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ABSTRACT Growing energy consumption is a global problem. The information and communications
technology (ICT) industry is in a critical role as an enabler of energy savings in other sectors. However,
the power consumption of the ICT sector also needs to be addressed, to contribute to the overall reduction
of power consumption and carbon emissions. A new era has begun as the fifth generation (5G) mobile
data connection rollouts are advancing globally and are expected to reach a 10% share of end-user devices
and connections by 2023. The available references on energy consumption in global mobile networks
are rather old and highly averaged – only estimates of energy consumption relative to data volumes are
available. There is an information gap regarding the energy consumption of emerging 5G and advanced
4G technologies. Therefore, it has been difficult to understand the actual electricity consumption differences
between generations and spatially aggregated electricity consumption once these generations are combined to
offer capacity and coverage. This article fills this gap by providing a reference on the energy consumption of
base transceiver stations for reported mobile data usage for different Radio Access Technologies; 3G, 4G and
5G respectively. To the best of our knowledge, there is no reference to scientific research on the comparison
of energy intensity per square kilometer for 3G, 4G and 5G mobile radio technologies, using actual operator
data. The objective of this research was to improve the understanding of the actual energy consumption
of different Radio Access Technologies (RAT). The results also give insight to decision makers on when to
modernize the operator radio access network. The article reports on the results of field measurements on data
and visitor volumes and shares of different RATs. The research contains two statistical RAT combination
cases, one representing the European average and the other Finnish mobile networks. The analyses were
done for dense urban (DU) and suburban (SU) areas.

INDEX TERMS Energy efficiency, mobile data, radio network.

I. INTRODUCTION
Growing energy consumption is a global problem, as well
as matching the requirements of carbon-neutral initiatives on
energy consumption reduction and renewable energy sources.
The ICT industry enables energy savings in other sectors
for example by utilizing automation, digitalization of pro-
cesses andmobility. Nonetheless, the industry itself must also
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contribute to the reduction of global power consumption and
carbon emissions through power-saving measures and inno-
vations. According to study by Andrae, depending on scope,
in 2020 ICT stands for up to 7% of the total global electricity
use [1]. According to an estimate from 2019, the ICT industry
produced over 444.23Mt of CO2 emissions while consuming
888.45 TWh of power, which represents 7-10% of global
energy consumption [2]. According to Pärssinen et al. the
relative footprint is moving from end-user devices to data
centers (DC) and networks [2].
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Mobile networks differ from fixed-line networks when it
comes to power consumption profiles. In a fixed network,
most of the power is consumed by customer endpoints.
According to a 2010 article by G. Koutilas, 30% of the
total power consumption is associated with the fixed-line
operator whereas in the case of mobile networks only 10%
of total power is consumed in the customer endpoints and
the rest is consumed by the mobile operator [3]. These ratios
have changed since 2010 as new generation mobile networks
and endpoints have been made available. According to the
Nokia 2020 white paper, 80% of mobile network energy is
consumed in Radio Access Networks (RAN) [15].

Mobile networks have evolved significantly in the last
25 years from 2G to 4G, and data speeds increased
500 000-fold [4]. A new era brings even higher speeds as
5G network and end-user device rollouts advance globally
and data speeds are further increased. According to Cisco
Annual Internet Report (2018–2023), 5G end-user devices
and connections globally make up over 10% of all mobile
devices and connections by 2023. It is also estimated that,
by 2023, the amount of 5G capable mobile devices will reach
1.4 billion [5]. At the same time, 5G speeds will become
13 times higher (575 Mbps) than the average mobile connec-
tion by 2023. Interestingly the usage share per month of the
average top 1% of mobile users is decreasing, meaning that
a greater mass of users is using more data on their mobile
devices [5]. These estimates are aligned with the GSMA
mobility report, which forecasted growth for smartphone-
based connections from 68% in 2020 to 81% in 2025 [6].

Currently, as far as we know, the available references on
energy consumption in global mobile networks are rather
old and highly averaged. These studies do not consider the
emergence of 5G and the scale-up of 4G. Therefore, it has
been difficult to understand the actual electricity consumption
variation between different telecom technology generations
It should be noted that in modern radio access technology
(RAT) implementations of 3G can be provided with energy-
efficient multi-RAT radios. In actual RAT implementations,
dense city centers provide modern RAT, whereas rural areas
utilize 2G and 3G technologies. There is a constant RAT
modernization starting from dense urban (DU) areas and
continuing to rural areas. This creates a dynamic environ-
ment where energy consumption may be difficult to quantify.
In this article, the energy consumption of base transceiver
stations (BTS) is estimated for different RATs, 3G, 4G and
5G. These estimates are important to understand the actual
energy consumption of different RATs. In addition, the results
give insight to decision makers on when to modernize the
operator network.

Obtaining actual empirical data on the energy consumption
of different generation RATs and the actual number of users
from telecom operators is not easy. We have been able to
obtain this information and measured data volumes. Our
study includes both an average European and Finnish mobile
network scenario. Energy consumption per area can be

estimated using the average data usage per user, the number
of users, and the split of RAT technologies.

The analyses in this paper were done for DU and SU areas.
Rural areas were not investigated, as a typical rural area is dif-
ficult to define due to low population and scarce BTS cover-
age. Energy consumption was estimated using three different
methods: 1) data-based estimation 2) installed hardware with
a typical load profile and 3) using measurements from a live
network. The test areas were selected from the capital area of
Finland with actual data from Finnish operators. For the RAT
split, a typical European split is used. The actual Finnish RAT
split is used in this paper to highlight the significance of the
RAT split in total energy consumption.

To the best of our knowledge, there has not been any
scientific modeling comparing energy intensity per square
kilometer between 3G, 4G and 5G mobile radio technologies
and comparing with actual operator data. This article investi-
gates net electricity consumption instead of commonly used
relative energy consumption (kWh) per transferred gigabyte
(GB) of data to reveal the magnitude of used electricity.
A representative RAN design for DU and SU environments
has been created to realistically account for the RAT split.
In addition, measurements, and calculations for the actual
and theoretical energy consumption of each base station
were done. Energy intensity per square kilometer is based
on the median user profile and the actual number of end-
users. Finally, a comparison between RAN generations and
uncertainty analysis is conducted.

II. BACKGROUND AND THE RELATED STUDIES
Figure 1 presents themain building blocks of themobile com-
munication system and the selected system for assessment
in this paper. The users use applications (such as Facebook,
YouTube, Netflix, etc.) on end-user devices through mobile
access networks. The access network is connected to the
Internet via the core network, connecting service requests to
the corresponding data center where the actual servers provid-
ing applications and services reside. In this paper, we assess
the electricity consumption of different RATs (3G, 4G and
5G) in BTS. We focused on BTS because it represents the
vast majority of the energy consumption in the whole mobile
network.

Mobile data consumption in Finland is among the high-
est in the world [7]. Even though new mobile end-user
devices are more energy-efficient and relative energy con-
sumption per transferred GB has decreased, users consume
more mobile data than ever before. The energy consumption
(kWh/GB) has been studied for example by Pihkola et al.
In the article, the empirical part contained an estimation
of the overall energy consumption of the Finnish mobile
network operators during 2010–2017. A kWh/GB trend was
constructed with a top-down approach using basic statistical
analysis methods. Pihkola et al. conclude that, although the
energy efficiency of mobile access networks has significantly
improved over the last five years, rapidly increasing data
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FIGURE 1. Telecom system. This paper discusses the mobile access
network part inside the circle.

usage and new functionalities have not allowed system level
energy savings to be realized [8].

Energy consumption optimization methods for mobile net-
works have been studied by Rong, Xiu-ting [9]. The authors
proposed a base station planning algorithm based on multi-
objective optimization. The optimization objective is to real-
ize the lowest energy consumption by using load balancing
methods. They concluded that the algorithms can effectively
reduce system energy consumption.

Yan et al. modeled the total energy consumption of mobile
network services and applications. They concluded that since
energy consumption is dependent on user behavior, a sen-
sitivity analysis of different usage patterns is needed to
identify the root causes of service-specific energy consump-
tion [10]. Similarly, Pärssinen et al. concluded that sensitivity
analysis is needed to assess the total energy consumption
of the Internet. Estimating the Internet’s energy consump-
tion is challenging due to the complex nature of telecom
networks [2].

Power consumption of the BTS, especially radios, is heav-
ily dependent on the traffic load. Traffic load has a diurnal
cycle and one way to estimate it is presented by the European
Telecommunications Standards Institute (ETSI) in ETS TS
102 706 technical specification: Environmental Engineering
(EE); Measurement method for energy efficiency of wireless
access network equipment for different traffic loads [11].
Gati et al. ended up with slightly higher traffic loads in
their article in 2015, but the difference is small and network
planning varies between countries and telecommunications
operators [12].

III. MATERIALS AND METHODS
In this section, we provide theoretical background and present
the used methods. Firstly, the method for investigating RAT
energy consumption is presented with predictions until 2025.
This is followed by a presentation of used methods when
estimating a theoretical model and an installed base-based
model. Finally, the methods used for on-site measurements
and uncertainty analysis are presented.

FIGURE 2. RAT split estimate in mobile networks for European (top) and
finnish markets (bottom).

A. RAT ENERGY CONSUMPTION
The energy consumption of the BTS in a mobile network is
studied using Finnish data consumption data. Two different
RAT split schemes are studied: an average European scheme
and a Finnish one. This is done to illustrate the impact of the
used technology. EuropeanRAT split is obtained fromGSMA
The Mobile Economy European 2018 report [6]. The Finnish
data is based on theNetradar crowd-source database [13]. The
data was collected for 3G, 4G and 5G in 2021. For the sake
of simplicity and the low amount of data transferred in 2G,
all data in 2G and 3G are assumed to be 3G traffic.

In both cases, 4G roll-outs started in 2009 and growth has
been assumed to be linear until the reported values, namely
2020 for European and 2021 for Finnish networks. According
to the GSMA report, the estimated share of 5G in 2025 for
both networks is 35% [6]. In Europe, the network rollout is
assumed to start in 2020 and continue linearly until 2025. For
Finnish networks, we have a measurement point at the end of
2021 [13], where 5G represents 1% of the total data volume.
Linear growth from 2021 to 2025 is assumed. With these
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boundaries in place, in figure 2 an assumption for the RAT
split in European and Finnish mobile networks from 2010 to
2025 is presented.

Data usage in Finnish networks is monitored by the Min-
istry of Transport and Communications. Finns are one the
most active users of mobile data and the increase in trans-
ferred data has been high. Thus, the situation in Finland can
be assumed to represent networks in other parts of Europe
or globally after a few years. The main reason for the higher
growth in the Finnish market is the commonness of unlim-
ited data plans for a mobile subscription. The amount of
mobile data usage in Finland over the years is presented in
Figure 3 [14].

FIGURE 3. Mobile data usage in finland 2007-2021.

The related energy consumption for different RATs has
not been studied and the technology has evolved strongly
over the years. The latest available published data for 3G
was chosen [8], even if the recent analysis shows 10 times
higher energy efficiency for 3G networks [15]. For 4G,
we derived a pure 4G BTS value from Nokia’s whitepaper.
In the same paper, a 10-fold improvement for 5G, over 4G,
is reported [15]. These values are presented in Table 1.

TABLE 1. RAT energy consumption values used in this research.

The energy consumption E of the network with a mixture
of RATs can be calculated as

E = D(e3GX3G + e4GX4G + e5GX5G), (1)

where
D is the data usage in the network
e is the energy efficiency of the RAT (energy per data)
X is the share of each RAT in a network.

B. RAT ENERGY CONSUMPTION HYPOTHESIS
Ficom’s statistics for mobile data in Finland show an average
of 20 % annual growth in recent years. The peaks are related

to the introductions of 3G and 4G technologies. There is a
slight increase visible for late 2019 and early 2020 due to
COVID-19 and the related increase in remote working, but
the growth returns to the level of 19% by the end of 2021,
as presented in Figure 4.

FIGURE 4. Annual mobile data usage growth in Finland [14].

Annual mobile data usage over the years 2007-2021
with the estimated future growth prediction is presented in
Figure 5. The solid line is based on Ficom’s data [14]. The
dashed line represents the recent annual growth of 20%.
The dotted lines are estimated extremes, where the lower line
represents a decreasing growth of 10% and the higher line a
30% annual growth.

FIGURE 5. Annual mobile data usage growth in Finland [14].

Annual mobile data energy consumption in Finland is
calculated using (1) and presented in Figure 6 for different
RATs and actual technology mixes in Europe and Finland
using different annual future data growth scenarios.

It seems that energy consumption growth in European
networks is flattening or slightly increasing, but in Finland,
energy consumption has flattened or even started to decrease
from the 2017 peak due to modernized networks. This is
somewhat contradictory with the public data by Ficom show-
ing an increase until 2020 [16].

Assuming the European RAT split, energy consumption
may start to decrease after 2022 due to the introduction of
more energy efficient 5G networks replacing 3G. However,
hugely increased mobile data usage can eventually result in
energy consumption increasing.
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FIGURE 6. Annual energy consumption for data usage in Finland and
Europe using different RAT splits.

The relatively high energy consumption of 3G keeps the
total network energy consumption high in Finland until
2025 even if the use of 3G will be reduced to close to
zero. In average European networks, 3G’s share of energy
consumption is halved from 2021. It is the highest consuming
RAT still in 2025, even if its share of the data volumes is
reduced from 25% in 2021 to 6% in 2025. In Figure 7,
RAT energy consumption in 2021 and 2025 in European and
Finnish networks is depicted.

FIGURE 7. Energy consumption of different RATs in Europe and Finland
for 2019 and 2025.

The energy consumption for 5G appears to be very low
compared to its share, but the calculation assumes good load
utilization and hence high energy efficiency. This will likely
be the case in 2025.

C. DATA-BASED CALCULATION MODEL
To check the validity of the assumptions in the energy con-
sumption hypothesis, mobile data consumption in Finland
was studied for two types of areas, namely DU and SU. The
Finnish RAT share is used in the analysis.

Two 2 km2 areas (1.4×1.4 km) from the capital area of Fin-
land were selected. The first one is a DU area in Helsinki city
center and the second one is a SU residential area in Espoo.
These two areas are further divided into nine equal blocks to
study the telecom traffic homogeneity of the area. The maps
of the two studied areas are presented in Figure 4 [17].

FIGURE 8. Studied areas a) DU on the top and b) SU on the bottom.

The number of users per area is available through Telia’s
CROWD INSIGHT service. In the data collection system,
the number of visitors and the related duration of the visits
are reported daily for the blocks presented in Figure 8. The
average data for 2021 together with calculated averages and
medians are presented in figures 9 and 10 for DU and SU,
respectively.

In the DU area, blocks 1 and 2 are different from the
other blocks as they have higher visitor amounts. Moreover,
the duration of stay is short because the main train and bus
stations are located within this block. In other blocks, most
of the users stay for more than 5 hours and the total amount
of visits is lower.
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FIGURE 9. Daily visitors and duration of visits in DU blocks.

FIGURE 10. Daily visitors and duration of visits in SU blocks.

In the SU area, there is a large shopping center in block 8,
which explains the high number of short-term visits. In other
blocks, the number of visits is lower, and the long duration of
visits indicates that this is an area where people live in.

The effective number of daily users per block n can be
estimated using the average value for each time slot, except
for the >5h slot. For stays longer than 5 hours, we assume
that the users are either living or working in the area, and thus,
typical mobile data use time is less than 12 hours - 8.5 hours
was used as an average time for the >5h slot. Finally, the
resulting user hours are divided by 24 hours to get an average
number of users per day.

n = NVisits[X5−20min · 0.2h+ X20min−1h · 0.67h+ X1−2h
·1.5h+ X2−5h · 3.5h+ X>5h · 8.5h]/24h, (2)

where
N visits is the total number of visits in the block
xi is the share of the visits of different durations.
The number of total users in the DU and SU areas is 30,050

and 5,875 for DU and SU respectively.
According to Helsinki City Executive Office, the popula-

tion of the selected areas is 17817 for the DU and 11111 for
the SU area, which shows that visitors increase the number of
mobile users in the DU. However, the SU users are working
or studying outside of the home location, thus they do not use
data in the observed area for the major part of the day.

Now we can scale the nationwide energy consumption
diving by the number of subscriptions in Finland. The number
of active subscriptions in Finland was 9.24 million at the end
of 2021 [14].

D. INSTALLED BASE
The actual installed base information of Telia’s network was
collected for the two selected areas. The monitored sites
were in block 5 in the DU area and block 8 in the SU. The
power consumption of the used equipment was obtained from
their manufacturers’power consumption measurements for
different traffic loads.

ETS load was used as it is well specified and widely used
in energy efficiency calculations. ETS 24hrs load levels and
daily durations are presented in Table 2.

TABLE 2. ETS 24hrs load levels and daily durations.

These values were used to calculate the daily energy con-
sumption of the installed radios, power consumption of the
baseband (BB) equipment was assumed to be nearly constant
over time since the loading has only a small impact on its
power consumption.

Annual energy consumption
∑
EBTS of a BTS HW can be

estimated using the equation.∑
EBTS = 24 · 365 · [

N∑
i=1

ni(6/24 · Pi,Low + 10/24

·Pi,Medium + 8/24 · Pi,Busy + nBB · PBB_typ],

(3)

where
N is the number of different radio types
ni is the number of each radio type
nBB is the number of BB equipment
Pi, Low, medium and busy are equipment manufactur-

ers’measured power consumption amounts for each radio
type using the defined traffic profile
PBB,typ is the measured typical power consumption of BB

equipment.
Telia’s market share of mobile subscriptions in Finland in

2021 was 31% [18], thus the calculated energy is divided
by 31% to get the total energy consumed in the networks of
all the communication system providers (CSP) in the area.
Finally, the calculated value was adjusted by the data volume
that the specific BTS represents in the selected block - these
values were 92% for the SU and 25% for the DU (Telia’s
actual data).

E. ON-SITE MEASUREMENTS
The same BTS sites, that were used when applying the
installed-base method, were used for measurements. In the
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TABLE 3. Uncertainty simulation 2021 input parameters.

measurements, input DC power for RF and BB were mea-
sured separately using ten-minute intervals. From these mea-
surements, the average daily power consumption, and data
usage, as well as the annual energy consumption were calcu-
lated. Power consumption is measured from the inlet terminal
of the BTS hardware (HW), thus conversion losses from
AC to DC were excluded. Measurements were done using
SiteBoss 530 data acquisition equipment [19] with Sunbird’s
Power IQ online measurement software [20].

Telia’s data was divided by the market share and the data
volume of the measured BTS, as was done when using the
installed base method.

F. UNCERTAINTY ANALYSIS
Uncertainty needs to be estimated when power density is
assessed. AMonte Carlo simulationwas carried out to present
the range of variation for the theoretical model and the
installed-base model. Uncertainty simulation was carried out
using Python. The codes are available publicly on GitHub for
future research [21]. In the theoretical model, the simulation
picks randomly 300k rounds of values from the range for
several input parameters for SU and DU (for years 2021 and
2025). Uncertainty ranges have been estimated based on
either referenced min and max values or through empirical
evidence. In the 2021 data, the usage split of different RATs
and the number of subscribers were obtained from the mea-
sured statistics, and thus, the range of uncertainty was rela-
tively small. For energy consumption per RAT technology,
a wider uncertainty range is used, since RATs have internal
variation depending on the equipment. Finally, the number
of users in the DU area has a moderate uncertainty range,
as usage is almost constant. However, in the SU area, a wide
uncertainty range is used to compensate for the variation in
the number of users within the area. For 2025, the estimate
of the uncertainty in the used data was increased to match
with estimated growth rate extremes, namely 10% and 30%
growth scenarios. In 2021 and 2025 uncertainty simulations,
the share of 3G RAT is randomly picked from the range,

followed by a random pick of the share of 5G RAT. The share
of 4G RAT is obtained by reducing the shares of 3G and 5G
from 100%. The input parameters and respective uncertainty
ranges are presented in Tables 3 and 4.

For uncertainty in the install base method, the ranges of
uncertainties and the steps for random picking can be seen
in Table 5 and calculated by utilizing 3. All ranges are
symmetrical.

The X_Data parameter describes the portion of data usage
in the selected 1/9 square within the 2 km2 area. The mar-
ket share of this oligopoly operator market can also vary
and therefore uncertainty was added to the X_Marketshare
parameter.

IV. RESULTS
In the following section, the results of using different methods
for assessing energy consumption for different RATs are
presented.

A. METHOD 1—DATA BASED MODEL
The annual energy consumption for the data usage per sub-
scription can be calculated using (1) with Finnish network
share (Figure 4b) and by dividing the values by the number
of active subscriptions. The number of active subscriptions
in Finland in 2021 was 9.24 million [14], hence we got a
value of 133.9 kWh/user. User data per block is reported at the
daily level, but we can assume the same trend occurs equally
over a year. Estimated annual energy consumption per block
together with block median and average values are presented
in Table 6.

It can be noted that the SU is much more heterogenous
than the DU and thus the energy consumption estimate per
block varies a lot. DU energy consumption is relatively
homogenous.

B. METHOD 2—INSTALLED BASE MODEL
In the DU area, the measured BTS was in block 5 and
it covers 25% of the needed data capacity in the block
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TABLE 4. Uncertainty simulation 2025 input parameters.

TABLE 5. Uncertainty simulation for Install Base DU and SU 2021 input parameters.

TABLE 6. Annual energy consumption in DU and SU blocks using data
based method.

(Telia’s internal data). The site has 6 radios and twoBB equip-
ment. The estimated daily energy consumption of the DU site
was 121.8kWh/day and the total annual energy consumption
of the block was 574 MWh.

In the SU area, the BTS on block 8 was tested and it covers
93% of the needed data volume in the block. There were
12 radio modules and one BB device on the site all together.
Using (3) the daily energy consumption of the SU site was
186 kWh/day. When accounting for the market share and

FIGURE 11. Data and Energy consumption on the DU site for one week.

BTS share of the data volume, the total block annual energy
consumption was 243 MWh.

C. MODEL 3—FIELD MEASUREMENT
The same sites that were used for installed base estimation
were measured over one week. The measurement results are
presented for DU and SU areas in Figures 11 and 12.

The average energy consumption per day was 98.4 kWh
and 154.3 kWh for DU and SU areas, respectively.
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FIGURE 12. Data and Energy consumption on the SU site for one week.

FIGURE 13. Annual energy consumption of a studied block using
different estimation methods.

When using the coverage and Telia’s market share, the annual
block values were DU 463 MWh and SU 209 MWh. Unfor-
tunately, RAT-specific energy measurements were not pos-
sible, because the same radios are used for several RATs.
Only middle band (1800, 2100 and 2600 MHz) 4G and 5G
3500MHz were powered by their own sources. From there,
the average energy efficiency of 4G is 0.117 kWh/GB and
5G 0.501 kWh/GB.

The RAT split on the sites is slightly different and differs
also from the estimate. The measured RAT split in data
volumes is presented in Table 7.

TABLE 7. Share of each RAT in measured BTS sites for DU and SU.

Annual energy consumption obtained using different meth-
ods is compared in Figure 13. For method 1 (data-based
model) the studied block user count was used.

There is a relatively good match between the models for
the studied block. Block values are compared to area average
and median values in Figure 14.

The DU area shows lower variation, and hence, the results
of one block apply to the whole area. On the contrary, there

FIGURE 14. Energy consumption comparison for DU and SU using the
selected block, average and medium user numbers.

TABLE 8. Summary of the theoretical model uncertainty analysis.

is high variation in the SU results, because the area is much
more heterogenous and the studied block result could not be
applied for the entire area.

D. UNCERTAINTY ANALYSIS
The uncertainty analysis results for the data-based model
are presented in Figure 15. For the DU area, results range
from 286 MWh/year to 1052 MWh/year with a mean value
of 576 MWh/year, and a standard deviation (SD) was
114 MWh/year. The distributions are close to a normal dis-
tribution. Similarly, the results for the SU area range from
70 MWh/year to 453 MWh/year with a mean value of
210 MWh/year and SD of 67 MWh/year.

The data-basedmodel results with uncertainty were extrap-
olated to the year 2025 and are presented in Figure 16.
For the DU area, results range from 114 MWh/year to
1043 MWh/year with a mean value of 401 MWh/year and
SD of 134 MWh/year. The distributions are close to a nor-
mal distribution. Similarly, the results for the SU area range
from 28 MWh/year to 458 MWh/year with a mean value
of 146 MWh/year and SD of 62 MWh/year.

The summary of the uncertainty analysis for the data-based
model is presented in Table 8 below:

The installed base model was simulated using only the
2021 data. For the DU area results range from 218 MWh/y
to 1627 MWh/y with a mean value of 616 MWh/y and
SD of 199 MWh/y. For the SU area, results range from
131MWh/y to 448MWh/y with a mean value of 243MWh/y
and SD of 43 MWh/y. The results of the uncertainty analysis
can be seen in Figure 17.

The uncertainty analysis summary for the installed base
model is presented in Table 9 below.
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FIGURE 15. Range of possible results using the data-based model for the
DU (top) and SU (bottom) areas with 2021 data, taking uncertainty into
account.

TABLE 9. Summary of the theoretical model uncertainty analysis.

V. DISCUSSION
The theoretical model can predict data usage and energy
consumption in the DU area because the user amount is
homogeneous within the area. In the SU uncertainty, there are
big differences in user amounts within the studied area and
thus modeling needs to be done separately for smaller areas.
There was a big difference in RAT splits between the models
and measurements, mainly because the studied areas are in
cities where the new technologies have been introduced, and
the used RAT split was nationwide. This was balanced by
estimated energy efficiency values for 3G and 5G that was
different from the actual measurements of the real network.
For 5G the theoretical model was greatly over optimistic.
When comparing the capacity of the installed base to the
measurements, it looks like the 5G networks are run with

FIGURE 16. Range of results using the data-based model for the DU (top)
and SU (bottom) areas with 2025 forecasted data, taking uncertainty into
account.

a very low utilization ratio, and thus their energy efficiency
drops. In the studied networks, 3G traffic was generated by
modern multi-RAT radios, and thus its energy efficiency is
likely better than pure 3G radios.

All in all, the model based on the user amount, data usage,
and the RAT split could predict the energy consumption of
homogenous areas, such as DU. In SU or rural areas, there
will be more local differences. Thus, theoretical models can-
not be used there for larger areas, and calculations need to
be done on a smaller scale to capture high data usage areas,
such as shopping centers or public places, and transportation
stations. However, the model is very sensitive to the RAT split
and the energy efficiency of used technologies and their usage
levels.

The energy consumption model presented in this paper
clearly indicates that significant savings can be achieved
using the latest RAT technologies. 5G rollouts will turn the
trend of increasing energy consumption to a decreasing one
within the coming years. The model also showed the impact
of the old 3G networks on total energy consumption. Today,
3G represents 94% of the total energy consumption in Euro-
pean mobile networks, but only 40% in data share. Even in
Finland, with heavy data consumption, 3G represents 72% of
the energy consumption with only a 9% share in networks.
Due to 3G, the energy consumption of networks is still at
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FIGURE 17. Range of results using the installed base method for the
DU (Top) and SU (Bottom) areas with 2021 data, taking uncertainty into
account.

the same or higher level in 2025 compared to a situation of
pure 4G use, despite the higher energy efficiency and a good
share (31%) of 5G. To put energy consumption in scale, the
2021 electricity consumption of mobile data transfers repre-
sents 1.4% of the total electricity consumption of 86.8 TWh
in Finland compared to 0.3% if the network was purely
4G. The peak energy consumption in 2017 was 1.9% of the
total electricity consumption. Assuming the Finnish mobile
data energy consumption and the average European split of
RATs, the share of energy consumption of European mobile
data transfers would amount to 4% of the total electricity
consumption in Europe.

We used Telia’s Crowd Insight tool to get the numbers
of users and time spent in both areas, but those are not
necessarily representative of data usage. In the DU area, users
are working, commuting, and spending their free time and
there are also people living in the area, thus data usage is
spread more evenly during the day. In the SU area, the usage
is light during the daytime, because there are no offices or
recreational areas, but mainly residential houses; therefore,
subscriptions are registered during the nighttime with low
data usage. There is also a large shopping center on the
grid that may cause many registrations but only light data
usage. Notwithstanding, the results can be used for any area to
estimate energy consumption if there is a good way to define
the number of users in an area.

VI. CONCLUSION
This article investigated the net electricity consumption
instead of commonly used relative energy consumption
(kWh) per transferred GB of data to reveal the magnitude of
used electricity. RAN designs for DU and SU environments
were studied for two different RAT split configurations.
In addition, measurements, and calculations for the actual
and theoretical energy consumption of each equivalent base
station were done, and an extrapolated energy intensity per
square kilometer was estimated based on the median user
profile and actual end-user amount. Finally, a comparison
between the RAN generations was generated and the uncer-
tainty analysis was conducted.

Our study showed that the modernization of mobile net-
works pays off. Even power-hungry 2G and 3G equipment
can be replaced with multi-RAT HW that consumes much
less energy than the original equipment installed earlier on.
4G and 5G with much better spectral efficiency provide
good ways to reduce the OPEX of CSPs, as the energy per
transferred data amount is much lower than for 2G and 3G
technologies.

The increased use of data sets new challenges to energy
consumption. Those can be mitigated by using new energy-
efficient HW technologies, like System-on-Chip (SoC) and
energy-saving features. There is also potential to reduce BTS
-site-level energy consumptionwhen using liquid cooling that
reduces a site’s energy consumption by 30%. When using
liquid cooling, it is also possible to reuse the waste heat e.g.
to warm up utility water. With the recent increases in energy
prices, it would be interesting to study the economical aspects
of modernization and total energy saving concepts.
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