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ABSTRACT In this paper, we investigate a transmitter and receiver design for a single-user massive SIMO
(single-input multiple-output) systemwith 1-bit analog-to-digital converters (ADCs) at the base station (BS),
where the user adopts higher-order modulation, e.g., 16-quadrature amplitude modulation (16-QAM), for the
data transmission. For the channel estimation and the signal detection, linear least-squares (LS) estimation
and maximum ratio combining (MRC) are respectively employed. In this context, we first introduce closed-
form formulas for the mean of the estimated symbols and for the correlation matrix between their real and
imaginary parts considering the effect of 1-bit quantization. The study of the distribution of the estimated
symbols indicates that, in presence of 1-bit ADCs, the conventional 16-QAM detector and the typical
square 16-QAM modulation are not adequate. In light of this, we propose three novel symbol detectors and
re-design the 16-QAM modulation in order to improve the symbol error rate (SER). Furthermore, the upper
bound on the SER is analyzed based on the pair-wise error probability and the boundary equation between
two regions is also studied. Through numerical results, the proposed framework, i.e., the symbol detector
and the transmit constellation design, shows a significant enhancement in the SER performance against the
conventional detector and the typical square 16-QAM modulation.

INDEX TERMS Massive MIMO, 1-bit ADCs, data detection, upper bound on the SER, transmit constella-
tion design.

I. INTRODUCTION
The fifth-generation (5G) (and beyond) mobile subscribers
demand reliable communication systems providing immense
data rates [1]. In this sense, the massive multi-input multi-
output (MIMO) technology have attracted a great deal of
attention due to its potential to improve both reliability and
spectral efficiency [2]. Compared to conventional MIMO
systems, the base station (BS) in the massive MIMO sys-
tems is equipped with a much larger number of antennas.
Fully digital wide-bandwidth massive MIMO systems
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(with as many radio-frequency chains as antennas) come
at the expense of considerable implementation challenges,
such as enormous power consumption and hardware com-
plexity [3].

The use of low-resolution analog-to-digital/digital-to-
analog converters (ADCs/DACs) offer an auspicious settling
for the practical impediments of the massive MIMO [4].
Employing the low-resolution ADC at the BS in the uplink
can reduce the power consumption, as well as, the hardware
complexity and the cost. Since the ADC’s power consump-
tion scales exponentially with its resolution, 1-bit ADCs
can dramatically reduce the power consumption and the
hardware complexity as it can be implemented using simple
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comparators. Moreover, as the signal amplitude is clipped at
the level of {1,-1}, the automatic gain control (AGC) is not
required [5], [6] and power amplifiers with a small dynamic
range can be used.

Numerous studies have been devoted to study merging
the low-resolution and 1-bit ADCs with the communication
systems [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26],
[27], [28]. The system performance analysis is considered
in [7], [8], [9], and [10]. In their respective works [7] and [8],
the authors take the extreme case (1-bit) into account and
examine the mutual information and achievable rate of the
MIMO system. The low-resolution ADC scenario is studied
in [9] and [10]. In [9], the symbol error rate (SER) perfor-
mance for a single-input multi-output (SIMO) system with
low-resolution ADCs is examined for the quadrature phase-
shift keying (QPSK) signal in a Rayleigh fading channel.
While the SER performance under the Nakagami-m fading
channel is investigated in [10] for the M-ary pulse amplitude
modulation (M-PAM) signal and the maximum likelihood
(ML) detector at the receiver. For the capacity analysis, [11]
studies the capacity of the massive MIMO system with low-
resolution ADC under a real AWGN channel, while the case
of the MIMO channel with correlated noise is considered
in [12]. For flat fading channels, the capacity analysis of
MIMO systems with 1-bit ADCs is presented in [13], assum-
ing that the transmitter and receiver have complete knowledge
of the channel state information. Moreover, the mm-wave
MIMO channel capacity is analyzed in [14] for the high
signal-to-noise ratio (SNR) regime utilizing 1-bit ADCs at the
BS. Recently, a tight upper bound on the capacity of MIMO
systems with 1-bit ADCs is introduced in [15] assuming
AWGN channels. For systems with 1-bit ADCs, the channel
estimation is explored in [16], [17], and [18]; for systems
with few-bit ADCs, it is studied in [19] and [20]. In [16],
the Bussgang decomposition is utilized to propose a chan-
nel estimation technique and obtain the achievable rate in a
closed-form. The study in [17] exploits the Bussgang decom-
position and oversampling to introduce a channel estimator
for MIMO system with 1-bit ADCs. The channel estimation
performance analysis under the unknown quantization thresh-
old is introduced in [18]. The seminal paper [19] estimates the
single-input single-output (SISO) channel with low precision
ADCs, whereas [20] addresses the channel estimation for the
massive MIMO orthogonal frequency division multiplexing
(OFDM). The mm-wave MIMO channel estimation is inves-
tigated in [21] and [22] for 1-bit and low-resolution ADCs,
respectively, at the BS. For the data detection in systems with
low-resolution ADCs, one side of the literature tackles the
case of 1-bit ADCs [23], [24], [25], [26], and the other side
has been developed for few-bit ADCs [9], [20], [27], [28].

Despite the ADC nonlinearity, using simple linear signal
processing (i.e., channel estimation and data detection) at the
uplink quantized massive MIMO system receiver has gained
a great interest in the literature [29], [30], [31], [32], [33],
[34], [35], [36]. In [29], the authors provide an analytical

expression for the conditional probability distribution and
the mutual information closed-form expression of the esti-
mated symbols for the uplink massive MIMO system with
1-bit ADCs. In this sense, a simple linear receiver, i.e., the
standard linear least-squares (LS) channel estimation and
the linear soft data estimation (maximum ratio combining
(MRC) and zero-forcing (ZF)), is considered to estimate the
QPSK symbols. The work in [30], [31], and [32] extends the
analysis in [29] to the over-sampled MIMO system with 1-bit
ADCs for the narrow band and the wideband channels. For
the higher-order modulation case (16-quadrature amplitude
modulation (16-QAM)), as an extension to [29], the study
in [33] analyzes the system performance for a flat fading
channel and shows that LS channel estimation and MRC
at the BS are sufficient for the 16-QAM symbols to be
detectable after the 1-bit quantization under the conditions
that the BS equipped with a massive number of antennas
and in the presence of the random noise. This phenomenon
(i.e., constructive noise phenomenon) is also observed in [37],
and previously mentioned in [38] as a stochastic resonance
phenomenon. Recently, the investigations in [34] continue the
state-of-the-art by providing the closed-form expression for
the channel estimationmean squared error (MSE) for both LS
and minimum MSE estimators. Subsequently, the analytical
expressions for the mean and the variance are obtained with
MRC soft estimation when 1-bit ADCs are adopted. For
the low-resolution ADCs combined with the linear receiver,
[35], [36] extends the work in [29] and [33]. In [35], the bit
error rate (BER) performance utilizing the additive quantiza-
tion noise model (AQNM) [39] is analyzed for the uniform
and the non-uniform quantization. While [36] considers the
Bussgang decomposition [40] to propose a channel estimator,
building on this estimator, achievable rate approximation is as
well obtained.

In this paper, we consider the uplink massive SIMO system
with 1-bit ADCs connected to the BS, i.e., 1-bit ADC for each
component of the received signal. Furthermore, we assume a
higher-order modulation (e.g., 16-QAM) is used in combina-
tion with a simple linear receiver (i.e., LS channel estimator
and normalizedMRC symbol estimation). First, we derive the
statistics of the estimated symbols and appropriate symbol
detectors. Then, a transmit constellation symbols design is
proposed to enhance the SER performance based on the
statistical analysis. Specifically, the contributions are summa-
rized as follows:

• For the uplink massive SIMO system with 1-bit ADCs,
we obtain the mean of the estimated symbol and the
covariance and/or correlation matrix between the real
and imaginary parts of the estimated symbol. According
to that, the distribution of the estimated symbol is intro-
duced and its oval shape in the I-Q plane is described.

• Utilizing the statistics of the estimated symbol, we inves-
tigate three statistical-based symbol detectors.1 The first

1This contribution extends the work in [41] by considering the statistical
analysis, while the third detector and the other contributions are being put
forth for the first time.
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detector is designed based on only the mean of the
estimated symbols, while the second one utilizes the
mean and variance for symbol detection since each con-
stellation point has a different variance. For more com-
pensation for the effects of 1-bit ADCs, the mean and
the covariance matrix are considered in the last detector.

• Finally, we derive an analytical expression for the upper
bound on the SER by considering the pair-wise error
probability. Based on a proposed metric and the upper
bound on the SER, a transmit constellation symbols
design is also proposed in order to improve the SER
performance. In this sense, a pre-compensation to the
1-bit quantization distortion, i.e., the symbol overlap-
ping, is considered by selecting a proper transmit con-
stellation design.

Outline: The remainder of the paper is structured as follows.
First, Section II presents the system model and the problem
formulation considered in this paper. Section III provides
our system analysis, the proposed symbol detectors, and the
corresponding numerical results. The upper bound on the
SER is introduced in Section IV as well as the dedicated
numerical results. Section V introduces the transmit constel-
lation symbols design approach and the related numerical
results. Finally, Section VI concludes and summarizes our
paper.
Notation: The following notation is considered throughout

the paper. The boldface uppercase and lowercase letters is
used for matrices and vectors, respectively, while the italic
uppercase and lowercase refer to scalar, i.e., A, a. ra,b is
the (a, b)th element of matrix R, while, ra represent the ath
element of a vector r. ℜ(·) and ℑ(·) refer to the complex
number parts real and imaginary, respectively. sgn(·) refers
to the element-wise signum function. CN (µ, σ 2) refers to
the circularly symmetric complex Gaussian random variable
with a complex mean µ and variance σ 2, whileN (µR, σ 2

R) is
the real normal random variable with mean µR and variance
σ 2
R, andNn(µ, 6) denotes the n-variate random variable with

mean vectorµ ∈ Cn×1 and covariancematrix6 ∈ Cn×n.E[·]
denotes the mean operator. Lastly, (·)H , (·)∗, and (·)T denote
the Hermitian transpose, conjugate, and transpose operators,
respectively, whereas I represents the identity matrix.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A single-cell uplink massive-scale SIMO system, depicted
in Figure 1, is considered in this paper. In such system, M
antennas are equipped at the BS to serve a single-antenna user
(UE). A block Rayleigh fading channel is assumed, where
h represents the uplink channel vector between the UE and
the BS. The entries of h are independent and identically
distributed (i.i.d.) as hm ∼ CN (0, 1). At the BS, each radio-
frequency chain includes two 1-bit ADCs to independently
quantize the in-phase and the quadrature-phase components
i.e., 2M ADCs are needed. The quantization function is
given by

Q(z) = sgn (ℜ(z)) + j sgn (ℑ(z)) . (1)

There are two phases: channel estimation phase and data
transmission phase and h is assumed to be constant during the
two phases. In the following sections, detailed procedures in
the two phases are shown.

A. CHANNEL ESTIMATION
In the phase of the channel estimation, the UE transmits a
pilot sequence x with length P to estimate the channel vector
in the uplink transmission. We assume the UE pilot sequence
x ∈ C1×P is drawn from a higher-order modulation (e.g., the
typical square 16-QAM). At the BS, the baseband received
pilot signal matrix is given by

YP = hx + NP (2)

where, YP ∈ CM×P, NP ∈ CM×P denotes the AWGN
matrix and the entries of AWGN matrix are distributed as
CN

(
0, σ 2

n
)
. Hence, the transmit SNR is equal to 1

σ 2
n
with

a unit average transmit power. Then, the quantized received
pilots is given by

RP = Q (YP) . (3)

For the channel vector estimation, we assume a standard
LS estimation as in [29]. The estimated channel response is
given by

ĥ = argmin
h̃

∥RP − h̃x∥ (4)

=

(
xxH

)−1
RPxH . (5)

B. DATA TRANSMISSION
In the uplink transmission, a static channel response during
the coherence interval is assume. Let the transmit SNR be
the same for the two transmission phases. Then the received
signal vector yd ∈ CM×1 at the BS is expressed as

yd = hs+ nd (6)

where nd represents the AWGN vector, and s denotes the
UE complex data symbol, which is drawn from the same
constellation as the pilot signal (e.g., square 16-QAM). In this
paper, the number of modulation levels used is assumed
to be 16 without loss of generality, i.e., s ∈ s and s =

[s1, · · · , s16]T . However, it can be extended to any number
of modulation levels, s ∈ CK×1. The quantized version of the
received signal yd is expressed as

rd = Q (yd) . (7)

The MRC estimated signal ssoft, based on the standard LS
estimation (4), can be calculated as

ssoft =
ĥHrd
∥ĥ∥2

(8)

where ĥ
∥ĥ∥2

is the combining vector [29]. A detector at the

receiver detects the transmit symbol s ∈ s based on ssoft.
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FIGURE 1. Uplink massive SIMO system model.

In the conventional detector for the typical square 16-QAM
constellation, the detection result ŝ is given by

ŝ = argmin
sk∈s

|sk − ssoft| (9)

where sk belongs to the typical square 16-QAM constellation
points, i.e., s =

1
√
10

{±3 ± j 3, ±3 ± j 1, ±1 ± j 3, ±1 ± j 1},

which is normalized such that 1
K

∑K
k=1 |sk |2 = 1. In the

proposed detectors, we consider the statistics of ssoft to design
the signal detection metrics. Furthermore, in the proposed
transmit symbol design, sk in the I-Q plane is also designed
based on the estimated symbols statistics.

III. SYMBOL ANALYSIS AND DATA DETECTION
In this section, at first the statistics of ssoft for a given arbitrary
transmit symbol s ∈ s are derived in Section III-A. After
that, in Section III-B, the proposed symbol detectors are
presented.

A. ESTIMATED SYMBOL ANALYSIS
The authors in [34] introduced the statistical characteristics of
the estimated symbol by giving the closed-form expressions
for the symbol mean and variance. On the one hand, the
authors assumed a special pilot sequence as well as utilized a
non-optimal MRC estimator. On the other hand, [34] consid-
ered the estimated symbol as normally distributed complex
random variable with uncorrelated components, i.e., circular
symmetric complex Gaussian random variable. So, we fill
this gap by investigating general (i.e., applicable for any
pilot sequence) closed-form formulas of the mean value
and the variance when the optimal MRC (8) estimates the
symbols. In addition, the covariance and/or the correlation
matrix between the real and imaginary parts of the estimated
symbol are investigated, which have not been touched in the
literature. Finally, by utilizing the statistics of the estimated
symbols, we provide the symbol distribution and explain its
behavior. By plugging (4) into (8), the MRC soft estimation
can be rewritten as

ssoft = P
xRH

P rd
xRH

P RPxH
. (10)

Theorem 1: For a transmit symbol s, the approximated
mean value of the estimated symbol ssoft in (10), µs ≈

E[ssoft], is calculated as

µs=
P
∑P

p=1 xp
(
�
(
ρ
(xp,s)
RR

)
+ j�

(
ρ
(xp,s)
RI

))
P+

∑
p̸=u xpx

∗
u

(
�
(
ρ
(xp,xu)
RR

)
+ j�

(
ρ
(xp,xu)
RI

)) (11)

with

�(a) =
2
π
arcsin(a), (12)

ρ
(x,y)
RR =

ℜ(x∗y)
ηxy

, (13)

ρ
(x,y)
RI =

ℑ(x∗y)
ηxy

, (14)

ηxy =

√(
|x|2 +

1
SNR

)(
|y|2 +

1
SNR

)
. (15)

Proof: See Appendix A. □
Theorem 2: Let µRs = ℜ(µs) and µIs = ℑ(µs). Further-

more, let vR and vI denote the real and imaginary parts of ssoft,
respectively, when s is transmitted. The covariance matrix of
[vR vI]T can be approximated as

6s =

[
σ 2
Rs

σ 2
RIs

σ 2
RIs

σ 2
Is

]
(16)

with

σ 2
Rs =

MP2

4
(2P+ 2ξ1 + 2ξ2 + ξ3)

−
M4 − (M − 1)E2

M4
µ2
Rs , (17)

σ 2
Is =

MP2

4
(2P+ 2ξ1 − 2ξ2 − ξ3)

−
M4 − (M − 1)E2

M4
µ2
Is , (18)

σ 2
RIs =

MP2

4

(
2ξ̄1 + 4ξ̄2 + ξ̄3

)
−

M4 − (M − 1)E2

M4
µRsµIs (19)
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and

E = E
[
xRH

P RPxH
]
, (20)

4 = E
[(

xRH
P RPxH

)2]
(21)

where the expressions of ξ1, ξ2, ξ3, ξ̄1, ξ̄2, and ξ̄3 are in
(98)–(103), as shown at the bottom of page 15, while E is
obtained as in (85) and 4 is given with the procedure men-
tioned in Appendix B. The mean of a quadrivariate normally
distributed random variable, which appears in ξ2, ξ3, ξ̄2, ξ̄3,
and 4 expressions, is only calculated numerically, while the
rest of the equations are given in closed-form formulas.

Proof: See Appendix B. □
From (17)–(19), the approximated correlation coefficient

between the real and imaginary components of ssoft is
given by

ρs =
σ 2
RIs√

σ 2
Rs

σ 2
Is

(22)

and the approximated variance of the estimated symbol ssoft
is given by

σ 2
s = σ 2

Rs + σ 2
Is (23)

=
4MP2

4
(P+ ξ1) −

M4 − (M − 1)E2

M4
|µs|

2. (24)

In the literature [29], [34], the authors considered the
estimated symbol, when 1-bit ADCs are used at the BS,
as a complex normally distributed random variable with
uncorrelated in-phase and quadrature-phase components, i.e.,
ssoft ∼ CN (µs, σ

2
s ), which is the case of the full-resolution

system. In addition, [33] and [34] numerically demonstrated
the non-symmetric shape of the distribution of the estimated
symbols in the I-Q plane. However, the explanation behind
this behaviour was not provided. In this regard, we bridge this
gap in the existing literature by utilizing the covariancematrix
derived in Theorem 2 to characterize the estimated symbols
distribution.
Corollary 1: Given the expressions (11) and (16), the esti-

mated symbols of the massive SIMO system, with 1-bit
ADCs, LS channel estimation, and MRC at the receiver, can
be shown to be distributed as

ssoft =
[
ℜ(ssoft) ℑ(ssoft)

]T (25)

∼ N2(µs, 6s) (26)

with

µs = [µRs µIs ]
T (27)

where σ 2
RIs

̸= 0.

Proof: See Appendix C. □
The investigation in Corollary 1 identifies the distribution of
the estimated symbols and enables us to clarify the differ-
ent dispersion around the mean, especially in the high SNR
regime.

FIGURE 2. Estimated symbols in the I-Q plane for different SNR values,
with P = 256 and M = 100.

B. PROPOSED SYMBOL DETECTORS
Figure 2 shows the transmit symbols (black dots) sk ∈ s,
i,e., the typical square 16-QAM constellation and the dedi-
cated estimated symbols (red dots) in the I-Q plane in low
(i.e., 0 dB) and high (i.e., 20 dB) SNR. In this figure,
a P = 256 pilot sequence is used, and 100 antennas are
connected at the BS. It is noted fromFigure 2 that the statistics
of the estimated symbols in the 1-bit ADCs scenario are
different from the full-resolution case. On the one hand, the
mean of the estimated symbol depends on the SNR. On the
other hand, each estimated symbol shows different variance
and distribution. So, investigating new symbol detectors that
use the estimated symbol statistics is therefore essential.

1) MEAN-BASED DETECTOR
Let µsk be the mean of the estimated symbol at the MRC
when sk is transmitted. In the SIMO system with 1-bit ADCs,
µsk is not equal to sk as shown from Figure 2. The proposed
mean-based symbol detector exploits the mean to detect the
symbols as

ŝ = argmin
sk∈s

|ssoft − µsk | (28)

and µsk is evaluated from (11).

2) MEAN AND VARIANCE-BASED DETECTOR
It is obvious from Figure 2 that not only the mean but also
the variance of ssoft depend on sk . In the proposed mean and
variance-based detector, both the mean and the variance are
considered for the detection as

ŝ = argmin
sk∈s

|ssoft − µsk |√
σ 2
sk

(29)

with σ 2
sk is the approximated variance when sk is transmitted,

and is calculated from (24).

3) MEAN AND COVARIANCE-BASED DETECTOR
In this section, the mean and covariance-based detector is
investigated not only to consider the mean and the variance
variation but also the dispersion around the mean and the
symbol orientation. In this regard, the received symbol is
mapped to the closest reference by utilizing the covariance
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FIGURE 3. Mean value µk versus the SNR, with P = 256 and M = 100.

FIGURE 4. Variance of the estimate symbols versus the SNR, with
P = 256 and M = 100.

matrix in orientating the symbol according to the candidate
references as

ŝ = argmin
k

|s̄k − µsk | (30)

where s̄k is given by

s̄k = s̈1 + j s̈2, (31)

with

s̈ =

√
σ 2
sk

2
U−1
sk ssoft +

(
I2 −

√
σ 2
sk

2
U−1
sk

)
µsk , (32)

µsk =
[
ℜ(µsk ) ℑ(µsk )

]T (33)

FIGURE 5. Correlation between the real and imaginary components of
the estimated symbols versus the SNR, with P = 256 and M = 100.

FIGURE 6. Distribution of the real and imaginary parts of s1, with
P = 256 and M = 100.

where s̈ ∈ C2×1 contains the rotated symbol components,
and Usk refers to the lower triangular matrix of the Cholesky
decomposition of the covariance matrix of symbol sk , i.e.,

6sk = UskU
∗
sk (34)

with 6sk computed as in (16).

C. NUMERICAL RESULTS
In this section, we verify the statistical analysis introduced
in Section III-A and examine the proposed symbol detectors.
Through this section, the numerical results are obtained by
utilizing the closed-form formulas in (11), (16-19), (22), and
(24), if nothing else is mentioned. The transmit symbols in the
two communication phases, i.e., channel estimation and data
transmission, are selected from the typical square 16-QAM
symbols. However, the statistical analysis and the proposed
symbol detectors are applicable for any set of transmit sym-
bols. Lastly, the pilot design is considered as a repetition of
the 16-QAM symbols.

In Figures 3–5, we examine the statistical analysis by
comparing it with the Monte Carlo simulations (Sim.)
and the Monte Carlo simulations when considering the
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FIGURE 7. Estimated symbols distribution in the I-Q plane, with P = 256 and M = 100.

approximation assumed in Theorem 1 (69) (Approx. Sim.),
i.e., by obtaining the right hand side of (70) and (86)–(88)
numerically to verify the suggested approximation, for the
typical square 16-QAM symbols shown in Figure 2. The
aforementioned figures considerM = 100 and P = 256, and
the simulation is obtained by averaging over 105 independent
channel realizations. Figures 3(a) and (b) validate the real
and imaginary mean of the estimated symbols obtained from
(11), respectively. From the variance point of view, Figure 4
proves the validation of the approximation in the variance
analysis with different SNR. Figure 5 shows the correla-
tion coefficient between the real and imaginary components
of the estimated symbol. Unlike the massive SIMO system
with the full-resolution ADCs, this figure shows that the
correlation between the in-phase and the quadrature-phase
components of the estimated symbol increases with the SNR.
At high SNR, we notice a slight difference in the correla-
tion coefficient between the analysis and the Monte Carlo

simulations (Sim.), which will be shown to be negligible in
terms of the SER performance.

To validate the model considered in Corollary 1 for the
estimated symbols, Figures 6 and 7 are provided. Figure 6
shows the distribution, which are obtained from the analy-
sis, and the normal fitting for the estimated symbol related
to s1. Figures 6(a) and (b) introduce the case of low SNR,
i.e., SNR = 0 dB for the real and imaginary components,
respectively. While the high SNR scenario, i.e., SNR =

20 dB, is provided in Figures 6(c) and (d). Through the above-
mentioned plots, the separate distributions of the estimated
symbol components fit the normal distribution in the low
and high SNR regions, which validate the assumption that
ssoft is normally distributed (26). In Figure 7, the distribu-
tion of the estimated symbols for a given transmit symbol
sk in the I-Q plane is shown. For the validation, the sym-
bols generated empirically from the simulations are consid-
ered, i.e., Sim. and Approx Sim. The figure consists of a
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FIGURE 8. SER versus the SNR for the conventional detector and the
proposed symbol detectors, with P = 256 and M = 100.

FIGURE 9. SER versus the SNR for the proposed symbol detectors, with
M = 100 and different values of P .

3 × 3 grid, the different rows refer to different SNRs, while
the columns are associated to different transmit signal sk .
Figures 7(a), (d), and (g) show the distribution of the esti-
mated symbol when s1 has been transmitted for SNR = 0,
10, and 20 dB respectively. Increasing the SNR leads to an
increase in the sharpness of the oval shape of the distribution,
which is a translation to the increasing in the correlation
between the I and Q components. On the other hand, the
case of s4 (Figures 7(c), (f), and (i)), which is more likely to
be affected by the noise, shows a wider distribution, which
means less correlation coefficient. For instance, the distri-
bution in Figure 7(c) tends to be a circle, which is the case
of independent random variables in the low SNR case such
as SNR = 0 dB. This behavior can also be confirmed from
Figure 5. For s1 and s4, the considered approximation
matches the actual distribution regardless of the slight dif-
ference in the correlation shown in Figure 5. In s2 case, the
difference in the I-Q plane distribution between the simu-
lation and analysis in Figure 7(h) (20 dB) results from the
difference mentioned in Figure 5. The results in Figure 7
highlight the benefits of our contribution in considering the
covariance matrix of the estimated symbols in describing
their distributions.

Figure 8 shows the SER versus the SNR for P = 256 and
M = 100. In this result, we show the SER performance
of the three proposed detectors: the mean-based detector

FIGURE 10. SER versus the SNR for the proposed symbol detectors, with
P = 256 and different values of M.

(Mean-based Det.), the mean and variance-based detector
(M-V Det.), and the mean and covariance-based detector
(M-Cov. Det.), in addition to the SER performance of the con-
ventional detector (Conv. Det.) for comparison. To verify the
approximation assumed in Theorem 1 (69), the SER obtained
from the Monte Carlo simulations is also added (Sim. and
Approx. Sim.). For the proposed three detectors, the approx-
imation considered in Theorem 1 (69) fits the Monte Carlo
SER, which validates the assumption and emphasizes that the
difference in the correlation showed in Figure 5 between the
theoretical and the Sim. does not affect on the averaged SER
performance. The investigated three detectors significantly
enhance the SER performance compared with the conven-
tional one. The performance gap between the conventional
and mean-based detectors shows the value behind using µsk
as a reference point instead of the transmit symbol. Consid-
ering the variance σ 2

s in the mean and variance-based symbol
detector reduces the SER over the one obtained from the
mean-based symbol detector. Lastly, the SER performance
gain between the mean and covariance-based symbol detec-
tor and the other detectors shows the benefits of using the
covariance matrix in detecting the signal.

Figures 9 and 10 give the SER performance of the sug-
gested detectors against the SER for different system setups.
Figure 9 examines the detectors performance with 100 anten-
nas and different pilot sequence lengths, i.e., 32, 128. Still, the
mean and covariance detector shows the lowest SER among
the proposed detectors in 32 and 128 pilot sequence cases.
On the other hand, Figure 10 considers a P = 256 pilot
sequence and different number of antennas. Increasing the
number of antennas, i.e., from 50 to 200, enhances the SER
performance.

For all methods and setups, the SER curves show that
the massive SIMO with 1-bit ADCs obtains optimum SNRs
where the performance can be minimized. These SNR values
vary based on the system parameters and the system detectors
as well. However, the performance indicates that the constel-
lation of the typical square 16-QAM is not suitable for the
massive SIMO with 1-bit ADCs. Therefore, in Section V,
we will consider designing a suitable signal constellation.
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IV. THE UPPER BOUND ON THE SYMBOL ERROR
RATE ANALYSIS
In this section, we focus on the SER analysis to charac-
terize the performance of the massive SIMO system with
1-bit ADCs when the mean and variance-based detector is
considered. In this respect, the detection boundaries between
the different regions are illustrated by considering the pair-
wise detection. Then, building on that, the upper bound on
the SER is investigated.

A. DETECTION BOUNDARIES
To investigate the detection boundaries, at first, we intro-
duce the pair-wise detector where a set of only two symbols
constellation spw = {sl, sw} is assumed, where l ̸= w and
l,w ∈ K = {1, 2, . . . ,K }., The pair-wise detector rule, which
follows the mean and variance-based detector, is given by

ŝpw = argmin
si∈spw

|ssoft − µsi |√
σ 2
si

. (35)

In this sense, the I-Q plane can be divided into two regions
denoted by γ

(l)
w and γ

(w)
l , which are defined as

γ (b)
a = {ssoft ∈ F : d(ssoft, sa) ≤ d(ssoft, sb)}, b ∈ Ka

(36)

with

Ka = {b ∈ K : b ̸= a}, (37)

F =

K⋃
w=1

γw, (38)

γw =

⋂
l∈Kw

γ (l)
w (39)

= {ssoft ∈ F : d(ssoft, sw)≤d(ssoft, sl), l∈Kw}, w∈K
(40)

where d(·, ·) refers to the scaled Euclidean distance (ED)
considered in the mean and variance-based symbol detector
(29), γw refers to the detection region related to the symbol
sw, i.e., results from detector (29), and γ

(l)
w , γ

(w)
l denote the

pair-wise detection regions, i.e., considering detector (35).
Theorem 3: Let (x̀, ỳ) denote point coordinates in the I-Q

plane, and are located on the boundary ϖlw between the two
regions γ

(l)
w and γ

(w)
l , satisfy the following equations

c1x̀2 + c1ỳ2 − c2x̀ − c3ỳ− c4 = 0 (41)

with

c1 = σ 2
sl − σ 2

sw , (42)

c2 = 2
(
ℜ
(
µsw

)
σ 2
sl − ℜ

(
µsl
)
σ 2
sw

)
, (43)

c3 = 2
(
ℑ
(
µsw

)
σ 2
sl − ℑ

(
µsl
)
σ 2
sw

)
, (44)

c4 = σ 2
sw |µsl |

2
− σ 2

sl |µsw |
2. (45)

Proof: See Appendix D. □

The result in Theorem 3 indicates that the boundary
between two regions γ

(l)
w , γ

(w)
l follows a quadratic equation

(curve equation) where the curvature depends on the statistics
of the estimated symbols and the SNR. That is not the case
with the conventional detector, where the boundaries follow
a first order equation (linear equation). On the other hand,
investigating the pair-wise boundaries between the regions
will be exploited in the SER analysis by considering the pair-
wise error probability in Section IV-B.

B. PAIR-WISE ERROR PROBABILITY
In this section, we provide the upper bound on the SER
analysis with the pair-wise error probability for the two sym-
bols constellation spw. The overall SER, given that sw is
transmitted, is calculated as

SER =

∑
w̸=l

Pr (ssoft ∈ γl |s = sw)Pr(sw) (46)

=

∑
w̸=l

Pr(sw)
∫

γl

pdfg
(
f − µsw

)
df (47)

where g ∈ C2×1
∼ N2

(
[0 0]T , 6sw

)
, pdfg is the prob-

ability density function of the random variable g, µsw =[
ℜ(µsw ) ℑ(µsw )

]T , and γl refers to the detection regions
related to sl . Computing the conditional error probability, i.e.,
the integration, in (47) is, in general, an intractable problem.
Instead, a tractable upper bound to it can be found for the
mean and variance-based detector as

Pr (ssoft ∈ γl |s = sw) ≤

∫
γ
(w)
l

pdfg
(
f − µsw

)
df (48)

where in the right hand side, we replace γl in the integration in
(47) with a superset γ (w)

l , which is the half-space region. The
integration in (48) represents the pair-wise conditional error
probability for spw constellation, i.e., when sw is transmitted
while the estimated symbol ssoft is detected in region γ

(w)
l ,

and is expressed as

Pr (sw → sl) =

∫
γ
(w)
l

pdfg
(
f − µsw

)
df (49)

= Pr

 |ssoft − µsw |√
σ 2
sw

>
|ssoft − µsl |√

σ 2
sl

 (50)

= Pr

(
|g|2

σ 2
sw

>
|g+ µsw − µsl |

2

σ 2
sl

)
(51)

= Pr (q(g) > 0) (52)

with

q(g) =

(
1

σ 2
sw

−
1
σ 2
sl

)
|g|2 + 2

ℜ
(
g
(
µsl − µsw

)∗)
σ 2
sl

−
|µsl − µsw |

2

σ 2
sl

(53)

where (50) is obtained by considering the mean and variance-
based detection metric (35), whereas (51) is obtained by
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putting ssoft = g + µsw , g =
[
ℜ(g) ℑ(g)

]T . We can rewrite
(53) as

q(g) = gTQ2g + qT1 g + q0 (54)

and

Q2 =

(
1

σ 2
sw

−
1
σ 2
sl

)
I2, (55)

q1 =
2
σ 2
sl

[(
ℜ(µsl ) − ℜ(µsw )

) (
ℑ(µsl ) − ℑ(µsw )

)]T
, (56)

q0 = −
|µsl − µsw |

2

σ 2
sl

. (57)

Then, the upper bound on the SER is expressed as

SERUB =
1
K

∑
w̸=l

Pr (q(g) > 0) . (58)

Through the numerical results, it will be shown that the
obtained upper bound is tight, which enables us to utilize
the above upper bound to design the transmit constellation
symbols in Section V.

C. NUMERICAL RESULTS
In this section, we provide the numerical evaluation of the
detection boundaries and the upper bound on the SER anal-
ysis introduced in Sections IV-A and IV-B, respectively.
Throughout this section, we assume M = 100 and P = 256,
where the pilot sequence is designed as a repetition of the
typical 16-QAM constellation. The numerical results are
obtained by averaging over 105 independent channel realiza-
tions and considering the mean and variance-based symbol
detector. Unless otherwise stated, the results are obtained
through the theoretical analysis presented in Section III-A.

In Figure 11, we verify the detection boundary provided
in Theorem 3 between two regions γ

(w)
l and γ

(l)
w . Firstly,

to obtain the boundary by simulations, the pair-wise detector
in (35) is applied to all points in the targeted I-Q plane,
i.e., using grid search with a step size equal to 0.01 to
obtain the pair-wise detection regions (red and green areas).
While the theoretical detection boundary ϖlw (black dashed
line) is obtained from (41). Figures 11(a) and (b) show the
boundaries between regions with l = 1,w = 2 for 0 dB
and 20 dB, respectively, while Figures 11(d) and (c) are for
the boundaries between regions with l = 2, w = 4. The
aforementioned figures emphasize that the boundary between
two regions depends on the statistics of the estimated symbols
and the SNR.

Figure 12 compares the upper bound on the SER with the
conventional SER and the SER obtained from the pair-wise
detector. The conventional SER is calculated numerically
from (47) and based on (29), while the pair-wise detector
SER (Pair-Wise Det. SER) is obtained from (35). The upper
bound on the SER (SERUB) is obtained from (58), where the
probability term is calculated through the ray-tracing method
introduced in [42]. The result illustrated in Figure 12 shows

that the pair-wise error probability tightly approximates the
actual SER obtained by the Monte Carlo simulations.

V. TRANSMIT CONSTELLATION SYMBOLS DESIGN
As shown in Section III-C, the investigated symbol detec-
tors induced a noticeable improvement in the SIMO system
performance in presence of 1-bit ADCs. However, still there
is an increasing trend in the SER in the high SNR region.
Figure 2(b) indicates that the estimated symbols from dif-
ferent transmit symbols may be close to each other, which
inherently increases the SER in the high SNR region. This
fact implies that designing appropriate transmit constellation
symbols is essential.

In this section, the low-complexity transmit constellation
(s) design is proposed as follows. For the design metric, the
upper bound on the SER in (58) is used. A straightforward
approach is to use a brute force search in the targeted I-Q
plane with grid size 1, although this may be characterized by
significant complexity.

Let Sall denote a set of the all possible constellation s in the
targeted I-Q plane. Both the proposed approach and the brute
force search require constructing Sall. The constellation s is
constructed considering a grid step size 1 = 0.1 according
to the following conditions:

1
16

16∑
l=1

|sl |2 = 1, (59)

|sl |2 > 0, ∀l, (60)

sl ̸= sw, ∀l ̸= w, (61)

s3 = |s2| exp
(
j
(
2π
3

− ̸ s2

))
(62)

where s2 and s3 are related in the same way as in the typical
16-QAM constellation (i.e., as in Figure 2), and the symbols
in the other three quadrants are obtained via simple rotation.

In the proposed method, we employ an alternative metric
defined as

D (sw, sl) =
|µsw − µsl |√

σ 2
sw + σ 2

sw

(63)

which indicates the distance between two constellation points
sw and sl , i.e., sw, sl ∈ s and l ̸= w, and this metric is also
used in signal detection problems as deflection coefficient.
The computational cost of this metric is significantly lower
than that of SERUB, as the latter requires numerical integrals
in (58) [42].

We also define the minimum metric for constellation s as

Dmin(s) = min
sw,sl∈s,w̸=l

(D(sw, sl)) (64)

and the maximum Dmin(s) is given by

Dmax = max
s∈Sall

(Dmin(s)) . (65)

The metricD (sw, sl) is used to narrow the candidates of s and
the set of the selected constellations S is obtained by

S = {s|Dmin(s) > αDmax} (66)
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FIGURE 11. The boundary between two regions in the I-Q plane, with P = 256 and M = 100.

FIGURE 12. Error rate versus the SNR, with P = 256 and M = 100.

where α is a ratio as 0 < α < 1. Finally, in the proposed
algorithm, the optimum s is selected as

sopt = min
s∈S

(SERUB) . (67)

In the case of brute force search, the optimum s is
selected as

sopt = argmin
s∈Sall

(SERUB) . (68)

A. NUMERICAL RESULTS
The following setup is considered throughout the section
except if something else is mentioned. The numerical results
are obtained using the analytical statistics investigated in
Section III-A. The pilot sequence is chosen as a repetition
of the designed constellation (sopt), which is transmitted in
the data transmission phase with P = 256. At the receiver,
the mean and variance-based detector is employed and the
number of antennas is set toM = 100.
Figure 13 illustrates the SER performance comparison

between the typical square 16-QAM for s and the opti-
mum transmit symbol sopt obtained from (67). The results
show that the optimum transmit symbol exhibits a notable
improvement in the SER performance compared with the
conventional 16-QAM constellation in the high SNR region.
At 12, the SER slightly increases and this behavior is due
to the limitation of the grid size. Lastly, the provided results

FIGURE 13. SER versus the SNR, with P = 256 and M = 100.

emphasize that the proposed detectors and the theoretical
analysis obtained in Section III are applicable to any constel-
lation design.

Figure 14 shows the distribution of the estimated symbols
in the I-Q plane. Figures 14(a)–(c) plot the estimated symbols
with the optimum transmit symbols for 4, 10, and 18 dB,
respectively. Figures 14(d)–(f) plot the estimated symbols
with the typical 16-QAM for 4, 10, and 18 dB, respectively.
In this plot, the black cross refer to the transmit symbols,
while the red points refer to the distribution of the MRC
estimated symbols for the optimum design and the typical
16-QAM in different SNRs. The optimum transmit symbol
design depends on the SNR levels.

In the case of the typical square 16-QAM symbols, the esti-
mated symbols of two transmit symbols, which have the same
phase, such as π/4, are getting closer as the SNR increases
and they are overlapping at 18 dB as shown in Figure 14(f).
This is the problem of the typical square 16-QAM symbols
and it causes degraded SER performances in the high SNR
region. For this problem, each transmit symbol has a different
phase in the optimum transmit symbol design. In addition, the
amplitude level for the transmit symbols is also adjusted to
avoid the overlapping in Figure 14(c).

In terms of the complexity of the proposed transmit con-
stellation design and the brute force search, the process to
construct Sall is a common part. In the proposed method,
the process in (64)–(66) is an additional process compared
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FIGURE 14. Estimated symbols distribution in the I-Q plane, with P = 256 and M = 100.

TABLE 1. Comparison of the execution times.

to the brute force search. On the other hand, the number of
computations required for SERUB in the proposed method
and the brute force search are equivalent to the sizes of S
and Sall, respectively. In Table 1, the execution time com-
parison between the brute force and the proposed scheme is
summarized. As shown in the table, the execution time for
the additional process in (63)–(66) is about 0.8 s. On the
other hand, the execution time for calculating the upper bound
on the SER for one candidate of s is about 58 s and this is
significantly larger than the execution time for the additional
process. The execution times of optimization for the brute
force search and the proposed scheme are proportional to
the number of candidates s. These numbers are in fact |Sall|
and |S| in the brute force search and the proposed scheme,
respectively. In case of 1 = 0.1, |Sall| ≃ 15000 for the brute
force search, but in the proposed scheme |S| ≃ 500 with
SNR = 10 dB and α = 0.75. This result indicates that the
proposed scheme can reduce the complexity significantly.

VI. CONCLUSION
This paper studies the transmit constellation and received
signal detector design for massive SIMO systems with 1-bit
ADCs at the BS. First, the statistical analysis of the estimated
symbols, i.e., mean and covariance and/or correlation matrix,

for the arbitrary transmit symbols is obtained considering
a simple linear estimation, i.e., LS channel estimation and
MRC soft symbol estimator. The numerical investigations
show that the statistics in the case of 1-bit ADC are totally
different from the statistics for high-resolution ADC.We also
propose three symbol detectors, in which different statistics
are considered. In the simplest symbol detector, only the
mean is used, and the second symbol detector utilizes the
mean and variance. Finally, the third symbol detector uses
the mean, variance and correlation, i.e., covariance matrix
between real and imaginary parts of the estimated symbols.
The numerical investigations show that the proposed symbol
detectors can improve the SER performance by considering
the statistics. In addition, we analyze the SER and give the
tight upper on the SER as well as the detection boundaries
between the detection regions. Finally, we proposed the low-
complexity transmit constellation symbols design approach
based on the upper bound on the SER criterion. The numerical
investigations show that combining the transmit constellation
design and received signal detector can improve the SER
performance significantly. Specifically, the transmit constel-
lation design can provide the benefit in the high SNR region.
In addition, the computational complexity can be reduced
to 1/30 by the low-complexity transmit constellation design
approach compared to the brute force search.

APPENDIX A
PROOF OF THEOREM 1
From (10), the mean of ssoft follows the mean of the
ratio distribution. Here, we approximate the mean of
the ratio by considering the first order Taylor expansion
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approximation [43], [44], [45], and it is approximated as

E
[
c
X
Y

]
≈ c

E [X ]
E [Y ]

. (69)

Applying (69) to (10), the mean of ssoft can be written as

E [ssoft] ≈ P
E
[
xRH

P rd
]

E
[
xRH

P RPxH
] . (70)

Building on [34], we define

E
[
sgn

(
ℜ
(
f (x)

))
sgn

(
ℜ
(
f (y)

))]
= �

(
ρ
(x,y)
RR

)
, (71)

E
[
sgn

(
ℑ
(
f (x)

))
sgn

(
ℑ
(
f (y)

))]
= �

(
ρ
(x,y)
II

)
(72)

with f (a) ∼ CN (0, I2) and a ∈ C, and where ρ
(x,y)
RR and

ρ
(x,y)
II denote the correlation between ℜ

(
f (x)

)
and ℜ

(
f (y)

)
and between ℑ

(
f (x)

)
and ℑ

(
f (y)

)
, respectively, with

ρ
(x,y)
RR = ρ

(x,y)
II . (73)

Similarly, we have

E
[
sgn

(
ℜ
(
f (x)

))
sgn

(
ℑ
(
f (y)

))]
= �

(
ρ
(x,y)
RI

)
, (74)

E
[
sgn

(
ℑ
(
f (x)

))
sgn

(
ℜ
(
f (y)

))]
= �

(
ρ
(x,y)
IR

)
(75)

with

ρ
(x,y)
RI = −ρ

(x,y)
IR . (76)

Let the quantized received data at antenna m be rewritten as

rdm = ȧm + j ḃm (77)

and the quantized received pilot p at antenna m as

rPm,p = äm,p + j b̈m,p. (78)

Now, the numerator of ssoft in (10) can be expressed as

xRH
P rd =

M∑
m=1

P∑
p=1

(
xp
(
äm,pȧm + b̈m,pḃm

)
(79)

+ j xp
(
äm,pḃm − b̈m,pȧm

) )
.

(80)

From (71)–(76), the mean of xRH
P rd can be expressed as

E[xRH
P rd] = 2M

P∑
p=1

xp
(
�
(
ρ
(xp,s)
RR

)
+ j�

(
ρ
(xp,s)
RI

))
(81)

where

E
[
äm,pȧm

]
= E

[
b̈m,pḃm

]
= �

(
ρ
(xp,s)
RR

)
, (82)

E[äm,pḃm] = − E[b̈m,pȧm] = �
(
ρ
(xp,s)
RI

)
. (83)

In a similar manner, the denominator of ssoft in (10) can be
expressed as

xRH
P RPxH =

P∑
p,u=1

M∑
m=1

(
xpx∗

u
(
äm,päm,u + b̈m,pb̈m,u

)
+ j xpx∗

u
(
äm,pb̈m,u − b̈m,päm,u

) )
(84)

and E = E[xRH
P RPxH ] can be expressed as

E = 2M
(
P+

∑
u̸=p

xpx∗
u

(
�
(
ρ
(xp,xu)
RR

)
+ j�

(
ρ
(xp,xu)
RI

)))
. (85)

By substituting (80) and (85) into (70), the result in
Theorem 1 (11) is obtained. ■

APPENDIX B
PROOF OF THEOREM 2
Considering the estimated symbol ssoft in (10) and the approx-
imation assumed in Theorem 1 (69), the variance of the real
and imaginary parts of ssoft can be written, respectively, as

σ 2
Rs = P2

E
[
ℜ(xRH

P rd)
2
]

E
[(
xRH

P RPxH
)2] − µ2

Rs , (86)

σ 2
Is = P2

E
[
ℑ(xRH

P rd)
2
]

E
[(
xRH

P RPxH
)2] − µ2

Is (87)

while the covariance between the real and imaginary parts of
the estimated symbol ssoft is expressed as

σ 2
RIs = P2

E
[
ℜ
(
xRH

P rd
)
ℑ
(
xRH

P rd
)]

E
[(
xRH

P RPxH
)2] − µRsµIs . (88)

We now present the derivations of the individual terms
of (86)–(88) in order. From Theorem 1, we can write µRs
and µIs as

µRs =
2MP
E

P∑
p=1

(
ℜ(xp)�

(
ρ
(s,xp)
RR

)
(89)

+ ℑ(xp)�
(
ρ
(s,xp)
RI

))
, (90)

µIs =
2MP
E

P∑
p=1

(
ℑ(xp)�

(
ρ
(s,xp)
RR

)
(91)

− ℜ(xp)�
(
ρ
(s,xp)
RI

))
(92)

respectively. By applying( M∑
m=1

P∑
p=1

zm,p

)2

=

M∑
m=1

P∑
p=1

z2m,p+

M∑
m=1

∑
p̸=u

zm,pzm,u

+

∑
m̸=n

P∑
p=1

P∑
u=1

zm,pzn,u (93)
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to write the square of the real part of (80), we obtain χ2
R =

ℜ(xRH
P rd)

2 in (95), as shown at the bottom of the page. Then,
considering (71)–(76), the mean of χ2

R can be expressed as in
(96), shown at the bottom of the page. The function E(·) in
(97), as shown at the bottom of the page, denotes the mean
of a quadrivariate normally distributed random variable with
correlation matrix

R =


1 ρ

(s,s)
RI ρ

(s,xp)
RR ρ

(s,xp)
RI

· 1 ρ
(s,xp)
IR ρ

(s,xp)
RR

· · 1 ρ
(xp,xp)
RI

· · · 1

 . (94)

We note that E(·), which is a function of the correlationmatrix
R only, is computed numerically since the approximated
formulas in the literature are for special case that are

not applicable here. As consequence of assuming i.i.d.
Rayleigh fading, we have that E

[
ḃmäm,pḃnän,u

]
=

E
[
ḃmäm,p

]
E
[
ḃnän,u

]
if and only if m ̸= n regardless

of the pilot index p, u. In a similar manner, we can find
the expressions of E

[
ℑ(xRH

P rd)
2
]
, E
[
ℜ(xRH

P rd)ℑ(xR
H
P rd)

]
,

and 4 = E
[(
xRPHRPxH

)2]. Finally, Theorem 2 can be
obtained by plugging these expressions into (86)–(88). ■

APPENDIX C
PROOF OF COROLLARY 1
The estimated symbol in (8) can be rewritten as

ssoft =

M∑
m=1

ℜ

(
ĥ∗
mrm

|hm|2

)
+ jℑ

(
ĥ∗
mrm

|hm|2

)
. (104)

χ2
R = 2MP+ 2

P∑
p=1

M∑
m=1

(
ℜ(xp)2 − ℑ(xp)2

) (
ȧmḃmäm,pb̈m,p

)
+

∑
p̸=u

M∑
m=1

(
ℜ(xpxu)

(
ȧmḃmäm,pb̈m,u + ȧmḃmb̈m,päm,u

)
+ ℜ(x∗

pxu)
(
äm,päm,u + b̈m,pb̈m,u

))
+

∑
p̸=u

M∑
m=1

(
ℑ(xpxu)

(
ȧmḃmb̈m,pb̈m,u − ȧmḃmäm,päm,u

)
+ ℑ(x∗

pxu)
(
äm,pb̈m,u − b̈m,päm,u

))
+

P∑
p,u=1

∑
m̸=n

ℜ(xp)ℜ(xu)
(
ȧmäm,pȧnän,u + ȧmäm,pḃnb̈n,u + ḃmb̈m,pȧnän,u + ḃmb̈m,pḃnb̈n,u

)
+

P∑
p,u=1

∑
m̸=n

ℜ(xp)ℑ(xu)
(
ȧmäm,pȧnb̈n,u − ȧmäm,pḃnän,u + ḃmb̈m,pȧnb̈n,u − ḃmb̈m,pḃnän,u

)
+

P∑
p,u=1

∑
m̸=n

ℑ(xp)ℜ(xu)
(
ȧmb̈m,pȧnän,u + ȧmb̈m,pḃnb̈n,u − ḃmäm,pȧnän,u − ḃmäm,pḃnb̈n,u

)
+

P∑
p,u=1

∑
m̸=n

ℑ(xp)ℑ(xu)
(
ȧmb̈m,pȧnb̈n,u − ȧmb̈m,pḃnän,u − ḃmäm,pȧnb̈n,u + ḃmäm,pḃnän,u

)
, (95)

E[χ2
R] = 2MP+ 2M

P∑
p=1

(
ℜ(xp)2 − ℑ(xp)2

)
E
(
ρ
(s,s)
RI , ρ

(s,xp)
RR , ρ

(s,xp)
RI , ρ

(s,xp)
IR , ρ

(s,xp)
RR , ρ

(xp,xp)
RI

)
+ 4M (M − 1)

P∑
p,u=1

(
ℜ(xp)ℜ(xu)�

(
ρ
(s,xp)
RR

)
�
(
ρ
(s,xu)
RR

)
+ ℜ(xp)ℑ(xu)�

(
ρ
(s,xp)
RR

)
�
(
ρ
(s,xu)
RI

))
+ 4M (M − 1)

P∑
p,u=1

(
ℑ(xp)ℜ(xu)�

(
ρ
(s,xp)
RI

)
�
(
ρ
(s,xu)
RR

)
+ ℑ(xp)ℑ(xu)�

(
ρ
(s,xp)
RI

)
�
(
ρ
(s,xu)
RI

))
+ M

∑
p̸=u

(
2ℜ(x∗

pxu)�
(
ρ
(xp,xu)
RR

)
+ ℜ(xpxu)E

(
ρ
(s,s)
RI , ρ

(s,xp)
RR , ρ

(s,xu)
RI , ρ

(s,xp)
IR , ρ

(s,xu)
RR , ρ

(xp,xu)
RI

))
+ M

∑
p̸=u

(
2ℑ(x∗

pxu)�
(
ρ
(xp,xu)
RI

)
+ ℜ(xpxu)E

(
ρ
(s,s)
RI , ρ

(s,xp)
RI , ρ

(s,xu)
RR , ρ

(s,xp)
RR , ρ

(s,xu)
IR , ρ

(xp,xu)
IR

))
+ M

∑
p̸=u

ℑ(xpxu)E
(
ρ
(s,s)
RI , ρ

(s,xp)
RI , ρ

(s,xu)
RI , ρ

(s,xp)
RR , ρ

(s,xu)
RR , ρ

(xp,xu)
RR

)
− M

∑
p̸=u

ℑ(xpxu)E
(
ρ
(s,s)
RI , ρ

(s,xp)
RR , ρ

(s,xu)
RR , ρ

(s,xp)
IR , ρ

(s,xu)
IR , ρ

(xp,xu)
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)
, (96)

E
(
ρ
(s,s)
RI , ρ

(s,xp)
RR , ρ

(s,xp)
RI , ρ

(s,xp)
IR , ρ

(s,xp)
RR , ρ

(xp,xp)
RI

)
= E

[
ȧmḃmäm,pb̈m,p

]
(97)
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We can write the real part in (104) as

ℜ(ssoft) =

M∑
m=1

gRm +

M∑
m=1

νRm (105)

with

µRs =

M∑
m=1

νRm , (106)

gRm = ℜ

(
ĥ∗
mrm

|hm|2

)
− νRm (107)

where gRm is a zero mean random variable with finite vari-
ance ϒ2

Rm
, σ 2

Rs
=
∑M

m=1 ϒ2
Rm

, and gRm and gRn are inde-
pendent if m ̸= n. From the above, the Cramer’s central
limit theorem [46] can be applied to (105), then, ℜ(ssoft) is
distributed as

lim
M→∞

ℜ(ssoft) ∼ N
(
µRs , σ

2
Rs

)
. (108)

Similarly, we have

lim
M→∞

ℑ(ssoft) ∼ N
(
µIs , σ

2
Is

)
. (109)

From (108), (109), and Theorem 2, the distribution in (26) is
obtained. ■

APPENDIX D
PROOF OF THEOREM 3
Consider any point −→r lies on the boundary ϖlw separating
the regions γ

(l)
w and γ

(w)
l , where the scaled EDs between −→r

and the two regions, i.e., mean of the dedicated estimated
symbols, are equal. By applying in (29), the equal scaled EDs
are given by

|
−→r − µsl |√

σ 2
sl

=
|
−→r − µsw |√

σ 2
sw

. (110)

By taking the square of the two terms, (110) can be rewrit-
ten as

|
−→r |

2
+ |µsl |

2
− 2ℜ

(
−→r µ∗

sl

)
σ 2
sl

=
|
−→r |

2
+ |µsw |

2
− 2ℜ

(
−→r µ∗

sw

)
σ 2
sw

. (111)

Then, we can write(
σ 2
sw − σ 2

sl

)
|
−→r |

2
− 2

(
σ 2
swℜ

(
−→r µ∗

sl

)
− σ 2

slℜ
(
−→r µ∗

sw

))
= σ 2

sl |µsw |
2
− σ 2

sw |µsl |
2.

(112)

Finally, the boundary equation in (41) is obtained by
considering −→r = x̀ + j ỳ. ■

ξ1 =

∑
p̸=u

(
ℜ(x∗

pxu)�
(
ρ
(xp,xu)
RR

)
+ ℑ(x∗

pxu)�
(
ρ
(xp,xu)
RI

))
, (98)

ξ2 =

P∑
p=1

(
ℜ(xp)2 − ℑ(xp)2

)
E
(
ρ
(s,s)
RI , ρ

(s,xp)
RR , ρ

(s,xp)
RI , ρ

(s,xp)
IR , ρ

(s,xp)
RR , ρ
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RI

)
, (99)

ξ3 =
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E
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ρ
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ρ
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+
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(
E
(
ρ
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RI , ρ
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)
− E

(
ρ
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RR , ρ
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RR , ρ
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IR , ρ
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, (100)

ξ̄1 =

∑
p̸=u

(
ℜ(x∗

pxu)�
(
ρ
xp,xu
IR

)
+ ℑ(x∗

pxu)�
(
ρ
xp,xu
RR

))
, (101)

ξ̄2 =

P∑
p=1

ℜ(xp)ℑ(xu)E
(
ρ
(s,s)
RI , ρ

(s,xp)
RR , ρ

(s,xp)
RI , ρ

(s,xp)
IR , ρ

(s,xp)
RR , ρ
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RI

)
, (102)

ξ̄3 =
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(103)
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