, by using FDR3, all remaining
instances are found to be correct within two seconds. This
implies that for an arbitrary number of terms and a cluster of
any size, Raft operates correctly in the sense that there is at
most one leader in each term. The experiment was done on
an 8-thread Intel i7-4770 with 8GB of memory and details
are found in the appendices.

Once we have proved that a system implementation re-
fines its specification, we can use the specification, which is
usually much smaller, in place of the system implementation
in further verification efforts. This is possible since our QFV-
enabled PLTS formalism is compositional.



5. Conclusions and Future Work

We have presented a formalism for expressing parame-
terised quorum systems and their specifications. The formal-
ism is compositional and it is supported by a fully automated
technique that reduces a parameterised verification task into
finitely many finite state verification problems. The reduc-
tion is sound and complete and determined by the structure
of parameterised processes. The technique is implemented
in a tool and applied to prove the correctness of the leader
election part of Raft.

An obvious topic for future research is discovering an
explicit formula for a quorum bound function. We also aim
to consider byzantine errors as well as to verify the log
replication phase of Raft, i.e., to analyse the correctness of
the full Raft protocol.
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Appendix A.
Bounds Code for Raft Leader Election

type S
type T

chan vote : S, T, S
chan candidate : S, T
chan leader : S, T

qfv Maj : S <- S,T

var s0 : S
var s1 : S
var s2 : S
var t : T

plts Spec2 =
lts

I = leader(s0,t) -> S0
[] leader(s1,t) -> S1

S0 = leader(s0,t) -> S0
S1 = leader(s1,t) -> S1

from I

plts Spec = || s0,s1,t : [s0 in Maj(s0,t) & s1 in Maj(s1,t)] Spec2

plts Ldr2 =
lts

C = candidate(s0,t) -> C1
C1 = vote(s1,t,s0) -> L
L = leader(s0,t) -> L

[] vote(s1,t,s0) -> L
from C

plts Flw3 =
lts

F = candidate(s0,t) -> STOP
[] vote(s0,t,s1) -> F1
[] vote(s0,t,s2) -> F2

F1 = vote(s0,t,s1) -> F1
F2 = vote(s0,t,s2) -> F2

from F

plts Raft = || s0 : ((|| t,s1 : [s0 in Maj(s0,t) & s1 in Maj(s0,t)] Ldr2 )
|| (|| s1, s2 : [!s1=s2] || t: Flw3))

pset LE = (_) s0,s1,t: {candidate(s0,t), vote(s0,t,s1)}

trace refinement: verify Raft \ LE against Spec

Appendix B.
Run of Bounds on Raft Leader Election

This is Bounds 2.4!
Created by Antti Siirtola 2010-2016 (contact: antti.siirtola@oulu.fi)

Reducing a parameterised trace refinement task to a finitary one.
(implementation: (Raft\LE), specification: Spec)

Determining a cut-off (size) for the type S...
...Succeeded. The cut-off size is 7.
Press enter to accept it or provide another value to change it



Determining a cut-off (size) for the type T...
...Succeeded. The cut-off size is 1.
Press enter to accept it or provide another value to change it

Computing the values of parameters...
96% #val:562211 #can:562098 #sto:55487

.

.

.

...Done!

Found 395790 non-isomorphic valuations.
(#valuations: 5673205, #canonical forms: 5673190, max #valuations
stored: 430758, #isomorphs removed: 5242530, #branches pruned: 0)

Generating Instance 65965 generated by valuation
S -> {S0}
T -> {T0}
Maj -> {(S0,T0)->{S0}}

Generating Instance 0 generated by valuation
S -> {S0}
T -> {T0}
Maj -> {(S0,T0)->{}}

Discarding Instance 0. The instance has no behaviour or is already covered by
smaller ones.

Generating Instance 131930 generated by valuation
S -> {S0,S1}
T -> {T0}
Maj -> {(S0,T0)->{},(S1,T0)->{}}

Generating Instance 1 generated by valuation
S -> {S0,S1,S2}
T -> {T0}
Maj -> {(S0,T0)->{},(S1,T0)->{S1,S2},(S2,T0)->{S1,S2}}

Instance 65965 written successfully to file raft_leader_election_instance_0.csp

Generating Instance 65966 generated by valuation
S -> {S0,S1,S2}
T -> {T0}
Maj -> {(S0,T0)->{S1,S2},(S1,T0)->{S1,S2},(S2,T0)->{S1,S2}}

Generating Instance 263860 generated by valuation
S -> {S0,S1}
T -> {T0}
Maj -> {(S0,T0)->{S0,S1},(S1,T0)->{S0,S1}}

Generating Instance 197895 generated by valuation
S -> {S0,S1}
T -> {T0}
Maj -> {(S0,T0)->{S0,S1},(S1,T0)->{}}

Instance 263860 written successfully to file raft_leader_election_instance_3.csp

.

.

.



Generating Instance 395788 generated by valuation
S -> {S0,S1,S2,S3,S4,S5,S6}
T -> {T0}
Maj -> {(S0,T0)->{S2,S3,S4,S5,S6},(S1,T0)->{S0,S1,S2,S3,S4,S5,S6},
(S2,T0)->{S0,S1,S2,S3,S4,S5,S6},(S3,T0)->{S0,S1,S2,S3,S4,S5,S6},
(S4,T0)->{S0,S1,S2,S3,S4,S5,S6},(S5,T0)->{S0,S2,S3,S4,S5,S6},
(S6,T0)->{S1,S2,S3,S4,S5,S6}}

Discarding Instance 395788. The instance has no behaviour or is already covered by
smaller ones.

Generating Instance 395789 generated by valuation
S -> {S0,S1,S2,S3,S4,S5,S6}
T -> {T0}
Maj -> {(S0,T0)->{S0,S1,S2,S3,S4,S5,S6},(S1,T0)->{S0,S1,S2,S3,S4,S5,S6},
(S2,T0)->{S0,S1,S2,S3,S4,S5,S6},(S3,T0)->{S0,S1,S2,S3,S4,S5,S6},
(S4,T0)->{S0,S1,S2,S3,S4,S5,S6},(S5,T0)->{S0,S1,S2,S3,S4,S5,S6},
(S6,T0)->{S0,S1,S2,S3,S4,S5,S6}}

Discarding Instance 395789. The instance has no behaviour or is already covered by
smaller ones.

Checking examples/raft_leader_election_instance_1.csp, this may take a while or two...

Checking examples/raft_leader_election_instance_2.csp, this may take a while or two...

Checking examples/raft_leader_election_instance_4.csp, this may take a while or two...

Checking examples/raft_leader_election_instance_3.csp, this may take a while or two...

Checking examples/raft_leader_election_instance_0.csp, this may take a while or two...

Checking examples/raft_leader_election_instance_5.csp, this may take a while or two...

Check of examples/raft_leader_election_instance_0.csp passed.

Checking examples/raft_leader_election_instance_6.csp, this may take a while or two...

Check of examples/raft_leader_election_instance_3.csp passed.

Checking examples/raft_leader_election_instance_9.csp, this may take a while or two...

.

.

.

Check of examples/raft_leader_election_instance_17.csp passed.

Check of examples/raft_leader_election_instance_14.csp passed.

Check of examples/raft_leader_election_instance_16.csp passed.

==== The system is correct with respect to the specification! ====

A total number of instances generated: 18
(a total number of valuations generated: 5673205
a total number of canonical forms computed: 5673190
the maximum number of valuations stored all at once: 430758)

Total time taken: 311.084 seconds
(time taken by input processing: 0 seconds
time taken by the computation of valuations: 47.285 seconds
time taken by output processing: 261.938 seconds
time taken by trace refinement checking: 1.861 seconds)


