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ABSTRACT Future wireless systems are envisioned to support completely new use cases with extremely
stringent requirements on both latency and reliability, e.g., Ultra-Reliable Low-Latency Communication.
However, guaranteeing truly reliable services is quite challenging, much more under strict latency con-
straints. Notice that when it comes to reliability, the traditional approaches relying on average performance
figures do not provide sufficient reliability guarantees. Instead, analyses/designs based on risk measures are
more useful since they offer a more fine-grained probabilistic information of the system reliability. In this
paper, we depart from novel information theory results on finite-blocklength (FB) coding, which characterize
the error-latency trade-off under strict delay constraints, to highlight that the FB error probability is in
fact a random variable in fading scenarios. Then, we provide accurate analytical approximations for the
FB error probability distribution. This allows us to evaluate some well-known risk measures and, based on
them, quantify the system reliability under strict latency constraints from different standpoints. We validate
our results via simulation and provide numerical examples that illustrate, for instance, that two systems
performing similar in terms of average reliability, may offer services with different risk perceptions.

INDEX TERMS Ultra-reliability, finite blocklength, error probability distribution, risk measures.

I. INTRODUCTION
The advent of fifth generation (5G) of wireless systems opens
up new possibilities and gives rise to new use cases with
stringent delay and reliability requirements, e.g., Ultra Reli-
able Low Latency Communication paradigm (URLLC), as in
mission critical communications and coordination among
vehicles. For instance, 1ms of user-plane latency is targeted
in the ‘‘general URLLC case’’ when transmitting a message
payload of 32 bytes with average reliability of 1 − 10−5

[1]. To sustain such low latency links, messages have to
be short, and asymptotic performance metrics like Shannon
capacity, and its extension to nonergodic channels, are no
longer necessarily appropriate [2]. Recent results in the field
of finite-blocklength (FB) information theory deal with a
more suitable metric, which is the maximum achievable rate
at a given blocklength and error probability [3], [4]. This
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metric is proportional to the largest amount of information
nats k that can be mapped into a packet of n channel uses,
under the constraint that the information nats are recovered
at the receiver with success probability no smaller than 1− ε.
For the sake of reliability analysis we can alternatively char-
acterize the error probability ε as a function of k , n, and the
Signal-to-Interference-plus-Noise Ratio (SINR).1 Different
from the asymptotic results, an error may occur with a given
probability in the FB case, even when the SINR is large.

A. MOTIVATION
So far, the design and analysis of URLLC systems, under
different setups and considering diverse goals, is based on
average reliability formulations, e.g. [6]–[10]. Under the FB
assumption, the related works reach at different conclusions
than they would if the asymptotic formulation was utilized,

1Readers can refer to [5] for a review of some of the most promising code
constructions targeting the short block regime.
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FIGURE 1. Reliability behavior as a function of time. A and B denote the
regions in which the reliability is above and below the average l0,
respectively.

reinforcing the significance of the new information theo-
retic results introduced in [2]–[4]. This is also the case of
SINR meta-distribution approaches for large-scale networks,
which focus on per-link average reliability instead of the
usual average network reliability as in [11], [12]. However,
as discussed in [13], URLLC mandates a departure from
typical network design approaches, which rely on average
quantities, to approaches based on risk metrics. Following
this path, a distributed risk-sensitive reinforcement learning-
based framework was recently proposed in [14] to jointly
optimize the beamwidth and transmit power while providing
gigabit wireless access with reliable communication in 5G
millimeter-wave (mmWave) networks.

Figure 1 shows a typical system behavior where l0 could
be the average system reliability over time. Notice that at
a given time instant the transmission success is binary: the
transmission may or may not be successful only. Ultimately,
this depends on the system instantaneous characteristics, e.g.,
SINR, modulation, error correcting codes, etc, and the suc-
cess probability can be written as a function of them. The
time variability in Fig. 1 implies a variability in the system
instantaneous characteristics, hence, the reliability rather than
a binary parameter it is equivalent to the success probability
given the system status at a given time instant. In addition,
there are some periods of time where the system is more
(region A) or less (region B) reliable than the threshold l0.
An interesting question arises:
How often the system performs with a reliability

above/below the average?
In that case, the problem translates to finding the time in

which the system operates in region A normalized by the total
time. Also, and perhaps even more interesting than the first
question:
What is the reliability of the system the x% of the time?
This implies finding l0 such that the time in which the

system operates in region A normalized by the total time is
x/100, guaranteeing a minimum reliability level at a given
amount of time. The answers to these questions are funda-
mental for systems that must be indeed ultra-reliable, not only
in the average sense, as it may be the case of some safety
applications in vehicular networks or in wireless networked
control systems [15]. A step forward on that direction has

been given by Angjelichinoski et al. [16] by not only consid-
ering the average reliability metric for design and assessment
of URLLC systems, but also proposing the Probably Correct
Reliability (PCR) metric, which allows controlling the prob-
ability that the outage probability violates a target error for a
given training sample.

B. CONTRIBUTIONS AND ORGANIZATION
In this work, we take another step in characterizing the
performance of ultra-reliable systems. Our contributions
are four-fold: i) we overview and analyze the concepts of
asymptotic/non-asymptotic error probability, and their suit-
ability as reliability measures; ii) we highlight that the error
probability with FB is a random variable (RV) in fading
channels, and provide its probability distribution; iii) we dis-
cuss how to use such results for evaluating the Value-at-Risk
(VaR) and Conditional VaR (CVaR) measures [17], which
are fundamental for answering the motivational questions
presented in Section I-A and designing ultra-reliable systems
beyond the average performance; and iv) we provide numeri-
cal examples and associated discussions, which illustrate the
applicability of the proposed approaches. We validate our
analytical derivations via simulations.

Next, Section II overviews error probability metrics for
finite (non-asymptotic) and infinite (asymptotic) block-
length; and discusses well-known risk measures. The dis-
tribution of the FB error probability and its link to the
risk measures are derived and analyzed in Section III.
Finally, Section IV discusses some numerical examples, and
Section V concludes the paper.
Notation: fX (x) and FX (x) are the Probability Density

Function (PDF) and Cumulative Distribution Function (CDF)
of X , respectively. Let E(·) denote the mathematical expecta-
tion,P(A) is the probability of eventA, whileQ(x) is theGaus-
sian Q-function. Moreover, X ∼ 0(m, 1/m) is a normalized
gamma distributed RV with shape factor m, and

fX (x) =
mm

0(m)
xm−1e−mx ,

FX (x) = 1−
0(m,mx)
0(m)

;

while Y ∼ Weibull(1/0(1 + 1
κ
), κ) is a normalized Weibull

distributed RV with parameter κ , and

fY (y) = κ0(1+ 1
κ
)
(
0(1+ 1

κ
)y
)κ−1e−(0(1+ 1

κ
)y
)κ
,

FY (y) = 1− e−
(
0(1+ 1

κ
)y
)κ
.

Finally, O(·) is the big O notation.

II. PRELIMINARIES
A. ERROR PROBABILITY
Let us consider the transmission of a message over a com-
munication link with instantaneous SINR at the destination
specified by γ . The information theoretic analysis for infinite
blocklength says that error free transmission is achieved as
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long as γ ≥ er − 1, where r is the transmission rate (in nats
per channel use). Therefore, the error probability is

εinf(γ ) =

{
1, γ < er − 1
0, γ ≥ er − 1.

(1)

If the channel is quasi-static, the so-called outage probability,
Pout, characterizes the average frequency of the above error
events, thus

Pout = Eγ
(
εinf(γ )

)
= P

(
γ < er − 1

)
= Fγ

(
er − 1

)
. (2)

However, the formulation presented in (1) may be mislead-
ing if we are restricted to use a finite number of channel uses
n when communicating over a noisy channel, for which no
protocol is able to achieve perfectly reliable communication.
In that sense, Polyanskiy et al. [3] found out that the non-
asymptotic error probability for an Additive White Gaussian
Noise (AWGN) channel with perfect channel state informa-
tion (CSI) at the receiver side2 can be written as

εfin(γ ) = Q
(
C(γ )− k/n+ 1

2n ln(n)+O(1)
√
V (γ )/n

)
≈ Q

(
C(γ )− k/n
√
V (γ )/n

)
, (3)

where k is the message length in nats, thus, r = k/n, C(γ ) =
ln(1+γ ) is the Shannon capacity andV (γ ) = 1− 1

(1+γ )2
is the

channel dispersion. The approximation given in the second
line of (3) holds accurate for n ≥ 100 channel uses and has
been extensively validated, e.g., in [3], [4]. The accuracy is
becauseO(1) is a small constant term, while 1

2n ln(n) vanishes
quickly as n grows above 100 channel uses.3

Remark 1: Notice that for a given channel realization,
a quasi-static fading channel becomes conditionally Gaussian
on the value of γ . Then, the FB error probability is a RV that
transforms RV γ according to (3).
By taking the mathematical expectation over the FB error

probability RV, we attain the corresponding average error
probability as

Perr = Eγ
(
εfin(γ )

)
. (4)

Interestingly, it has been shown in [19] that quasi-static fading
makes disappear the effect of the FB in (4), Perr ∼ Pout,

2Notice that perfect CSI is an ideal assumption that does not hold in
practice. However, the performance under imperfect CSI can be approxi-
mated in some scenarios by that of a system under perfect CSI but with
reduced SINR [18]. In these cases, (3) can be evaluated using such reduced
SINR. Consequently, the theoretical results derived in this paper can be easily
extended for taking into account imperfect CSI.

3Although in this work we use the simplified approximation given in
the second line of (3), our analytical derivations can be straightforwardly
extended for the case of considering also the term 1

2n ln(n). Moreover,
we would like to highlight that other non-asymptotic bounds, which could be
more accurate in some scenarios, exist in the literature (check for instance [5]
and references therein) but theoretical analysis departing from them are cum-
bersome. Therefore, we focus our efforts on using the normal approximation
in (3).

specially when i) the transmit rate is not very small and/or
ii) there is not a very strong line of sight (LoS) component
in the communication link. The intuition behind is that the
dominant error event over quasi-static fading channels is that
the channel is in a deep fade. Since the transmitted symbols
experience all the same fading, it follows that coding is not
helpful against deep fades and (4) is accurate already for small
blocklength.

The reliability of a wireless system in the physical layer
has been usually characterized in terms of average error
performance by means of Pout, or recently by means of Perr
in the case of FB analysis. Designing the system by target-
ing a given average error probability is commonly accepted
in the literature and in the industry. However, the average
error probability is not the only metric, maybe nor the more
appropriate, to characterize the reliability performance of a
communication system. Next we discuss how the systemmay
be designed considering different risk measures [17] that
make use of the error probability for a more detailed analysis.

B. RISK MEASURES
As highlighted in Remark 1, the non-asymptotic error proba-
bility, εfin, is a RV in quasi-static fading channels, thus, it can
be characterized through its PDF and CDF. Such probabilistic
characterization allows using some well-known risk metrics,
as those discussed next, for assessing the system reliability.
• Standard Deviation4: This is a frequently used measure
of risk since it quantifies the amount of dispersion. How-
ever the main disadvantage is that profits, as small error
probabilities, and losses, as large error probabilities,
have equal impact on the standard deviation. Thus, such
measure does not discriminate between distributions
with different probabilities of potentially large losses.
In fact, the standard deviation does not provide any
information on how large potential losses may be. This
metric would be accurate as a risk measure in the case
of data with a symmetric PDF but this is not the typical
case when dealing with error probability distributions.

• Value-at-Risk (VaR): It is defined as the worst loss over
a target horizon within a given level of confidence [20],
such that for 0 < α ≤ 1:

VaR1−α = inf
τ
{τ : P(ε ≤ τ ) ≥ 1− α}

= F−1ε (1− α). (5)

Thus, VaR1−α is the maximum error probability in the
system the (1− α)% of the time.

• Conditional VaR (CVaR) or Expected Shortfall:
Although more directly related to risks than the stan-
dard deviation, the concept of VaR still suffers from
some inconsistencies [17, Ch. 10]. For example, a given
error probability has a certain chance to be exceeded,
but if exceeded, what is the typical loss/error prob-
ability incurred? CVaR exactly answers this question

4This is closely related with the so-called volatility, which is the standard
deviation of the logarithmic returns [17, Ch. 10].
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by characterizing the expected loss in the right tail of
the distribution given a particular threshold has been
crossed, thus, measuring the risky realizations. Formally
speaking, CVaR is given by [20]

CVaR1−α = E
(
ε
∣∣ε > VaR1−α

)
=

1
α

∫ α

0
VaR1−τdτ

(a)
=

1
α

∫ α

0
F−1ε (1− τ )dτ, (6)

where (a) comes from using (5).
Remark 2: The latter two metrics complement each other,

thus, characterizing the risks of error much better than only
relying on average values.
In the next section we attain the distribution of the probability
of error in the FB regime for the case of a quasi-static fading
channel, which is required in order to numerically evaluate
the above risk metrics.

III. DISTRIBUTION OF THE ERROR PROBABILITY
Notice that the CDF of εfin can be written as

Fε(x) = P(εfin(γ ) < x)
(a)
= P(γ > ε−1fin (x))

= 1− Fγ (ε
−1
fin (x)), (7)

where ε−1fin (x) is the inverse function of εfin(γ ), and the
inequality change in (a) is because their decreasing mono-
tonicity. Notice that ε−1fin (x) already poses a challenge because
of the complicated dependence between εfin and γ according
to (3). Still, we found very recently in [21] a simple and fast
iterative procedure to obtain γ given εfin. Therein we pre-
sented (3) as a fixed point iteration equation of γ , as follows

γ (t)
= er+

√
V
(
γ (t−1)

)
n Q−1(εfin) − 1, (8)

where t is the iteration index. We proposed using γ (0)
= ∞

since that conduces to V
(
γ (0)

)
= 1, which is appropriate in

most of the scenarios since V (γ ) already approaches 1 for not
too small γ values.
Remark 3: We proved analytically in [21] that there is

only one solution for (8) and the iterative procedure always
converges. In the Appendix we provide the proof adapted to
our notation here for completeness.
Figure 2 illustrates the fast convergence of the iterative pro-
cedure by using γ

4
= 10−2, which is the stopping criterion

for (8) such that
∣∣γ (t)
− γ (t−1)

∣∣ < γ
4
is satisfied in the final

solution for γ . As can be seen in the figure, five iterations
are typically enough. Moreover, in Figure 2 we set k = 25
nats (36 bits), while for greater values of k the convergence is
even better since the rate increases and the corresponding γ
is greater, thus, the initial guess V

(
γ (0)

)
is closer to the final

solution.
Then, we can write the inverse function ε−1fin (x) as

ε−1fin (x) = limt→∞ g(t)(e
r+ 1
√
n
Q−1(x)

− 1, x), (9)

FIGURE 2. Required number of iterations for (8) as a function of n for
k = 25 nats, εfin ∈ {10−1,10−5,10−9} and γ

4
= 10−2.

where g(t)(·, ·) denotes a t-times self-composition operation
of

g(y, z) = er+
√

V (y)
n Q−1(z)

− 1 (10)

inside its first argument, such that

g(t)(y, z) = g(g(· · · g︸ ︷︷ ︸
t+1

(y, z), · · · z), z). (11)

The starting value e
r+ 1
√
n
Q−1(x)

− 1 in (9) comes from setting
V (y) = 1 in (10) for fast convergence, as commented before.
Since t = 5 already provides a very tight approximation for
(9) even in tough scenarios [21], e.g., very low data rate, it is
safe to use (9) with t ≥ 5. Therefore,

Fε(x) = 1− lim
t→∞

Fγ
(
g(t)(e

r+ 1
√
n
Q−1(x)

− 1, x)
)
, (12)

≈ 1− Fγ
(
g(t)(e

r+ 1
√
n
Q−1(x)

− 1, x)
)
, t ≥ 5. (13)

Now we proceed to find the PDF of εfin as follows

fε(x) = fγ (ε
−1
fin (x))

∣∣∣ d
dx
ε−1fin (x)

∣∣∣. (14)

By using (8) and setting h(x) = ε−1fin (x), we obtain

h(x) = er+
√

V (h(x))
n Q−1(x)

− 1, (15)

while taking the derivative at both sides leads to

d
dx
h(x)

(a)
=

h(x)+ 1
√
n

d
dx

√
V (h(x))Q−1(x)

(b)
=

h(x)+ 1
√
n

[
Q−1(x) ddx h(x)

(1+ h(x))3
√
V (h(x))

+

−

√
2πV (h(x))

e−
1
2Q
−1(x)2

]
, (16)

where (a) comes from using (15) to write

er+
√

V (h(x))
n Q−1(x)

= h(x)+ 1,
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FIGURE 3. Analytical and Simulated CDF (top) and PDF (bottom) of the
error probability at FB for γ ∼ 0(m,1/m). We set n = 200 channel uses
and k = 25 nats.

while (b) comes from applying the rule for the derivative of a
product of functions and using

d
dx
Q−1(x) =

1
d
dxQ(x)|x=Q−1(x)

and

d
dx
Q(x) = −

1
√
2π

e−
x2
2 .

Now, we can obtain the derivative by isolating d
dx h(x) in

(16), which conduces to

d
dx
h(x) =

√
2πV (h(x))

(
1+ h(x)

)
e
1
2Q
−1(x)2

Q−1(x)
(1+h(x))2

√
V (h(x))

−
√
n

. (17)

Substituting (17) into (14) along with (9), yields (18),
as shown at the bottom of the next page, which we can
accurately approximate with t ≥ 5 as in (13).
Remark 4: It is worth highlighting that the notion of

reliability implies a success probability, thus averaging is
eventually required. However, the less you average, the less
information you lose. Notice that for calculating εfin the aver-
age is over all the error events when operating with certain
γ and finding fεfin (x) does not require further averaging,
while for computing Perr in (4), averaging over all possible
channel realizations is also required and consequently some
information is lost.

FIGURE 4. Analytical and Simulated CDF (top) and PDF (bottom) of the
error probability at FB for γ ∼Weibull

(
1/0

(
1+ 1

κ

)
, κ

)
. We set n = 200

channel uses and k = 25 nats.

FIGURE 5. Analytical and Simulated CDF (top) and PDF (below) of the
error probability at FB for γ distributed according to (19) and (20). We set
n = 200 channel uses and k = 25 nats.

A. VALIDATION BY SIMULATIONS
Figures 3, 4 and 5 validate the analytical expressions of
the CDF and PDF of the error probability at FB, which
were obtained in (13) and (18) with finite t , respectively.
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We consider three different distributions for γ , all of which
are normalized such that E(γ ) = 1:

• Figure 3: γ is a Gamma RV, which is representative
of a scenario with Nakagami-m quasi-static fading with
parameter m, usually suitable for modeling line-of-sight
and/or multipath communications [22];

• Figure 4: γ is a Weibull RV, which may correspond to
Weibull fading with parameter κ , and it is often used for
describing the fading induced by multipath propagation
in indoor radio systems [23];

• Figure 5: γ is distributed with PDF and CDF given by

fγ (x) =
1

π
√
λ−(1−x)2

, 1−
√
λ ≤x≤ 1+

√
λ, (19)

Fγ (x)

=



0, 0 ≤ x ≤ 1−
√
λ

1
2
+

1
π
tan−1( x − 1√
λ− (1−x)2

)
, 1−

√
λ<x≤1+

√
λ

1, x > 1+
√
λ,

(20)

which corresponds to the power fading caused by the
interference of two constant-amplitude waves in a local
area [24], where we have used λ = 4V 2

1 V
2
2 such that

V1 and V2 are the amplitudes of the multipath waves.
Although this distribution is more of theoretical inter-
est [24], it allows us to test a setup considerably different
than those above and investigate the precision of our
formulation.

Remark 5: Notice that, in general, the distribution of γ
may be not just a direct consequence of the fading character-
istics but it may include other factors, e.g., signal processing
effects that come from beamforming.
In the figures, it is shown the cases of t = 1, t = 5 and t →
∞. The error probability distribution in the case of t → ∞
can be evaluated as follows:

1) Find ε−1fin (x) (x ∈ [10−3, 1) in the figures), which can
be performed by solving numerically (15) for h(x), e.g.,
using vpasolve in MatLab. This is based on the fact that
(15) is equivalent to the fixed point iteration equation in
(8), which converges to the exact solution for t →∞;

2) Using the value of ε−1fin (x) found in Step 1), evaluate the
CDF of εfin at x according to (7);

3) Evaluate the PDF according to (14) and using (17).

As we can see from Figures 3, 4 and 5, the approximate
PDFs and CDFs for t = 1 are already relatively accurate.5

This is due to the implications of the initial value chosen for
γ when iterating over (8), as commented therein. Moreover,
we can also see that the simulated results match very well the
analytical expressions6 for t = 5.

B. EVALUATION OF THE RISK METRICS
In order to evaluate the risk metrics VaR and CVaR defined
in Subsection II-B, we must find the inverse of the CDF of
the error probability, which can be obtained from (7) as

F−1ε (x) = εfin
(
F−1γ (1− x)

)
, (21)

thus, (5) and (6) transform into

VaR1−α = εfin
(
F−1γ (α)

)
, (22)

CVaR1−α =
1
α

∫ α

0
εfin
(
F−1γ (τ )

)
dτ

(a)
=

1
α

∫ 1

VaR1−α

xfε(x)dx

(b)
≈

1
α

∫ 1−ξ

VaR1−α

xfε(x)dx for ξ � 1, (23)

respectively. Notice that F−1γ (x) always exists since Fγ (x)
is a strictly increasing function, but it will be difficult to
compute in closed-form in most of the cases. Step (a) in (23)
aims at alleviating that issue for CVaR since the inversion is
only required for computing the lower bound of the integral
and not during all the integration as in the precedent step.
However, this advantage comes with the drawback that since
fε(x) is singular at x = 1, the integration does not converge.
A workaround can be choosing an upper limit very close to
1 as shown in step (b) but at the expense of computing an
approximation instead of the exact value even when t →∞.
Remark 6: According to (22), VaR metric can be com-

puted without relying on our analytical derivations for the
error probability PDF and CDF, hence, its accuracy is guar-
anteed which is not the case for the CVaR metric.

Since CVaR depends on an integration over fε(x), it is
sensitive to the number of iterations utilized for computing
(18); however, as discussed when analyzing Figures 2, 3, 4
and 5, only few iterations should be required. Now, we take

5Note thatMonte Carlo simulation of these PDF andCDF error probability
curves are computationally affordable, however more sophisticated sampling
[25] and visualization techniques are needed to represent the results at very
high reliability.

6Notice that even when for some x−values, the Monte Carlo -based PDFs
are highly oscillating, the CDFs are not, nor are the risk metrics.

fε(x) = lim
t→∞

fγ
(
g(t)(e

r+ 1
√
n
Q−1(x)

− 1, x)
)√2πV

(
g(t)(e

r+ 1
√
n
Q−1(x)

− 1, x)
)(
1+ g(t)(e

r+ 1
√
n
Q−1(x)

− 1, x)
)
e
1
2Q
−1(x)2∣∣∣∣∣∣ Q−1(x)(

1+g(t)(e
r+ 1√

n
Q−1(x)

−1,x)
)2√

V
(
g(t)(e

r+ 1√
n
Q−1(x)

−1,x)
) −√n

∣∣∣∣∣∣
(18)
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FIGURE 6. Relative error in CVaR as a function of the number of iterations
for α ∈ {10−1,10−2} and γ distributed as a Gamma RV, Weibull
RV or according to (19) and (20). We set n = 200 channel uses, k = 25 nats
and ξ = 10−3.

advantage of the fact that F−1γ (x) exists when γ is Gamma,
Weibull, or according to (19), distributed for showing in
Figure 6 the relative error when using (23) as a function
of the number of iterations. It is observed that the accuracy
increases as more iterations are utilized, specially when γ is
distributed according to (19), which means that this kind of
distribution is less sensitive to ξ . On the contrary, utilizing
more than 4 iterations does not help significantly the accuracy
of (23) because of the relative large value of ξ when γ is a
Gamma orWeibull RV. In any case, a relative error around 4%
can be guaranteed with at least 5 iterations. For instance, this
means that if the exact CVaR is 0.01 or 0.1, using 5 iterations
could lead to a CVaR estimate of 0.01±0.0004 or 0.1±0.004,
respectively.

IV. NUMERICAL EXAMPLES
In this section, we illustrate how the previous derivations can
be used to better comprehend the error probability behavior7

of wireless systems operating with FB. Next we set t = 5,
k = 25 nats, and n = 200 channel uses, while E(γ ) = 1
(0 dB) for all the SINR distributions.

A. ASYMPTOTIC VS NON-ASYMPTOTIC ERROR
PROBABILITY DISTRIBUTION
Figure 7 shows the CDF of the error probability when the
system operates with a Gamma distributed SINR. The curves
are compared with the CDF of the asymptotic outage proba-
bility, which is a two-mass-point RV with one mass point at 0
with probability 1− Pout, and the other at 1 with probability
Pout. Notice that the outage probability differs more from the
non-asymptotic average error probability as m increases and
commented in Section II-A. For example, for m = 1 the gap

7The results drawn in this section are in general with an average reliability
below the typical requirements for URLLC [1]. This is necessary in order to
visualize important performance trends and corroborate fundamental gaps
between different reliability formulations. However, notice that all analytical
results in the previous sections are valid and can be evaluated in the region
of extremely small error probabilities.

FIGURE 7. CDF of εfin for γ ∼ 0(m,1/m) with m ∈ {1,3}.

FIGURE 8. a) VaR1−α (top) and b) CVaR1−α (bottom) as a function of α for
γ ∼ 0(m,1/m) with m ∈ {1,2,3,4,5,6}.

between Pout and Perr is small since Perr
Pout
≈ 1.03, but it starts

increasing such that for m = 3 yields Perr
Pout
≈ 1.29, while for

m = 6 (not shown in Figure 7) is already considerable since
Perr
Pout
≈ 2.65. Thus, the asymptotic result is not adequate for

analyzing the system reliability when there is strong LoS, not
even in the average sense.

B. INFORMATION INSIGHTS FROM THE RISK MEASURES
In Figure 8, we show the VaR and CVaR as functions of
α, which represent the maximum error probability of the
system the (1 − α)% of the time, and the average error once
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FIGURE 9. PDF and CDF of εfin for L1 (Nakagami-m) and L2 (Weibull).

the system operates with an error probability above the VaR
value, respectively. Clearly, both metrics are non-increasing
functions of α. We have also marked the points for which the
average error probability matches the value of VaR1−α . For
instance, consider that the target average error probability is
Perr ≈ 10−2 and that m = 3. In Figure 8a, using the VaR
metric, we can see that an error probability below the average
occurs during 95.9% of the time. Thus, the instantaneous
reliability in almost 4% of the time will be certainly smaller
than the one designed in the average sense. Indeed, from the
same figure we can see that the error probability is larger
than 0.4 during 1% of the time, certainly unacceptable for
most applications. Moreover, for the same case of m = 3 and
considering the worst 1% channel realizations (to the left of
the 99% line), we can see in Figure 8b that the average error
probability is 0.7, extremely high. The main message from
the above analysis is that the average error probability does
not provide all the information that is needed in order to fully
characterize the reliability of the system.

C. A RISK-BASED COMPARATIVE EXAMPLE
Metrics like VaR and CVaR contribute to better characterize
the system reliability, and reveal that it is important to include
in the system design the maximum acceptable probability of
average reliability violation, so that a margin in SINR or in
transmission rate is adequately taken into account during the
system design phase. In order to further illustrate the above
analysis, let us consider two different communication links
where the SINR at the destination behaves as a RV such that:

L1 γ ∼ 0(m, 1/m), m = 4.74 (Nakagami-m);
L2 γ ∼Weibull

(
1/0(1+ 1

κ
), κ

)
, κ = 3.20332.

These systems have the peculiarity that they share the same
average error performance8: P(1)err = P(2)err = 1.62 × 10−3.
Are they equally reliable? In order to answer this question,
let us take a look at the distributions of the error probabili-
ties, shown in Figure 9. Although both links share the same
average error performance, their statistics are considerably
different. The main conclusion from Figure 9 is that when
the links operate under good channel conditions, e.g., error

8This is for n = 200 channel uses and k = 25 nats.

FIGURE 10. a) VaR1−α (top) and b) CVaR1−α (bottom) for L1
(Nakagami-m) and L2 (Weibull).

probabilities below 0.2, L2 is more reliable than L1 since the
error probability CDF of the former lies completely above of
that of its counterpart in that region. Thus, L2 is operating
with error probabilities below εth , such that εth < 0.2, more
frequently than L1. However, when the channel behaves
poorly, with εfin > 0.2, then L1 outperforms L2. This hap-
pens around 0.3% of the time since 1− Fε(0.2) ≈ 0.003 for
both links. The y-coordinate of the intercept point of the CDF
curves, y∗, delimits the fraction of time where one system
outperforms the other. For a more detailed analysis, let us
introduce a comparison of the risk metrics for these scenarios
as depicted in Figure 10, while Table 1gives a collection of
VaR and CVaR values related to the performance of both
links, where the values in bold are those corresponding to the
best performance. Notice that the VaR of L2 is the best for
α ∈ [0.01, 0.1]; in fact, according to Figure 9 that happens
always as long as α < 1 − y∗. Meanwhile, the CVaR of L1
turned out to be the best for all the tested values of α, however
notice that the gain in VaR of L2 with respect to L1 is much
larger than the corresponding loss in CVaR for α > 0.01. Let
us interpret some specific results. According to Table I, 99%
of the time, the maximum error probability of the system is
1.34 × 10−2 for L1 and 5.38 × 10−3 for L2, a considerable
advantage in favor of L2; while for the 1% worst channel
realizations, when the SINR is very low, then the errors hap-
pen with probabilities 0.1559 and 0.1597, which are basically
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TABLE 1. Comparison between communication links 1 and 2 in terms of some risk measures.

the same. We can even evaluate the average error probability
during 99% of the time by calculating 1

1−α

∫ VaR1−α
0 xfε(x)dx

with α = 0.01, which leads to 6.2 × 10−5 and 2.3 × 10−5

for L1 and L2, respectively. In fact, using those values we
are able to go back to the average error probability if we
evaluate P(1)err = 6.2 × 10−5 × 0.99 + 0.1559 × 0.01 and
P(2)err = 2.3 × 10−5 × 0.99 + 0.1597 × 0.01, and notice that
both results match the value considered at the beginning of
this paragraph: Perr = 1.62× 10−3.
Therefore, for a single (or few) message transmission

where it is more likely operating in the region of good
channel performance, L2 is considerably more reliable than
L1, although the average performance is the same. Thus,
the above results show the importance of the proposed reli-
ability analysis as well as the fact that different channel
distributions may lead to considerable different reliability
behaviors, even if the channels behave similarly in the aver-
age sense.

V. CONCLUSION
We provided accurate analytical approximations for the dis-
tribution of the non-asymptotic error probability in wireless
communication system with fixed transmit rate. We evaluate
well-known risk measures that use such statistics to provide
more insights on the reliability performance of the system.
Numerical methods corroborated our findings, while we dis-
cussed two examples that evidence the fact that relying only
on the average error performance may be far from sufficient
for a definitive characterization of the system reliability. As a
futurework, we plan to propose and analyze efficient resource
scheduling strategies for URLLC with risk-based reliability
guarantees.

APPENDIX
We next reproduce and extend our proof in [21, App. C] while
adapting it to the notation utilized in this paper. We require to
solve f (γ ) = q(γ )− γ = 0, where

q(γ ) = q1q
√
V (γ )

2 − 1,

q1 = er ≥ 1 since r ≥ 0, and q2 = e
1
√
n
Q−1(εfin ). Note that

f (γ ) is continuous, while f (0) = q1−1 ≥ 0 and lim
γ→∞

f (γ ) =

−∞, thus there is at least one γ such that f (γ ) = 0. Then,
we can argue as follows

• Case I: εfin ≥ 0.5

For this case Q−1(εfin ) ≤ 0, thus q(γ ) is non-increasing
and γ is increasing and there is only one solution to
q(γ ) = γ .

• Case II: εfin < 0.5
Now Q−1(εth ) > 0, thus q(γ ) is also increasing. Taking
its derivatives we have

q′(γ ) =
q1q
√
V (γ )

2 ln(q2)

(1+ γ )3V (γ )
, (24)

q′′(γ ) = −
ln(q2)q1q

√
V (γ )

2
√
V (γ )(1+ γ )2

[ 1

(1+ γ )2
√
V (γ )

+

+3−
ln(q2)

(1+ γ )2

]
, (25)

where ln(q2) > 0. Thus, we can claim that g(γ ) is
concave if

1

(1+ γ )2
√
V (γ )

+ 3 >
ln(q2)

(1+ γ )2

q2 < e
1

√
V (γ )

+3(1+γ )2

Q−1(εfin ) <
√
n
( 1
√
V (γ )
+ 3(1+ γ )2

)
εfin > Q

(√
n
( 1
√
V (γ )
+3(1+γ )2

))
,

(26)

where the right side ismaximized for theminimumvalue
of
√
n
( 1
√
V (γ )
+ 3(1 + γ )2

)
. Setting n = 100, which is

the minimum value for which all the analyses are valid,
and γ = 0.1655, which minimizes the remaining terms,
we reach εfin > Q(46.6364) ≈ 4.4× 10−475. Evidently,
that requirement ismet for any setup of practical interest.
Thus, q(γ ) is increasing and concave and since q(0) > 0,
which is the starting point of line γ , we conclude that
they intersect at one point only. Therefore, the solution
is unique.

Thus, we can say that the unique solution of f (γ ) = 0 is a
fixed point of

e
r+

√
V (γ )
n Q−1(εfin )

− 1.

Based on the Fixed Point Theory [26], if |q′(γ )| < 1, the fixed
point iteration in (8) will converge to the solution. Using (24)
and performing some algebraic transformations, yields

|q′(γ )| =

∣∣∣∣ q1q
√
V (γ )

2 ln(q2)

(1+ γ )3
√
V (γ )

∣∣∣∣ (a)= ere

√
V (γ )
n Q−1(εfin ) |Q

−1(εfin )|√
n

(1+ γ )3
√
V (γ )
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(b)
=

ereln(1+γ )−r | ln(1+γ )−r|√
V (γ )

(1+ γ )3
√
V (γ )

(c)
=
| ln(1+γ )−r|
γ (γ + 2)

, (27)

where (a) and (b) come from using the expressions of q1 and
q2, and

Q−1(εfin ) =
ln(1+ γ )− r√

V (γ )
n

(see (3)), respectively; while (c) is attained after substituting
V (γ ) = 1 − 1

(1+γ )2
followed by some simplifications. Now,

for εfin ≤ 0.5 we have that ln(1+ γ ) ≥ r , thus

|q′(γ )| <
ln(1+ γ )
γ (γ + 2)

< 1, ∀γ ≥ 0, (28)

while for εfin > 0.5 we have that

|q′(γ )| =
r − ln(1+ γ )
γ (γ + 2)

, (29)

which is smaller than 1 as long as r < γ (γ + 2)+ ln(1+ γ ).
Interestingly, utilizing this rate bound we attain

εfin < Q
(
−
√
n

√
1+

1
γ 2(γ + 2)2

)
,

which independently of γ is very close to 1 for n ≥ 100
channel uses. Consequently |q′(γ )| < 1 holds also for this
case. Therefore, and from Banach’s fixed point theorem [26],
the (at least) linear convergence of a Fixed-point iteration
algorithm is guaranteed provided any initial point γ (0).
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