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ABSTRACT Machine-type communications (MTC) should account for half the connections to the internet
by 2030. The use case massive MTC (mMTC) allows for applications to connect a massive number of
low-power and low-complexity devices, leading to challenges in resource allocation. Not only that, mMTC
networks suffer under rigid random access schemes due to mMTC ultra-dense nature resulting in poor
performance. In this sense, this paper proposes a Q-Learning-based random access method for massive
machine-type communications, with device clustering and non-orthogonal multiple access (NOMA). The
traditional NOMA implementation increases spectral efficiency, but at the same time, demands a larger
Q-Table, thus slowing down convergence, which is known to be a highly detrimental effect on massive
networks. We use pre-clustering through short-range device-to-device technology to mitigate this drawback,
allowing devices to operate with a smaller Q-Table. Furthermore, the previous selection of partner devices
allows us to implement a full-feedback-based reward mechanism so that clusters avoid time slots already
successfully allocated. Additionally, to cope with the negative impact of system overload, we propose an
adaptive frame size algorithm to run in the base station (BS). It allows adjusting the frame size to the
network load, preventing idle slots in an underloaded scenario, and providing extra slots when the network is
overloaded. The results show the great benefits in terms of throughput of the proposed method. In addition,
the impact of the use of clustering and the size of the clusters, as well as the frame size adaptation, are

analyzed.

INDEX TERMS mMTC, NOMA, reinforcement learning, Q-learning, 6G, random access.

I. INTRODUCTION
5G technology inherently supports critical and massive
machine-type communications (MTC) [1]. The development
and deployment of MTC networks has grown even more with
applications such as smart cities [2] and smart industries [3].
MTC should represent half of the connections to
the Internet by 2030, reaching about 14.7 billion con-
nected devices [4]. Such a fact raises the question, how
will next-generation communication systems support MTC
applications?
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It is undeniable that the new 6G service classes require sig-
nificant physical (PHY) and medium access control (MAC)
layers enhancements to ensure massive connectivity. The
authors in [5] suggest the use of non-orthogonal solutions [6],
channel state information (CSI) free/limited schemes [7], and
coding for short packets [8] already at the PHY. Notably, they
emphasize that: (i) the likelihood of operating with a strong
line-of-sight increases with denser networks and statistical
beam-forming relying on channel statistics can operate with
near-optimum performance without the need for CSI acquisi-
tion [9]; and (ii) coding for short packets [10] becomes vital
as the coding schemes for 5G (low-density-parity-check and
polar codes) are not optimized for short packets.
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MAC challenges include the need for modern random
access (RA) schemes [11] since scheduling a vast amount
of devices becomes impractical, and pure random access
schemes like ALOHA have severe performance limita-
tions [12]. Unlike pure RA schemes, intelligent RA methods
can leverage the fact that collisions will happen, using them
as a learning opportunity. In addition, applying successive
decoding at the Base Station (BS) can resolve collisions
when devices use the same slot. In this sense, non-orthogonal
multiple access (NOMA) can improve resource sharing and
spectral efficiency. NOMA can be considered a promis-
ing solution for massive MTC [13]. Combining NOMA
and grant-free access schemes can reduce the effective
device density and system overhead [14]. Furthermore,
in power-domain NOMA, intelligent interference techniques
can recover the transmitted signals.

However, massive MTC networks can suffer from inef-
ficient RA schemes, as the current rigid models perform
poorly in ultra-dense networks [11]. In addition, allocating
transmission resources to MTC is challenging, urging intel-
ligent schemes to learn the network characteristics. Machine
learning models are often used to acquire characteristics that
an explicit mathematical model can not readily obtain. For
example, among the different machine learning methods,
reinforcement learning is helpful in modeling various wire-
less communications problems [15]. Among the reinforce-
ment learning techniques, Q-Learning stands out because
of its capability of being implemented in a model-free and
distributed manner [16]. A comprehensive survey in [17]
discusses the issues in radio access network congestion and
how machine learning techniques can improve RA in mas-
sive MTC networks, pointing out Q-Learning as a potential
solution. Furthermore, Deep Q-Learning appears to improve
resource allocation in wireless networks, being used with
NOMA in [18] to maximize grant-free Aloha-like system
throughput. Nonetheless, Deep Q-Learning can be too com-
plex and computationally intensive for MTC devices.

A. RELATED WORK

Bello et al. [19] introduced a Q-Learning algorithm to con-
ciliate RA involving human-type communication (HTC) and
MTC devices in a cellular network. The MTC devices actively
learn which time slots to access, avoiding collisions among
MTC devices while also increasing the performance of HTC
users. The reward is fed back via a single bit per time slot,
which indicates the transmission’s success or failure. More-
over, the back-off frame size can be dynamically adjusted
according to the blocking probability experienced by the HTC
users. With a focus on MTC, the authors of [20] propose a
distributed Q-Learning RA algorithm using the number of
collisions per time slot as a reward, where devices make
independent decisions when choosing a transmitting time slot
within a frame. However, the proposed approach needs sub-
stantial feedback from the BS to the devices, as sending the
so-called congestion level can consume several bits per time
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slot, besides the unclear practical feasibility of determining
the exact number of colliding devices in each time slot.

Based on [20], we propose a distributed Q-Learning algo-
rithm exploiting power-domain NOMA in [21] for increased
spectral efficiency. Each device can learn the best time slot
to transmit and its power level and NOMA partners. The
proposed solution achieves considerable gains in through-
put and feedback complexity compared to [20], as NOMA
increases the spectral efficiency. In contrast, in [21] the BS
feedback contains only a single bit per time slot. However,
the Q-Table size increases with the power levels, slowing
convergence. Next, [22] assumes a similar setup asin [21] and
considers the effect of finite blocklength and imperfect suc-
cessive interference cancellation (SIC). Then, they exploit the
block error rate (BLER) as a reward in order to improve the
performance of the Q-Learning algorithm. However, using
the BLER as a reward can make the feedback longer; while it
is not clear how in practice, one could perfectly estimate the
BLER of the devices in an interference scenario. In [23], the
authors also introduce a Q-Learning scheduling method with
SIC. However, they do so in an ad-hoc scenario.

Another work to investigate the use of power-domain
NOMA and distributed Q-Learning to improve RA is [24].
The authors consider multiple power levels, multiple chan-
nels, sporadic traffic, and design a reward based on the
activation probability of the devices. Even though sporadic
traffic is considered after convergence, training on a saturated
network is still required, and devices have to learn which are
their best NOMA partners, leading to a slow convergence
as in [21]. In the same line, in [25] the authors consider
sporadic traffic and propose a Q-Learning RA algorithm
using a reward system based on the successful transmission
probability. However, [25] introduces intermittent learning,
in which the devices update their Q-Tables from time to time,
and non-orthogonal transmissions are supported by sparse
coded multiple access (SCMA). Moreover, the authors pro-
pose an algorithm variant in which just part of the devices is
involved in the learning process. For that sake, they assume
that devices are grouped a priori, where only devices in the
high activation probability group run the algorithm, reducing
energy consumption and system complexity. However, this
method, as [20], [22], [24], relies on the BS knowledge of
how many or which devices collided when trying to access a
particular resource, which can be very difficult to estimate in
practice. Moreover, the reward has several bits per resource.

The work in [26] also considers a distributed Q-Learning
aided RA procedure using SCMA. However, differently
from [25], the devices run two separate algorithms, one for
learning the time slot and another for the codebook. More-
over, the reward is different for each case, based on the con-
gestion level [20] for the time slot and a binary variable for the
codebook. Therefore, the BS feedback can be relatively large
while also demanding knowledge of how many devices col-
lided in a given resource. Finally, a collaborative Q-Learning
algorithm for subcarrier assignment in wideband cognitive
radio systems is introduced in [27]. The BS transmits to
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the secondary users, from time to time, information on the
subcarriers occupied or not by other devices. Such full feed-
back exploitation, that considers the success or failure at a
particular resource, is beneficial. It is remarkable that consid-
ering only the feedback from a single resource, devices using
the methods in [20]-[22], [24]-[26] miss several learning
opportunities.

B. NOVELTY AND CONTRIBUTION

In this work, we propose using Q-Learning and NOMA
with clustering, alongside an adaptive frame size algo-
rithm, to improve the throughput in massive MTC networks.
Devices do not use Q-Learning to find their partners or power
levels, reducing the Q-Table size, the convergence time,
and the complexity. Instead, they use short-range device-to-
device (D2D) communications to self-organize in clusters.
Moreover, several works try to improve Q-Learning alloca-
tion methods by designing new rewards with more infor-
mation, which usually leads to a large feedback size, and
unrealistic or inefficient models. In this work, rather than
adding information to the feedback, we better use all the
information available within a simple feedback, improving
collision avoidance ability and faster convergence.

Our work differs from [19], [20], [27] because, besides
using Q-Learning for resource allocation purposes, we imple-
ment NOMA for improving spectral efficiency. Moreover,
different from [20], [22], [24]-[26], our method requires min-
imal feedback from the BS, a single bit per time slot. Similar
to [27] and different from [19]-[22], [24]-[26], we fully
exploit the feedback sent by the BS so that devices avoid the
time slots already in use. Different from [26], we implement
only one learning algorithm on the device side, making use
of clustering to resolve the resource sharing issue (transmit
power in our case, codebook in the case of [26]). Compared
to [25], the devices self-organize in small clusters, which
speeds up convergence, while in [25] it is not discussed how
grouping is implemented. Furthermore, unlike most related
work [20]-[22], [24]-[27], we implement a frame size adap-
tation mechanism, which allows the method to adjust to
overloaded or underloaded scenarios. Apart from the above,
we consider constant learning instead of intermittent learning
as in [25], as permanent learning considerably speeds up
convergence. Moreover, constant learning can be used only
during convergence, as in [24], if devices do not transmit
periodically. Note that the learning process happens in satu-
rated traffic, which is not typical of MTC networks. However,
by reaching convergence quickly devices could then move
on from a short training phase into standard operation with
sporadic traffic [28]. A comparison of the proposed method
with the closest literature is presented in Table 1, where the
main technical scopes of our proposal are highlighted.

The contribution of this work can be summarized as
follows:

o We propose a distributed NOMA Q-Learning RA
method with D2D clustering, a full-feedback-based
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reward (fFbR) mechanism, and an adaptive frame size
algorithm.

« We significantly improve the convergence speed con-
cerning the literature by reaching the maximum through-
put in a few (just over 10) iterations.

o The throughput improves, e.g., 18.55% at 200 devices
and 240.28% at 250 devices, compared to [21]. At the
same time, we decrease the Q-Table size thrice, reduc-
ing the learning process and computational complexity
accordingly.

The rest of this paper is organized as follows. Section II
introduces the system model. In Section III, the NOMA
power allocation is discussed, considering fixed- and
dynamic-ordered SIC schemes. In Section 1V, the proposed
method is presented in detail. Next, numerical results are
provided in Section V. Finally, the paper is concluded in
Section VI. Table 2 presents a list of acronyms used in this
work and the main variables are summarized in Table 3.

Il. SYSTEM MODEL
Assuming a stand-alone IoT network, we consider a setup
with N synchronized devices distributed uniformly around a
BS in a single circular cell. Every device has L data packets
ready for transmission. Medium access is based on grant
free slotted Aloha, where each device can transmit in one
of K time slots within a frame. All devices transmit at the
same frequency and data rate and with a given transmit
power, leading to one of the average received powers in Q2 =
{wo, w1, -+, 0, -+, wy—1}, where wy is a target received
power that leads to a predefined operating maximum outage
probability O when the devices is transmitting alone (i.e.,
without interference). Moreover, w,, is the target received
power that guarantees successful decoding of the message
in the m™h power level, m € {0,1,--- ,M — 1}, given the
presence of up to m interfering signals, each in one of the m
smaller power levels in 2. Note that every device has its own
transmit power computed via channel inversion considering
i) the estimation of its average path-loss using a control
message broadcast by the BS between data frames assuming
time division duplex reciprocity; and ii) the particular average
power w; which is the intended signal to be received at the BS.
We assume the devices can find partners in its own cluster,'
via a short-range D2D technology, as illustrated in Fig. 1.
The devices within the ¢! cluster, ¢ € {1,2,...,C}, share
the same time slot and each device transmits at a different
power as to yield one of the M possible receive powers at
the BS. Therefore, we exploit D2D communication within
each cluster to set up NOMA transmission of up to M devices
in the same time slot. Clustering also allows evaluating slot

1Clustering can be implemented through short-range D2D technology,
e.g., Bluetooth Low Energy (BLE) allows devices to last years with a single-
coin battery [29]. The discovery and connection time happens within a
few milliseconds [29], rapidly forming clusters. BLE supports one-to-many
devices communications [30], enabling clusters of over two devices. Besides,
we expect future radios to support multiple radio access interfaces [31].
Despite the variable range of D2D technologies, here we limit the clustering
range to 15 meters.
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TABLE 1. Comparison of Q-learning schemes for adaptive RA.

Methods NOMA/SCMA  Adaptive Frame Length  Clustering  D2D Collaboration  Exploits Full Feedback  Feedback Overhead
[19] v Small
[20] Large
[21] v Small
[22] v Large
[24] v Large
[25] v v Large
[26] v Large
[27] v Small
This work v v v v v Small

A feedback is considered small when it uses just ACK bits and large when the value for each slot/resource has to be represented by several bits.

TABLE 2. List of acronyms.

Acronyms Meaning

AWGN Additive White Gaussian Noise
BLER BLock Error Rate

BS Base Station

CA Collision Avoidance

CSI Channel State Information

D2D Device-to-Device

fFbR full-Feedback-based Reward

FTX Failed Transmissions

HTC Human-Type Communications

DS IDle Slots

MAC Medium Access Control

MDP Markov Decision Process

MIS Maximum number of devices In a Slot
mMTC massive Machine-Type Communications
MTC Machine-Type Communications
NOMA Non-Orthogonal Multiple Access
PHY PHYsical

RA Random Access

RAN Radio Access Network

SCMA Sparse Coded Multiple Access

SIC Successive Interference Cancellation
SINR Signal to Interference plus Noise Ratio
SNR Signal to Noise Ratio

SWC Slots with Collision

TPT Throughput

allocation only for cluster heads, which is shared with the
other cluster members via D2D communication, increasing
the time and energy efficiency of the resource allocation
process. Note that there is no inter-cluster communication.
The cluster head learns solely through the feedback from
the BS.

The signal received at the BS in the k™ time slot, coming
from a single cluster of M transmitting devices, can be written
as

M—1

Ve =) Xmk + Mg, ey

m=0

with x,, x being the attenuated signal vector received at the
BS from the m'" device, m € {0,1,--- ,M — 1}, M < N,
in the k™ time slot, k € {0, 1, --- , K — 1}, subject to fading
and path loss, with instantaneous received power wm i | k |2,
where A, x is Rayleigh fading, independent and identically
distributed in time and space, while w, x € €2 is the average
received power from the m-th device in the k™ time slot.
Finally, nj is the additive white Gaussian noise (AWGN),
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TABLE 3. List of variables.

Variable  Description

Ti Attenuated signal

Wm Average receive power

Q Average receive power set

C Cluster quantity

M Cluster size

dm.k Device distance to the BS

PLy, i Device path loss

¥ Discount factor

K Frame size

B Future reward complexity factor
« Learning rate

Orer Maximum device outage probability
Osic Maximum sic outage probability
F Noise figure

No Noise PSD

o? Noise power

X Number of collisions

N Number of devices

n Path loss exponent

S Period of frame size adaptation
o, ke Rayleigh fading

GRas Receiver gain

do Reference distance

Ry Reward

Yk Signal received at the BS

T Spectral efficiency

Gry Transmitter gain

with power o2 = FNyB, where N is the noise power spectral
density, B is the bandwidth, and F is the noise figure [32].

Moreover, path loss (PL) between the devices and the BS
is determined considering a log-distance model [33],

A,k
PL,, x = PL(dp) + 10n1og, (Z;—O> — Gy — Grew  (2)

where d, ;. is the distance from that device to the BS, dp is
the reference distance, PL(dy) is calculated using the Friis
equation [32], 7 is the path loss exponent, while Gy and Ggy
are the transmitter and receiver antenna gains, respectively.
The transmit power, P, i, of the my, device transmitting in
the k;, time slot can then be calculated as:

Pm,k = wmk + PLm,k- 3)

In order that the message transmitted from the m™ device
in the k™ slot is successfully decoded by the BS, the signal-to-
interference-plus-noise ratio (SINR) at the BS, SINR,;, «, has
to be greater than a given threshold. In this work, we consider
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FIGURE 1. Clustered MTC network associated with a BS, N synchronous
transmission devices in the uplink direction, M power levels, K time slots,
and C clusters based on vicinity and low-power devices.

the Shannon capacity, so that the threshold for successful
decoding is (2" — 1) where r is the spectral efficiency [33].
Consequently, the successful decoding probability from the
m™ device in the k' time slot can be expressed as follows

P (SINR,x = 2" —1). 4)

The BS proceeds with the successive decoding of the sig-
nals received in each time slot until they are all recovered.
If that is not possible, a failure is declared. Moreover, if dif-
ferent clusters transmit during the same time slot, we assume
that an unresolvable collision happens and a failure is also
declared. Collisions, however, are not considered when calcu-
lating the information outage, as the outage assumes that the
cluster is transmitting alone in a slot. This assumption allows
us to design the power for differentiating devices within the
same cluster, and not for surviving inter cluster collisions.
Therefore, the probability that the m™ message is successfully
decoded depends on the decoding in the presence of interferes
with lower powers, but also on the previous decoding and
removing of the messages with higher powers. Assuming the
same target outage probability Oyt for all power levels, the
information outage probability of the m™™ message is

Om=1—(1—=0OepM™, S

while the information outage probability of the last (or 01)
message is the final SIC system information outage probabil-
ity Osjc considering all iterations

Osic = 0p=1—(1— Oep™. (©6)

Note that the differences in average received power within
the set 2 should be carefully designed to achieve the target
outage probability Oy for all SIC iterations.
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FIGURE 2. NOMA-based MTC network with random access and maximum
number of devices per cluster M = 2.

After tentative decoding of all signals received at each
time slot, the BS broadcasts a feedback message between
data frames, indicating the successful decoding or not of the
transmitted data. Fig. 2 shows that the feedback message is
composed by K bits, each one corresponding to a time slot,
so that a ‘17 at the k™ position indicates that all data packets
transmitted in the k™ time slot were successfully decoded,
and a ‘0’ if they were not, either by message collision with
different clusters, by fading, or because no device transmitted
in that slot. Therefore, ACK bits indicate success or failure
per time slot, not per message.

Ill. NOMA POWER ALLOCATION

Considering Rayleigh fading, and dropping the time-index k,
the successful decoding probability of an MTC device, when
it is transmitting alone (i.e., free of interference), is

P (wolhol? = 2" = Do), )

while, according to the Section II, this probability must be
greater than or equal to (1 — Orer). Consequently, wo becomes

2" -1 5
>——— 7~ o5°.
0= Tl = O’

We assume that the M devices that belong to the same
cluster and transmit in the same time slot are decoded in order,
from highest to lowest received power, such that the strongest
signal has average received power wys_1, while the weakest
signal has average received power wg. This power allocation
scheme allows us to find the NOMA partners by device
proximity, i.e., clustering, rather than the usual channel gain
difference allocation. The choice for D2D partnering is cru-
cial because nearby devices are able to share information and
avoid the time consuming task of finding NOMA partners,
greatly improving the learning process. Then, decoding all
signals is possible because the BS applies SIC, reconstructing

®)
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and removing the signals from the previously decoded mes-
sages. We assume that the SIC receiver can extract each signal
power perfectly from the received signal when the decoding is
successful. Next, we consider two decoding schemes, fixed-
and dynamic-ordered SIC.

A. FIXED-ORDERED SIC

The BS determines the decoding order of this scheme by
considering only the statistical CSI for each device, i.e.,
the average received power. Then, the successful decoding
probability of the m™ MTC device, when it is transmitting in
presence of m interfering signals and given that the previous
messages were successfully decoded, is”

m—1
P onlhnl> = @ = 1)) wjll* | ©
j=0

Therefore, considering the predefined operating maximum
outage probability Or.r and following the analysis presented
in [34, Eq. 32], we can establish that

m—1 (1 2'—-1)
l_[j=0 (w/ + Wm )
Hm_l 1 ’
j=0

m—1 r_ )
— 1_[ <1 + M) (10)
1)

j=0 "

(1 —Oep)! =

From (10), we can estimate w,, if the lower average
received powers are known. For instance, if M = 2 then

2" = DA = Orep)
> w,
Oref
Since w,; > wn_1 Ym, the following approximation® to

estimate the m™ power level as a function of the (m — 1)
power level is valid

0. (11)

w]

o @ =D = Op)

Wm < m—1-
Oref

12)

B. DYNAMIC-ORDERED SIC

The dynamic ordered scheme is more demanding since the
BS must determine the decoding order based on the instanta-
neous received power of each device belonging to the cluster
that operates in the current time slot. The complexity of this
method increases with the number of clustered devices since
it requires a more precise CSI and must resolve the decoding
order in each time slot. Dynamic ordering presents a great
advantage over fixed ordering for very small values of M.
In contrast, such an advantage greatly diminishes for larger
values, so that fixed-ordered SIC may be preferred in practice
for large M. For this reason, next, we analyze in detail only
the case of M = 2 for dynamic-ordered SIC. Note that by
being able first to decode either of the two signals, i.e., the

2From (8) note that in realistic scenarios w( is much %reater than o2 (e. g,
if r = 2 [bps/Hz] and Oyer = 1072, then wy = 298.5-07), so we can neglect
the contribution of o2 in the sum.

3From (11), w; = 297 - wy, for r = 2 [bps/Hz] and Orep = 1072
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one that is received at the BS with the highest power and
not necessarily the one that was expected to arrive with the
highest power, increases the successful decoding probability
for the strongest signal, being the probability of the union of
two events

wi |h 2 wolhol?
Pl——————— > (2" -1 ——>2"-D).
<wo|h0|2+02 2@ -0 o 2@
(13)

Then, assuming an interference-limited scenario, and
r > 1 [bps/Hz], from (11) and (13) we can obtain®

w1/wo 1

(I = Orep) = w1/wo + 27 — 1) + 1+Q2 —1)-w/wp’
(14)

while after some algebraic transformations we have that
22" — 1)Oreta

@ 1 - Oref)(zr - ])2 - D(zr - 1) - (1 + Oref)’ (15)
with
(1 +Oref)2
— r_ 1\2 _ _ 2 _ > @ 7
D= \/((2 12— 1) ((1 e AT )
(16)

IV. PROPOSED METHOD

This work exploits short-range D2D communications to form
device clusters together with full utilization of the BS feed-
back message to increase throughput and speed up con-
vergence at the device side. Additionally, at the BS, the
proposed method employs an adaptive algorithm, adjusting
the frame size to the network load. The proposed method
combines Q-Learning’s ability to learn from the interaction
with the environment to NOMA’s spectral efficiency to opti-
mize slot-allocation in a RA Aloha-like scheme. Clustering
simplifies the problem of finding the optimal time slot, since
up to M devices can transmit in the same time slot and the
appropriate transmit power allocation is solved within each
cluster. In addition, the full use of the BS feedback avoids
inter-cluster collisions, speeding up convergence as clusters
quickly settle down in the chosen time slots.

A. Q-LEARNING

Reinforcement learning is a family of machine learning algo-
rithms where an agent interacts with its environment and
learns from the feedback of those interactions, trying to max-
imize its reward [16]. Slot allocation, as with many wireless
systems optimizations, can be formulated as a reinforcement
learning problem [15]. Q-Learning, a well-known reinforce-
ment learning algorithm, has been widely adopted in this
context because it is model-free and can be implemented in
a distributed manner [18], [20], [27]. Modeling RA in an

4Forr <1 [bps/Hz] the intersection of the events in (13) is not zero and
has to be taken into account. For such low spectral efficiencies, or larger
M, the adequate received power values in 2 can be obtained numerically.
Moreover, for larger M the approximation in (12) works well.
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MTC network as a Markov decision process (MDP) allows
us to use Q-Learning. In an MDP, the agent interacts with
the environment sequentially, selecting actions based on the
state of the environment. The agent gets a reward based on its
action and moves to the next state [16].

The Q-Learning algorithm considers the agent-environment
relationship by an action-value function in the (Q-table.
An agent performs an action A,, from a state S, at each
time step u, trying to maximize its reward associated with
the action-value function. The Q-value update rule can be
defined as [16]

O(Su Au) <= (1= @) Q8. Au)
o (Rupt +y max QSus1. @), (17)

where « € [0, 1] is the learning rate, R,+; is the future
reward, a is every possible action from a state, and y € [0, 1]
is the discount factor quantifying the importance of future
rewards by multiplying the maximum Q-value available in
the next time step (y = 0 values only immediate rewards
while a higher y would aim at a better long-term reward).

We can apply the Q-Learning algorithm to our system
model by considering that the agents are the cluster heads, and
the environment is the network, and the state-action pair is the
action of transmitting in a chosen time slot, with every cluster
head having its own Q-Table. Therefore, a device has K states
(i.e, equal to the number of time slots) with only one action
for transmitting in each state, reducing the Q-Table toa 1 x K
vector. Hence, we can write the Q-Value for a state as Q(k).
The simplest way to implement the Q-Learning algorithm
is to apply a greedy policy. In this way, the device always
chooses the time slot with the highest O-value. As clusters
choose the best time slot for themselves, the network tends
to converge, with every cluster having its own time slot.
Moreover, the greedy policy also presented the best results
during our simulation campaign when compared to e-greedy
policies. In this work, the reward value at the u™ time step is
defined as:

_ +1, successful slot

Re=1_1. tailed slot. (1%)
B. FULL-FEEDBACK-BASED REWARD (fFbR) MECHANISM
To get the most out of the information available in the
feedback message broadcast by the BS, each cluster head
notified with failed transmission applies a negative reward
not only to its own slot but also to every other slot that had
a successful transmission, avoiding colliding with those that
have already found a valid transmission slot. Hence, leading
to the full exploitation of the feedback. Moreover, every
cluster head notified of successful transmission will select the
same time slot and refrain from updating its Q-Table, sav-
ing processing energy and simplifying the selection process.
Among the works previously discussed, only in [27] the full
exploitation of the feedback message was considered. How-
ever, it should be noted that this reward mechanism makes
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sense in the present proposal since the efficient exploitation
of non-orthogonal resources by transmitting different power
levels is resolved within each cluster. Otherwise, in non-
clustered methods as [21], [22], this fFbR mechanism may
prevent the selection of time slots with available power levels
for the NOMA operation, becoming inefficient in the pres-
ence of multiple underutilized slots.

C. PROPOSED RA ALGORITHM

First, each device searches for its closest peers, i.e., in clusters
of up to M devices, according to the transmission range of
the D2D technology being used and the device density of the
cell. Although the devices may take turns in this position,
we assume that the device with the largest signal-to-noise
ratio (SNR) in each cluster (which is the closest to the BS)
assumes the role of the cluster head. Thus, such a device
is responsible for choosing the time slot, assigning power
levels, and sharing this information with its partners. Note
that clustering only happens at the beginning of the learning
process. Then, every cluster head initializes its Q-Table fol-
lowing a uniformly random distribution, i.e., every time slot
is initially represented by a Q-Value € [—1, 1]. This ini-
tialization, besides bringing an extra degree of randomness,
differentiating clusters early on, can also be considered an
optimistic initialization and motivates exploration [16]. The
cluster heads then proceed to learn together, but in a dis-
tributed way. Each cluster head chooses the time slot with
the highest Q-value and organizes itself with each device
transmitting with a power that yields one of the M possible
received powers at the BS.> Next, every device transmits
its message, and the BS tries to recover them by using SIC
decoding. At the end of the frame, the BS sends a feedback
message with one bit per time slot, informing if the messages
in that time slot were successfully decoded or not. Note
that positive feedback is only given if all transmissions are
successfully decoded at the determined time slot, which is
made using only one bit per time slot. The cluster heads then
update their Q-Tables following (17) and (18), employing the
novel fFbR mechanism described above. This process repeats
itself over several frames until it eventually converges.® The
proposed RA method at the device side is summarized in
Algorithm 1.

A simplified frame by frame example of the algorithm is
depicted in Fig. 3, where we have three Q-Tables representing
three clusters. At the first frame the Q-Values are randomly
initialized. Even though each cluster has completely different

5The devices within a cluster can coordinate to use different powers from
time to time, such that the long-term average power consumption among
them becomes the same.

6The convergence of the Q-Learning algorithm is well known [16]. How-
ever, the convergence of multi-agent distributed Q-Learning in a competitive
scenario needs further investigation. Nevertheless, [20] and [22], for exam-
ple, consider convergence when the total value of Q-value stabilizes. We,
on the other hand, consider convergence when there is no significant change
to the throughput, as different reward systems lead to a different behavior
of the total Q-value and throughput can be used as a metric across different
methods.
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Q-Table 1 | -0.93 [0.65 ] -0.88 | |[-093 [-0.85] -0.88 | [-093]-1.05]-1.08]

Algorithm 1 NOMA-Based Distributed Q-Learning RA
Method With D2D Clustering

Q-mable2 [ 042 [085 ] -037] [o42 [oes]-037] [o42 [0a5]-041]

Q-Table3 | 018 [ 047 [ 037 | [o0a8 ] 027 J037] [ o018 ] 027 [058]
QO Q) Q@ Q0 Q) Q@ Q0 QM) QM
Feedback | 0 [0 o | [ o [To] | [ v ]+ | 1]

1
1 2 0 1 2 0 1 2

+~—— Framel —— ~—— Frame2 —— «—— Frame3 ——

D(.‘ollision Dldle DSucess DSelected time slot

FIGURE 3. Frame by frame example with N=6, K=3 and M=2.

time slot 0

values, they all select time slot 1 for transmission which
results in an unresolvable collision. Next, each device updates
its O-Values taking into consideration the feedback from the
first frame by applying a penalty of —0.2. In the second
frame, the third cluster selects time slot 2, while the first two
clusters still have in time slot 1 the largest Q-Value and there-
fore select it for transmission. As a result, the third cluster
has a successful transmission while the other two clusters
collide. Finally, in the last frame of this example, clusters
1 and 2 have applied a penalty not only to the slot where
they transmitted in but also to the value representing time slot
3 as a consequence of the fFbR mechanism. Thus, leading to
0(1) and Q(2) having Q-Values lower than —1, but keep in
mind that even though the Q-Values are initialized with values
between —1 and +1 they are not limited by these boundaries.
Note that this prevents cluster 1 from selecting time slot 3 and
then it selects the first time slot for transmission. Cluster 2,
however, still remains at the second time slot. Thus, every
cluster has successfully found its own time slot.

D. DYNAMIC FRAME SIZE ADAPTATION

Considering the fFbR mechanism and the RA algorithm
above, we can conclude that the system reaches its maximum
performance if and only if all clusters can be made up of
M devices and the number of clusters coincides with frame
size K, such that the number of devices in the system is
N = K - M. However, the numerical mismatch is not the only
drawback that can prevent optimal performance, but it is also
conditioned on the relative location of the nodes. The nodes
distribution and the D2D communication allow all clusters to
comprise M devices. Resolving such situations is beyond the
scope of this paper, but two other issues can be addressed:
(i) when the number of slots in the frame is less than the
number of clusters, K < C, it is not possible to allocate
resources to all clusters and a number of X collisions will
happen; (ii) when K > C some time slots remain idle unnec-
essarily, making the system temporarily inefficient. These
drawbacks can be effectively solved through dynamic frame
size adaptation. However, to prevent this adaptation from
affecting the learning and convergence process, we propose
that this adjustment be made every S frame. So, if not all
clusters have found a valid time slot, then the BS detects X
colliding slots and increases K by X more slots. However,
suppose no collision slots are detected, and there are still
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Require: Devices try to find partners in the vicinity.
Require: Q-Table random initialized between —1 and 1

1: for Every frame do

2:  for Every cluster head do

3: Select the time slot with the highest O-value

4: if More than one slot with the highest value then

5 Choose randomly among them

6 end if
7 Transmit the chosen time slot and assigned power to

its peers

8:  end for

9:  BS uses SIC to recover the transmitted messages
10  BS broadcasts feedback message
11:  for Every cluster head do

12: Update Q-value for using (17) and (18)

13: if Transmission failed then

14: for Every slot do

15: if Broadcast message slot = 1 then

16: Update Q-value with (17) and R, = —1
17: end if

18: end for

19: end if

20:  end for

21: end for

Algorithm 2 Dynamic Frame Size Adaptation
1: for Every frame do

2:  if Frame mod (S) = O then

3: if BS detects X colliding slots then

4: Add X slots to the frame

5: end if

6: if BS does not detect colliding slots and there are
free slots then

7 Remove K — C time slots.

8: Reset learning.

9: end if

10  end if

11: end for

unoccupied slots. In that case, K — C idle slots must be
removed and notified through a broadcast message of the new
position of the slots that the cluster heads had previously asso-
ciated. This will allow each device to send information more
often, avoiding unnecessary delays. Finally, we summarize
the adaptive frame size algorithm that runs only in the BS,
in Algorithm 2.

E. COMPLEXITY ANALYSIS

The complexity of reinforcement learning algorithms can be
separated into three different categories. The sample com-
plexity, the computational complexity, and the space com-
plexity. The first two represent the number of samples and the
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TABLE 4. Comparison among Sample, Computational and Space
complexity [35], where O (-) represents the complexity order to attain the
asymptotic convergence, and © (n) is the tight bound of the memory
required to run the algorithm.

Complexity Model-based  Model-free
~ 4 ~ 5
Sample o) (”652 ) o (ng )
Computational o ( "f?) > O (%)
Space O ("{@4 ) e (n)

computational cost to reach a certain target performance (i.e.,
achieving an e-optimal action-value with high probability).
The last one represents the amount of memory needed in
order to run the algorithm. Note that both Algorithms 1 and 2
are, in essence, a pure model-free distributed Q-Learning
with slight modifications. In this regard, the authors of [35]
presented the complexities for model-free and model-based
Q-Learning as shown in Table 4, where n represents the
number of samples, or state-action pairs, that it takes for the
algorithm to reach the e-optimal solution, and B is given
by 1/(1 — y). The complexities heavily rely on how many
steps it takes for the algorithm to reach an optimal per-
formance, while 8 evaluates how much future rewards are
taken into consideration. As the importance of future rewards
grow, so does the complexity, as agents need more samples
to reach the optimal solution. Another important aspect to
be taken into consideration is the fact that convergence for
a competitive scenario in distributed Q-Learning has not
been fully understood [20]. However, the fFbR mechanism
allows for early convergence in just over 10 iterations greatly
reducing the complexity of the algorithm. Then, devices are
successfully allocated and they can keep using the learned
slot. In addition, the proposed algorithm when using y = 0
(i.e., leading to B = 1 and reducing the complexity) only has
a slight delay in convergence, while the method in [21] has a
significant drop in performance.

F. PRACTICAL ASPECTS
We end this section with comments on some practical aspects
of the techniques proposed above. Compared to the lit-
erature, the complexity added is the D2D communication
needed to establish and maintain the clusters, with the cluster
head sharing the chosen time slot with its partners. How-
ever, since the devices no longer have to learn their transmit
power, the Q-Table is reduced to a vector of length K. At the
BS, the complexity is non-negligible on SIC, but the com-
plexity associated with the aggregated algorithm for dynamic
frame size adaptation is trivial. Although it is expected that
the BS would have more processing power than the devices,
implementing the Q-Learning at the BS would be much more
complex. The BS would be required to store and update the
Q-Table for every device (or cluster), making it difficult to
deploy new nodes.

The proposed method is perfectly capable of incorporating
nodes not within clusters, as the learning is localized. How-
ever, a device transmitting alone (M = 1) will most likely use

30702

a time slot by itself. One possible way to work around this
problem is by allowing devices that are not within a cluster
to use the method from [21]. Thus, allowing devices that
did not find a partner in the vicinity to share their slot with
another device without a cluster. Another viable option can
be achieved once all the clusters have their own transmission
slot. In these circumstances, a well-designed protocol could
allow the BS to group clusters with less than M devices into
new clusters with size M.

One critical point in power domain NOMA transmission is
channel estimation. In this work, we consider perfect channel
knowledge at the BS, while in practice, it could be estimated
through the use of orthogonal pilots sent by the devices [14].
In particular, we only need M orthogonal pilots, since that
is the maximum number of superposed signals that the BS
must decode per time slot. Additionally, we consider that each
of the M orthogonal pilots is associated with one of the M
different received power levels so that the pilot allocation is
resolved at the same time that the power allocation is defined
within the clusters, which is a significant practical advantage
of the proposed method.

Finally, in terms of standardization, the 3rd Generation
Partnership Project (3GPP) started to address D2D, or Prox-
imity Service (ProSe), since Release 12 with relaying func-
tionality being added in later releases. In [36] application of
D2D to NB-IoT and LTE-M was further studied, however,
it was not developed into a standard [37]. Nonetheless, non-
3GPP radio access technologies are one of the main enablers
of D2D. Besides the aforementioned BLE, the Wi-Fi Direct
also allows for a direct link among devices [38].

V. RESULTS
We evaluate the performance of the proposed method by
means of computer simulations, considering the system
model from Section II with the parameters defined in Table 5
from typical values for IoT devices, unless stated otherwise.
Dynamic SIC ordering is considered, but fixed SIC order-
ing with the appropriate power levels leads to the same
results. The curves present the average of 30 simulation
runs. The proposed method is compared to slotted Aloha and
to [21]. By comparing to [21] we can, besides positioning
the proposed scheme with respect to the literature,’ incre-
mentally investigate how each feature of the novel method
(clustering and the fFbR mechanism) affects performance
and the learning process. Note that in the following figures
the method in [21] is called solely as [21], while [21] with
clustering refers to the aforementioned method considering
that devices use D2D communication for cluster formation.
Finally, [21] with fFbR refers to the method in [21], but with
the full-feedback reward mechanism proposed in this paper.
First, we look at the throughput, defined as the number
of successful transmissions over the total number of time
slots, thus measuring how well the frame is being exploited.

7 As most of the related literature, we use the Slotted Aloha as a benchmark

for the performance of the proposed method. Nonetheless, a qualitative
comparison was presented in Table 1.
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TABLE 5. Simulation parameters.

Parameter Value
Bandwidth B 100 kHz
Carrier frequency 915 MHz
Cell radius 110 m
Clustering range d7;2%, I5m
Devices per cluster M 2
Discount factor 1

Frame size adaptation S 10
Transmitter gain G, 2 dB
Receiver gain G r, 8 dB
Path loss exponent n 3

Noise Figure F' 6 dB
Noise PSD Ng -174 dBm/Hz
Maximum SIC Outage Probability Ogjc 10—2
Spectral efficiency r 2 bps/Hz
Reference distance dg 1 m
Devices N 100-450
Messages L 100 packets
Operating Maximum Outage Probability O  0.005
Simulation runs 30
Number of time slots K 100
Learning rate o 0.2

Moreover, we start by considering clusters with only two
devices (M = 2) as it is not much likely that NOMA
with several layers is practical due to channel estimation and
SIC imperfections, assuming all N are low-power devices.
Fig. 4 shows that the proposed method can outperform every
other simulated scheme, improving the throughput over [21]
by 18.55% at 200 devices and by 240.28% at 250 devices,
for K = 100 time slots. Note that the addition of cluster-
ing to [21] significantly improves throughput as devices no
longer have to learn their transmission power and already
have a defined partner. Another interesting behavior is that
when the new fFbR mechanism is employed, the proposed
method and [21] present a slow drop in throughput as the
number of devices gets larger than 2 x K. The method in [21],
on the other hand, exhibits a sharp drop after 2 x K. This can
be attributed to the fact that the devices in [21] do not learn
to avoid successful slots. Thus, in [21], when N > M - K
devices scatter across the frame resulting in more collisions
and therefore a lower throughput.

Next, we investigate the convergence in Fig. 5. We can
see that the addition of clustering has a strong impact on
the convergence speed. For example, [21] with clustering can
reach a 1.8 throughput in about 22 frames, while it takes
44 frames for the method in [21] to cross the same threshold.
Alternatively, with 10 frames, clustering enables the method
in [21] to reach a 1.50 throughput while the method in [21] is
still at 0.88. Another interesting takeaway from Fig. 5 is the
effect of the fFbR mechanism. On one hand, the new reward
scheme improves the early convergence in relation to [21].
On the other hand, it holds the maximum throughput at 1.56,
with the common reward system having a better performance
from 20 frames onward. This can be attributed to the fact
that the new reward system penalizes the Q-values for slots
that had a successful transmission, thus the devices learn to
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FIGURE 4. Throughput versus number of Devices and K = 100 time slots.
Unless for Slotted Aloha, M = 2 devices per cluster.
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[21] with clustering
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Frames
FIGURE 5. Convergence analysis for N = 200 devices, K = 100 time slots
and M = 2 devices per cluster.

avoid slots already in use. However, the reward system cannot
differentiate how many devices are successfully accessing the
slot. Thus, devices end up avoiding slots that might be shared.
Note that the method proposed in this work, which consists
of employing both strategies (clustering and fFbR mecha-
nism) jointly, is able to reach 1.8 throughput in just 6 frames
and at 10 frames the throughput is already approximately 2,
which is the ceiling for this particular network scenario. Thus,
clustering and fFbR mechanisms, combined with NOMA,
drastically improve the convergence speed.

To illustrate the effect of the proposed adaptive frame size
algorithm. We assume N = 300 devices, M = 2 received
power levels, and K = 100 time slots, i.e., an overloaded
scenario in which 11% > 1. Moreover, S = 10, so that most
devices have already settled in a given time slot, and, fol-
lowing Algorithm 2, the frame size is increased or decreased
X time slots at a time. In Fig. 6, we can see that as the
frame is adapted, the throughput increases getting closer to
M. Note that the sharp drops in throughput, e.g., around 10,
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FIGURE 6. Throughput and success rate with frame size adaptation when
N =300 devices, M = 2 devices per cluster, and S = 10 time slots.

20, and 30 frames and so on, do not represent a genuine
loss of messages, as the frame size increases at those points
by X time slots and the amount of successful transmissions
remains the same. We can better understand this by looking at
the device success rate, defined as the number of successful
transmissions over the total number of transmissions. Note
that, while the throughput shows a little improvement as the
frame size is adapted, the success rate is almost twice as high
as the value it would converge to without the frame size adap-
tation. The success rate is a better metric for analyzing this
frame adaptation, as slots can aggregate several collisions,
which is not noticeable while looking only at the throughput.
When the frame-size change happens, the clusters reorganize
themselves within the frame, leading to a growth in the
success rate. The adaptive frame size algorithm increases the
throughput ceiling of the method, allowing devices to find
new suitable, non-collided, slots.

Next, we analyze the average slot allocation in the 100"
and last frame for the method proposed here and those used
as benchmarks. We consider the average number of idle slots,
the maximum number of devices in a slot, and slot with
collisions. Moreover, we also include the percentage of failed
transmissions and the throughput. We can see in Table 6 that
the proposed method outperforms the others on every metric
and, on average, does not have idle slots as it is capable of
perfectly allocating every cluster to a time slot, taking full
advantage of the frame size and NOMA. This allows devices
to reach near full network capacity as the percentage of failed
transmissions approaches the designed Ogyc. It is interesting
to note that the method in [21], when using the novel fFbR
mechanism, is not able to discern between successful slots
with one or more devices. This can be understood as we
have several slots allocated to just one device, an average of
31.66 idle slots, and a few slots accumulating multiple failed
transmissions for an average of 5.03 slots with 21.38 % of
transmissions failed. Not only that, we can see that the new
fFbR mechanism can cause slots to hoard failures in order
to maintain a relatively high throughput. For example, there
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TABLE 6. Average slot allocation analysis for N = 200 devices and
K = 100 time slots in the 100t" frame.

Method IDS® MIS* SWC® FTX%¢ TPT®
[21] 240  3.00 2.40 435 1.91
[21] with fFBR  31.66 11.73  5.03 21.38 1.57
This work 0.00 2.53 0.26 1.05 1.98

4IDS: Idle slots,
¢ SWC: Slots with collisions,
¢ TPT: Throughput.

® MIS: Maximum number of devices in a slot,
4 PTX: Failed transmissions,

Throughput

el M=4
0.5 F - e -M=3|
—a— M=2
0 1 1 1 1 1 1
100 150 200 250 300 350 400 450

Devices

FIGURE 7. Throughput versus number of devices, for different cluster
sizes M € (2, 3, 4} and K = 100 time slots.

are over 11 devices allocated to just one time slot when the
optimum allocation is M = 2 devices per slot, while in other
time slots only one device remains operating and NOMA is
not exploited. Therefore, the novel fFbR mechanism is to be
used together with clustering, as proposed in this work.

Finally, we look at the throughput when more power levels
are used, M = 3 and M = 4 received power levels. In Fig. 7,
when we increase the number of devices per cluster, the
maximum throughput also rises. The throughput reaches its
peak when N = M - K. However, note that the methods with
a higher M would need higher @’s in order to become robust
against fading and allow for SIC decoding. This, however,
could demand prohibitively high transmit powers from the
devices. Moreover, it is important to note that for larger
M both channel estimation and SIC decoding become more
prone to errors, even using orthogonal pilots by devices with
different received power levels, and therefore in practice it is
more likely that M would be small.

VI. CONCLUSION

We proposed a new Q-Learning RA method for NOMA-based
MTC networks, considering: (i) short-range clustering, (ii) a
full-feedback-based reward mechanism, and (iii) an adaptive
frame structure. Clustering allows the partner selection and
power allocation processes to be resolved in a distributed
way and within each cluster. Thus, only the cluster heads
are engaged in the distributed learning algorithm, speeding
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up convergence. The new reward mechanism makes the
network reach its maximum performance more quickly, e.g.,
maximum throughput for 200 devices in about 15 iterations.
By fully exploiting the feedback message, devices avoid colli-
sions with clusters that have already found their slots. Finally,
the dynamic frame size adaptation algorithm allows increas-
ing the number of slots to ensure that all clusters have their
own transmission slot in overloaded situations. In contrast,
the adaptation eliminates unnecessary slots in underloaded
situations to favor more frequent communication.

The proposed method can be further investigated and
improved by considering and analyzing different traffic mod-
els. Another possibility is to investigate the coexistence of
devices with different requirements in terms of target outage
probability, spectral efficiency, among other factors. Finally,
this work could also be extended to address the possibility of
a device requesting multiple time slots or deferring clusters
to another frame as way of dealing with overload situations.
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