
Received January 29, 2020, accepted February 20, 2020, date of publication March 2, 2020, date of current version March 12, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2977760

Real-Time Quantile-Based Estimation of Resource
Utilization on an FPGA Platform Using HLS
CHANAKA GANEWATTHA , ZAHEER KHAN , JANNE J. LEHTOMÄKI ,
AND MARJA MATINMIKKO-BLUE
Centre for Wireless Communications (CWC), University of Oulu, 90014 Oulu, Finland

Corresponding author: Chanaka Ganewattha (chanaka.ganewattha@oulu.fi)

This work was supported in part by the Business Finland through the MOSSAF Project, and in part by the Academy of Finland through the
6Genesis Flagship under Grant 318927.

ABSTRACT Hardware accelerated modules that can continuously measure/analyze resource (frequency
channels, power, etc.) utilization in real-time can help in achieving efficient network control, and config-
uration in cloud managed wireless networks. As utilization of various network resources over time often
exhibits broad and skewed distribution, estimating quantiles of metrics to characterize their distribution is
more useful than typical approaches that tend to focus on measuring average values only. In this paper,
we describe the development of a real-time quantile-based resource utilization estimator module for wireless
networks. The intensive processing tasks run on the FPGA, while the command and control runs on an
embedded ARM processor. The module is implemented by using high level synthesis (HLS) on a Xilinx’s
Zynq-7000 series all programmable system on chip board. We test the performance of the implemented
quantile estimator module, and as an example, we focus on forecasting congestion with real frequency
channel utilization data. We compare the results from the implemented module against the results from a
theoretical quantile estimator.We show that with high accuracy and in real time, the implementedmodule can
perform quantile estimation and can be utilized to perform forecasting of congestion in wireless frequency
spectrum utilization.

INDEX TERMS 5G, channel resource allocation, wireless channel congestion, forecasting, FPGA, gener-
alized extreme value theory, high level synthesis, URLLC, Xilinx, ZedBoard.

I. INTRODUCTION
A wide range of ultra-reliable and low latency commu-
nication (URLLC) applications, such as autonomous driv-
ing, robotics and industrial automation [1], require modules
that can perform real-time analytics of key metrics relating
to resource utilization in the network. These modules can
help facilitate efficient resource allocation decisions in cloud
managed wireless networks. Advances in software/hardware
technologies allow wireless operators to deploy such analyt-
ics modules which are dedicated for measurement/collection
of data inside their various network elements like access
points/base stations (APs/BSs) [2], [3]. For example, Cisco
System’s Meraki Cloud Controller (MCC) utilizes a third
radio dedicated for continuously monitoring the surround-
ings in each of its Meraki APs to improve the system-wide
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performance [3]. Moreover, there are several works, which
have also shown the benefit of deploying such data analytics
modules in a wireless network as a separate sensor node.
For example, use of dedicated sensors that act as analytics
modules for fifth generation (5G) wireless systems have been
proposed in [4], [5]. The dedicated modules can be utilized
to collect real time resource (frequency spectrum, power,
and etc.) utilization related data analytics that is given as
input to cloud-based network resource controllers for effi-
cient network control, configuration and management. More-
over, using hardware accelerated modules in an AP or as
a dedicated sensor at a network’s edge solves the problem
of sample transfer overhead. Sending only limited processed
data that indicates important information relating to the esti-
mated performance metric of interest makes more sense than
sending large volumes of streaming data to the controller.

The application of real-time analytics modules to wireless
systems has been so far limited in the sense that most of
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FIGURE 1. Distribution of wireless CU data.

the existing solutions have been developed based on average
values of the metrics of interest. However, average values
alone are not a good measure as distributions of various types
of network data sets exhibit often skewed distributions and
average alone does not capture the variations in the data
correctly. To provide an example, in Fig. 1 we illustrate
wireless frequency channel utilization (CU) data distribution
using a histogram for a single day. The CU data was col-
lected over an unlicensed channel by us in the University of
Oulu. It can be seen from the figure that the distribution is
right skewed. Approximating the CU data distribution with
normal distribution using average often leads to inaccurate
results. Estimating high quantiles of CU data distribution or
distributions of other similar metrics of interest is more useful
than only measuring mean values [6]. Incorporation of real
time quantile estimation modules at the network edge can
help in characterization and prediction of resource utilization
load [7]. This can facilitate a network resource controller
to take smart and proactive resource allocation decisions in
real-time which in turn would enable it to deliver the guaran-
teed quality of service and also scaling the network to fulfill
service level agreements with respect to various performance
metrics.

In this paper, we use high level synthesis (HLS) to develop
a real-time quantile estimator connected via an AXI4-Stream
interface to the accelerator coherency port (ACP) of the ARM
central processing unit (CPU) in the Zynq-7000 All Pro-
grammable System on Chip (AP SoC) device. We present the
system design of the module, its implementation using HLS
and its performance evaluation using real wireless CU data.
The main contributions of our work can be summarized as
follows.
• A real-time quantile estimation solution using FPGA
which can process streaming samples and estimate quan-
tiles which can then be used for making resource alloca-
tion decisions on a cloud controller server. The module
contains three intellectual property (IP) cores which are
created with HLS and integrated in a Zynq design using
AXI4-Stream protocol.

• The data processing IP cores such as computation of
histogram, cumulative sum, inverse cumulative sum
using linear interpolation are implemented on the

FIGURE 2. System model.

programmable logic (PL) part of a modern AP SoC
device. The processing system PS) of the AP SoC device
is used for command and control. The system is based on
interrupts with direct memory access (DMA) controller
which transfers the data from the main memory to the
IP cores and returns the processed data from the IP cores
to the main memory with minimal CPU intervention.
Fig. 2 gives an overview of the implemented solution.

• Our implemented solution can be used for estimating
quantiles in real time of streaming data samples exhibit-
ing different distributions, such as normal, Pareto, and
generalized extreme value distribution. As an example,
we test the performance of the implemented quantile
estimator module with extreme value distribution for
maxima wireless CU data collected over an unlicensed
band in the University of Oulu. With the application of
extreme value theory and quantile estimation, we show
that our proposed system can accurately estimate quan-
tiles. We also show that the estimated high quantiles can
be used to forecast frequency spectrum resource utiliza-
tion of a network under congestion. By forecasting the
high quantiles of CU, which are directly related to the
level of congestion of a network, we can ensure a certain
probability of the service level for that network.

• We use a ZedBoard which is equipped with a Xilinx
Zynq-7000 AP SoC for the practical implementation of
the analytics device.We compare the quantiles estimated
from our solutionwith the quantiles computed byMatlab
using its built-in functions and we verify the accuracy of
our solution.

It is worth noting that although CPUs and graphics pro-
cessing units (GPUs) can be used for processing of wireless
data, a system built with CPUs and GPUs is bulky, expen-
sive and power hungry. Utilization of an FPGA makes more
sense due to the lower cost and lower power consumption.
FPGAs can be used to implement complex operations,
parallelized functions and pipelined designs efficiently.
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Very complex operations can be implemented to work within
few clock cycles using the parallel resources which are read-
ily available in the FPGA. This nature of FPGAs is very well
suited for pipelining and real-time streaming kind of data
processing applications. Also, reconfigurability of FPGAs to
tailor its processing for a specific application makes them
well suited to be applied across a wider range of applications.
In our work, for the calculation of the quantiles of interest,
instead of calculating all the quantiles, we can calculate only
the quantiles of interest (FPGA can be reconfigured to find
any arbitrary quantiles). Hence, we implement our solution
in an FPGA.

The rest of the paper is organized as follows. In Section II,
we present an overview to the related literature. In Section III,
we provide a background to the CU and extreme value theory.
In Section IV, we provide details in the implementation of
the data analytic IP cores in the FPGA. Then, in Section V,
we provide an evaluation of the results of the proposed sys-
tem. Finally, Section VI gives the conclusion remarks of our
work.

II. RELATED WORK
Traditionally, much research emphases has been on non-real
time data analytics where the wireless data is collected on
computers or servers and processed in non-real time [8].
This approach leads to limitations in performance due to the
inaccuracies in using past knowledge in optimizing real-time
systems. Gaps in samples cause statistical inaccuracies lead-
ing to erroneous decision making. Due to the latency incurred
in processing large data sets in the server, the system is unable
to respond to the sudden needs in the network. Therefore,
such wireless analytics systems are not useful for networks
supporting real time application scenarios. Various types of
non-real time data for network planning and management has
been utilized in [9]–[11].

Recently, for 5G and beyond wireless networks, there has
been more focus on the usage of real time data analytics
techniques [12], [13]. It has been identified that utilizing
real-time data analytics and data mining in wireless commu-
nication networks would enable dynamic network manage-
ment, traffic engineering, radio access selection and network
traffic steering [14]. It would also improve overall network
performance enabling a 5G and beyond network to meet the
stringent key performance indicators (KPIs) [14]. Towards
this end, the latest 3GPP specification [15] has introduced
a dedicated function called Network Data Analytics Func-
tion (NWDAF) which is responsible for providing network
data analysis information upon request from other network
functions. As an example, information on the traffic load level
of a certain network slice could be provided upon a request
by a certain other network function such as Policy Control
Function (PCF) or Network Slice Selection Function (NSSF)
[14]. The work in [16] presents a brief survey of various
models proposed by the research community which focuses
on the application of data mining and analytics in 5G and
beyond networks.

Extreme value theory is a statistical data analysis tool
which has been used by several research works to success-
fully forecast time series data [17]–[20]. The work presented
in [17] introduces an application of extreme value theory in
predicting cyber attacks using network data. It proposes a
methodology for the prediction of attack rates in the pres-
ence of extreme values in observed data. According to the
authors, the cyber attacks usually are assumed to exhibit
extreme value phenomenon. Using an integration of time
series theory for short term predictions and extreme value
theory for long term predictions, the authors have developed
a model which can predict cyber attack rates one hour ahead
of time with practical prediction accuracy. In [18], a novel
approach is presented to detect outliers in high through-
put numerical time series without assuming any distribution
for the input data and without manual thresholds setting.
The authors introduce two methods, stationary peaks over
threshold (SPOT) for streaming data with stationary distri-
bution and drift SPOT (DSPOT) for streaming data with
some drift. Peaks over threshold (POT) approach and max-
imum likelihood estimation have been used by the authors
in [18] to estimate the required parameters for generalized
Pareto distribution (GPD). The authors show few example
applications of their anomaly detection algorithm in intrusion
detection, magnetic field measurements and stock prices.
In [21], a method of thread assignment in multi-core/multi-
threaded processors using extreme value theory is presented.
The authors use POT method to obtain the GPD for the
thread assignment problem. The parameter estimation for
the GPD is done using maximum likelihood estimation. The
authors use a method called sample pruning, which reduces
the time for statistical analysis and introduces a methodology
called sample pruning POT (SP-POT) which is claimed to
reduce the analysis time by eightfold. The authors declare
that the introduced thread assignment performs close to
optimal.

In applications where real-time data analytics are required,
hardware acceleration using FPGAs has been the better
choice [22]. FPGAs provide massive performance with its
reconfigurable parallel resources than CPUs and GPUs and
consume a fraction of power of a CPU or a GPU [23]. Due
to this attractive property of FPGAs, they are often favored
to be utilized for implementing computationally intensive
statistical signal processing algorithms. The author of [24]
presents a histogram based probability density function esti-
mation using FPGAs. Cumulative distribution function is
computed in real time for the input data and important infor-
mation like centiles which are used in quality of service
oriented decisions in communication systems, are calculated
from the probability density function. The estimator is built
using access pattern memory and priority encoders to reduce
latency and increase the performance. The author claims that
the proposed architecture uses minimal amount of hardware
resources and area in the FPGA chip. In [25], FPGA based
bandwidth selection for kernel density estimation is pre-
sented. An algorithm called plug-in is used for the estimation
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of univariate kernel density estimation. The authors have used
different architectural optimizations using the parallelism in
FPGA to speed up the calculation. They have implemented
a faster version of division operation using multiplications
and divisions. For exponent and logarithmic calculations,
coordinate rotation digital computer (CORDIC) algorithm
has been used. The authors claim an average speed up by
about 32 times compared to a CPU with much higher power
efficiency than a CPU.

The problem of real-time quantile based estimation of
resource utilization on an FPGA platform has not been inves-
tigated in the literature so far. The methodology proposed in
this paper is based on the research findings of the first author’s
master’s thesis [26]. We have implemented the proposed
solution in a Xilinx’s Zynq-7000 series FPGA using HLS.
The intensive data processing tasks run on FPGA while the
embedded ARM processor takes care of the command and
control of the system. The proposed architecture is highly
suitable for real-time streaming type of data. We use extreme
value theory to describe the mathematical concept behind our
solution and we show why quantile estimates make sense in
a congested scenario of a network resource. To the best of
our knowledge, this is the first time such a study on real-time
quantile estimation of resource utilization using FPGAs has
been done.

III. THEORY
A. PHYSICAL LAYER CHANNEL: BACKGROUND
Wireless CU is a measure of how much of the available
air time is utilized by wireless networks and is typically
expressed as a percentage. CU is a key metric as it can be
used to assess the health of a wireless network at physical
layer. For example, in Wi-Fi networks, CU can be used to
assess the impact on the user experience relating to various
applications running on various mobile devices and laptop
computers. If the CU measured is at a higher value rang-
ing from 70% to 90%, the user experience can be severely
affected. We use CU samples as test data to verify the validity
of our implemented quantile estimation module. We compare
the estimated quantiles with a theoretical model approach
based on extreme value theory.

CU data is directly obtained by processing IQ samples
using real-time FPGA module implemented by us in [27].
For the accurate detection of the signal [27], we estimate the
noise floor and then set a detection threshold appropriately as
a scaled value of the estimated noise floor. When the received
signal power I2 + Q2 exceeds the threshold, we declare that
the signal is present or otherwise the signal to be absent [27].
CU value thus calculated is given by [27]:

αt =
LF

LF + LO
(1)

where LF denotes the number of instances in the time
interval t in which the signal is present and LO denotes the
number of instances where the signal is absent. The number
of samples in time t depends on the duration of the interval t

and sampling frequency which would range from hundred of
thousands to few millions.

B. EXTREME VALUE THEORY
The sequence of CU values given by αt which is measured
as a certain process on a regular timescale can be consid-
ered as random variables which have a common distribution
function. Let the maximum value drawn from n observations
of the process over n time units be defined by Mn, then
Mn = max{αt+1, αt+2, · · · , αt+n}. This is also called the
block maximum.

The extremal types theorem in classical extreme value
theory states that there exists sequences of constants an > 0
and bn such that [28]

Pr
{
Mn − bn

an
≤ z

}
→ G(z) as n→∞ (2)

where G is a non-degenerate distribution function. Then
extreme value theory states that G should belong to one
of the families, Gumbel, Frechét or Weibull distributions
which are also called type I, type II and type III families
of distributions respectively [28]. These distributions model
different forms of tail behavior for the distribution function F
of αi. For example, in Gumbel distribution, the density of G
decays exponentially while for Fréchet distribution, it decays
polynomially which correspond to different rates of decay
in the tail of F relative to each other. These three families
are reformulated to a single family of models having the
distribution functions of the form given by [28],

G(z) = exp

{
−

[
1+ ξ

(
z− µ
σ

)]−1/ξ}
(3)

which is defined on the set {z : 1 + ξ (z − µ)/σ > 0}.
Parameters µ, σ and ξ satisfy −∞ < µ < ∞, σ > 0
and −∞ < ξ < ∞ respectively. This is called generalized
extreme value (GEV) family of distributions. µ, σ and ξ are
called location parameter, scale parameter and shape param-
eter respectively. Fréchet and Weibull families correspond
to the cases ξ > 0 and ξ < 0 respectively and ξ = 0
corresponds to Gumbel family.

GEV distribution which is formed by the unification of
the original three distribution families greatly simplifies the
statistical implementation. The tail behavior can easily be
determined by the inference on ξ and so that there is no
need to assume individual extreme value family for a given
set of data. Estimation of the parameters µ, σ and ξ is
done by maximizing a log likelihood function using standard
numerical optimization algorithms [28].

The above analysis of CU data makes sense since exam-
ining the collected CU data from [27] tells us that they have
occasional spikes. These spikes or bursts occur due to high
usage by a single user (due to for example downloading
a large file) or high aggregated usage by multiple users.
Due to this nature of the CU, the distribution of CU data is
no longer normal. Instead, the bursts can result in heavily
tailed distributions with large deviations from the mean or
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the median of the CU data. Therefore, statistics like mean and
standard deviation may not accurately predict the probabili-
ties of the CU. Due to this reason, a forecast method based
on mean and standard deviation may not be a viable solution.
As CU data behave with extreme values due to the bursty
nature, the theory of extreme value can effectively be applied
in the modeling of wireless CU data.

C. QUANTILE ESTIMATES BASED ON EXTREME VALUE
THEORY
The estimates of the extreme quantiles for the maxima series
are obtained by the inversion of the GEV equation (3) which
gives [28],

zp =

{
µ− σ

ξ
[1− {− log(1− p)}−ξ ], for ξ 6= 0,

µ− σ log{− log(1− p)}, for ξ = 0,
(4)

where G(zp) = 1-p. The parameters, σ, ξ and µ are found by
maximizing the log likelihood function as stated earlier.

D. DERIVATION OF A SIMPLER VERSION OF THE
GENERALIZED EXTREME VALUE THEORY FOR FPGA
IMPLEMENTATION
Estimation of quantiles using theoretical approach involves
calculating logarithms and exponents which is complex and
highly inefficient in terms of performance when implemented
in hardware. Therefore, it is typical to use good approxima-
tions to the theory so as to ease the implementation aspect.

Due to the complexity in implementation of parameter
estimation and equation computation of GEV for wireless CU
data in a real-time system, we utilize the histogramwhich can
readily be computed. Histogramwith appropriate bin width is
considered to be an accurate representation of the numerical
data distribution. It is an approximation to the probability
density function (pdf), pX (x) of a random variable X . Let
H denote the histogram, Ii denote the ith bin interval of the
histogram, Ii denote the minimum value and Īi denote the
maximum value of the ith bin interval,πi denote the frequency
of the data values which lie within the ith bin interval Ii and
M be the number of histogram bins. Then, the bin interval Ii
can be written as,

Ii = [Ii, Īi) (5)

and the histogram can be denoted as,

H = {(I1, π1), (I2, π2), · · · , (IM , πM )} (6)

From histogram, we obtain the distribution of cumulative
sum which is used for the quantile estimation. Let C denote
the (empirical) cumulative distribution function of the input
data samples. For ith bin interval, we calculate,

ψi =

i∑
k=1

πk (7)

and obtain the distribution of cumulative sum as,

C = {(I1, ψ1), (I2, ψ2), · · · , (IM , ψM )} (8)

FIGURE 3. System block diagram.

For the quantile estimation, we need to find the estimate
of p = P(X > x). As we are dealing with cumulative sum
values, we compute P = p × N where N denotes the total
sum of histogram counts (in our case N = ψM ). We find
the bin interval in the distribution of cumulative sum where
P resides. Let this bin interval be Ij = [Ij, Īj), then we can
write,

P ∈ [ψj, ψj+1) (9)

Then, using the linear interpolation, we find the quantile
estimate value, Q ∈ [Ij, Īj) which is given by,

Q = Ij + (P− ψj)
(Īj − Ij)

(ψj+1 − ψj)
(10)

Due to the reduced complexity of the proposed method,
it is simple and easy to implement in hardware. Compared
to the direct implementation of GEV theory, there is less
arithmetic operations required and the method can readily
be utilized for streaming type of data. Thus, the proposed
system is very well suited for the hardware architecture in
the FPGA. Real-time histogram generation and cumulative
sum calculation for the streaming data can easily be imple-
mented in FPGA. The quantile estimation method which is
used for the wireless channel congestion forecasting can also
be implemented with less latency. The downside of the pro-
posed method can be the loss of accuracy for the implementa-
tion simplicity. However, we show that the degradation in the
performance of the proposed method is minimal compared to
the direct GEV implementation. In Section V, we thoroughly
analyze the performance of both of the proposed method and
the direct GEV implementation.

IV. IMPLEMENTATION
A. SYSTEM OVERVIEW
Fig. 3 depicts a high-level overview of the complete system
architecture of our solution. The implementation is done
using a Xilinx Zynq-7000 AP SoC in ZedBoard [29]. The
Xilinx Zynq-7000 AP SoC contains 1) PS which features
a dual core ARM Cortex A9 processor and 2) PL. All the
other necessary peripherals like on-chip memory, external
memory interfaces and I/O (Input/Output) peripherals and
interfaces are included in the SoC [32]. Zynq-7000 AP SoC
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FIGURE 4. Steps involved in the implementation of the proposed system on a ZedBoard.

offers flexibility and scalability of an FPGA while delivering
performance, power and ease of use typically associated with
ASICs (application specific integrated circuit). Due to its
flexibility in customization, PL can be configured according
to the design requirement. PS of the AP SoC manages the
PL part and the communication between them. The resulting
outputs are obtained by a laptop connected to the ZedBoard.
Fig. 3 shows all the important functional blocks in the

implemented system. The forecast system controller module
resides in the PS and manages the data exchange between
1) the computer and PS 2) the PS and the PL. All the other
functional blocks related to the forecast system reside in the
PL. The system uses Advanced eXtensible Interface (AXI)
bus specification [33] to exchange data among functional
modules, and between the PS and the PL.

Due to the simplicity and flexibility of using HLS for IP
core development [30], necessary functional modules have
been designed/developed and corresponding IP cores have
been generated using the tool, Xilinx Vivado HLS [30]. Xilinx
Vivado has been used for the complete system integration
and bit stream generation for hardware programming. The
bare-metal (standalone) [31] application development has
been done using the tool, Xilinx Vivado SDK. The key steps
involved in the implementation of the proposed system are
given in Fig. 4.

B. FPGA ALGORITHM IMPLEMENTATION
The PL contains three functional modules (IPs), namely,
makehist IP, cumsum IP and invcum IP (interpolation IP).
These IPs work in conjunction with the PS to evaluate the
quantile estimate for a given CU probability. The IPs are
arranged in a pipeline such that the processed data from
one IP travel to the next IP in succession. The algorithms

implemented in each IP and their detailed functionalities are
discussed in next sub sections.

1) HISTOGRAM AND CUMULATIVE SUM IP MODULES
Algorithm 1 is used for the histogram calculation for the input
CU data. As the CU data is streaming type, there is only
single CU data value available at a certain time instance, i. Let
Di denote the CU data at time instance i, Ij and Īj be the left
and right bin edges at jth bin interval Ij, πj be the histogram
bin counter value at j and W be the CU data window for
which the histogram is computed. The CU data value Di is
compared against the histogram bin interval, Ij = [Ij, Īj). IfDi
is inside the considered bin interval, πj counter at location
j is incremented by one and next CU data sample is taken
for comparison. If Di is not inside the jth bin interval, it is
compared with the next bin interval Ij+1 = [Ij+1, Īj+1). This
comparison is repeated until the CU data sample matches
the corresponding bin interval in the histogram. The logic
design which implements this functionality is given in Fig. 5.
This process is continued for every CU data sample in the
considered data window. Once all the CU data in the data
window is processed, the computed histogram is given at
the output. The IP implementing this algorithm is called the
makehist IP. The timing, latency and resource utilization for
this IP are given in Table 1, Table 2 and Table 3 respectively
for a sample data window size of 64.

Algorithm 2 is used for the generation of cumulative sum.
Let ψi represents the cumulative value at ith location of
the corresponding bin in the histogram. Cumulative value at
ith location is given by the sum of all the past histogram values
up to the ith bin. The algorithm calculates the sum over all the
past histogram bin values for the ith value and this process is
repeated for all the histogram bins. Cumulative sum is given
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FIGURE 5. Logic design for the comparison and updating in histogram IP.

Algorithm 1 Histogram Algorithm
1: Input: Data samples size of windowW
2: for each data sample Di in W do
3: for each jth bin in histogramH do
4: if Ij ≤ Di < Īj then
5: πj← πj + 1;
6: break;
7: end if
8: end for
9: end for

10: Output: HistogramH

Algorithm 2 Cumulative Sum Algorithm
1: Input: HistogramH
2: C ← H
3: i← 2;
4: for each ith bin in C do
5: ψi+1← ψi+1 + ψi
6: end for
7: Output: Cumulative sum C

TABLE 1. Timing summary of the generated IPs.

as output at the end of this operation. The resulting logic
design for this IP is given in Fig. 6. The IP implementing this
algorithm is cumsum IP and its timing, latency and resource
utilization information are given in Table 1, Table 2 and
Table 3 respectively.

TABLE 2. Latency information of the generated IPs.

TABLE 3. Resource utilization of the generated IPs on Xilinx
Zynq-7000 xc7z020clg484-1 device.

FIGURE 6. Logic design for the cumulative sum IP.

2) QUANTILE ESTIMATION IP
Algorithm 3 shows the steps in estimating the quantile for
a given probability. As the cumulative sum is derived for
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FIGURE 7. Logic design for the quantile estimation IP.

the CU data instead of the probability density, it is required
to compute corresponding value P which is in the range of
cumulative sum values. P is calculated by multiplying p with
the data window size, N for which the histogram was cal-
culated earlier. Then, P is compared against each cumulative
value to find the interval i where P is residing. A line is fitted
to the two cumulative sum data points,ψi andψi+1 which are
located to the left and right of P. The corresponding value, Q
to P in the domain of the line is calculated by evaluating the
inverse equation of the fitted line. TheQ value thus calculated
is given out as the quantile estimate for the corresponding
probability value. The Algorithm 3 is implemented in invcum
IP and the resulting logic design for this IP is given in Fig. 7.
Its timing, latency information and resource utilization infor-
mation are summarized in Table 1, Table 2 and Table 3
respectively.

Algorithm 3 Quantile Estimation Algorithm
1: Input: C, p
2: P← N × p
3: Find the interval, (ψi ≤ P < ψi+1) where P resides in
4: Fit a line which goes through ψi and ψi+1
5: Find the value Q corresponding to the value P in the

domain of the fitted line using (10)
6: Output: Quantile estimate, Q

FIGURE 8. Complete system block diagram.

C. IP INTEGRATION AND SYSTEM GENERATION
Fig. 8 illustrates the complete system block diagram once the
integration is done. It also shows the communication proto-
cols which are used between different subsystems. Mainly,
AXI protocol [34] is used for the control and configuration of
the IPs and other modules which are residing in the PL. Xilinx
adopted AXI protocol is called AXI4-Lite. AXI protocol is
targeted for high performance, high frequency system designs
and provides a high bandwidth and a low latency.
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FIGURE 9. Integrated system in Xilinx Vivado.

We use AXI4-Stream protocol in conjunction with ACP of
theARMCPU in Zynq-7000Ap SoC for high speed streaming
data transfers. AXI4-Stream protocol is used in applications
where the focus is on a data-centric and data-flow paradigm
where the concept of address is not important [33]. AXI4-
Stream behaves as a single unidirectional channel with a
handshaking data flow. Due to this property, the mechanism
to move data between IPs is efficient and fast. AXI4-Stream
protocol is highly optimized for high performance data flow
applications. Therefore, to fulfill low latency for our imple-
mented design, the data transfer from the system memory
(DDR memory) to the respective IP (makehist IP) is realized
using the AXI4-Stream protocol. DMA controller with CPU
interrupts takes care of the data movement from the system
memory to the makehist IP independently with negligible
amount of intervention from the ARM processor [35]. Due
to this reason, the overhead on the processor on data transfer
process is kept at minimal. Same protocol is used for the data
transfers between the IPs also. Fig. 8 depicts the locations
where AXI4-Stream protocol is used for data transfer opera-
tions. Once the data is streamed to the makehist IP, the data
flows through all the three IPs sequentially as a stream.
Each IP processes the data as per the algorithms described in
section IV-B and the processed data is forwarded to the next
IP in succession for further processing.

D. OVERALL DESIGN FLOW OF THE IMPLEMENTED
SYSTEM
Fig. 9 shows block design implemented in Xilinx Vivado
by integrating the IPs. It shows all the IPs with system
interconnects and other peripheral IPs which are needed
for the integration purposes. Interrupts of DMA controller
are used to detect the completion of write data transaction
between the system memory and the makehist IP. DMA con-
troller is connected to the ACP port of the ARM processor.

Data streaming from system memory to the streaming device
(makehist IP) takes place through the memory mapped to
streaming (MM2S) channel. Data streaming from stream-
ing device to the system memory takes place through the
streaming to memory mapped (S2MM) channel. At the end
of each transaction, DMA asserts an interrupt to notify the
ARM processor, the completion of the data transaction. This
information is used by the ARM processor to advance to the
next state to read back the results and to schedule the next
data transaction.

The system is synthesized and implemented in Xilinx
Vivado after the block design. The bitstream for FPGA con-
figuration is generated next.We export the implemented hard-
ware in Xilinx Vivado and use Xilinx SDK for the bare-metal
application development for the embedded ARM proces-
sor. Zynq-7000 AP SoC is configured through Xilinx SDK
and the developed bare-metal application is executed in the
ARM processor.

V. RESULTS AND DISCUSSION
In this section, we present the results related to the perfor-
mance evaluation of the proposed quantile estimation algo-
rithm. For testing the accuracy of the implemented algorithm,
we use real block maximum CU values and compare with
theoretical quantile estimates using the extreme value theory.
CU data used for the evaluation purpose was actual data
collected from the university’s Wi-Fi network. More details
on the method of collecting the CU data can be found in [27].
We evaluate the performance of the implemented algo-
rithm by comparing the results with those from MATLAB.
In our testing, ZedBoard was connected to a computer with
MATLAB and the results were obtained by sending CU data
to the ZedBoard and reading back the computed output from
ZedBoard and comparing with MATLAB extreme value the-
ory quantile estimates.
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FIGURE 10. Estimated quantiles from the proposed method and MATLAB
GEV method.

A. EVALUATION OF THE PROPOSED ALGORITHM
In this section, the performance of the proposed algorithm
is evaluated against the GEV of MATLAB implementation.
We use MATLAB GEV for comparison since it models the
extreme values more accurately than the empirical method.
The block maxima series of CU data used for the testing has
been collected with a rate of 3 block maximum CU samples
per minute for a period of 9 hours from university’s Wi-Fi
network.Max values of CU data for the evaluation were parti-
tioned to 1 hour data blocks on which the percentile estimates
are made using the proposed algorithm and compared against
the results from theMATLAB implementation of GEV.
For a data set of 1 hour, Fig. 10 shows the quantile estimates

given by the proposed method and the GEV implementation
of MATLAB for probabilities from 0.01 to 0.99. It is clear
from the figure that throughout the probability range from
0.01 − 0.99, the estimated percentiles from the proposed
method closely follow the percentile estimates calculated
using GEV implementation of MATLAB. There are some
deviations visible which are due to the approximation errors
of histogram as compared to the exact pdf. This can be
described as an effect of finite bin width of the histogram.
Fig. 11 shows the error plot between the MATLAB GEV and
the proposed method. We can observe that throughout the
probability range, the variation of the error approximately
resides in the interval [−2, 2.5]. The mean and the standard
deviation of the error between the twomethods are -0.469 and
0.891 respectively.

To evaluate the accuracy of quantile estimation of
the proposed method, we plotted the estimated quantiles
of the proposed method against the quantiles estimated
byMATLABGEV. Fig. 12 shows the resulting correlation plot
between the two methods. We also fitted a regression model
to the data set and the respective 95% confidence interval on
the same figure. It is visible from the figure that most of the
data points fall inside the 95% confidence interval. Therefore,
with 95% of confidence, we can reason that the mean of the
future observations would fall inside the confidence interval.
This implies that the estimation performance of the proposed

FIGURE 11. Error in the quantile estimates between the proposed
method and MATLAB GEV method.

FIGURE 12. Correlation between the proposed method and MATLAB GEV
method.

method would stay almost invariant through out random sam-
ples of the data set. The correlation coefficient between the
estimated quantiles from the proposed method andMATLAB
GEV is 0.995. Assuming a significance level (denoted as α)
of 0.005, we receive a probability value (p-value) equal to
0.000 which tells us whether the correlation coefficient is
significantly different from 0. With p-value ≤ α, we can
presume that the calculated correlation coefficient is sig-
nificant. Therefore, we can conclude that the performance
of the proposed method is closely related to the original
GEV method.

To study the behavior of error in quantile estimation,
we calculated the difference between the results from the pro-
posed method and theMATLAB GEV method. Using the sta-
tistical software Minitab, we obtained the tolerance interval
plot. Tolerance interval is an important measure which gives
the range that is likely to accommodate a specified proportion
of the population. Confidence level for the tolerance interval
gives the likelihood that the interval would cover the specified
proportion. Therefore, we can use the tolerance interval for
the error to predict the future values of error with a specified
confidence level.
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FIGURE 13. Tolerance interval plot for the error between the MATLAB GEV
and the proposed method.

Fig. 13 depicts the tolerance interval plot for the calcu-
lated error between the proposed method andMATLAB GEV
method. It also shows the normality test for the error. The
calculated p-value for the normality test is lower than 0.005.
Therefore, we should reject the null hypothesis and come
to the conclusion that the error does not follow a normal
distribution. Consequently, we can use the non-parametric
tolerance interval for the error. For our specific data set,
the lower and upper bounds of the tolerance interval for the
error are given as −2.425 and 1.852 respectively. Therefore,
with a confidence level of 95%, we can expect that future
errors which would be generated from the proposed method
would fall inside this tolerance interval.

Fig. 14 shows the estimated quantiles of the proposed
method andMATLABGEV over time for a probability of 0.8.
It is clear from the figure that the proposed method closely
follows the behavior of MATLAB GEV across different sam-
ples. There are some deviations in the estimated values of
the proposed method from MATLAB GEV. But, according
to earlier observations in the behavior of the error, we know
with a confidence level of 95% that the error would reside
in the tolerance interval, [−2.425, 1.852]. Therefore, it can
be concluded that the accuracy of the results of the proposed
method is higher at a respectable level.

Despite the simplicity, our evaluation of the performance
of the proposed algorithm gives positive results. The quantile
estimates given by the proposed algorithm have very high
accuracy and have very little deviations from the estimates of
actual GEV. With the performance gain and reduced imple-
mentation complexity, small deviations from the expected
results are tolerable. Therefore, with a considerable confi-
dence, we can rely on the quantile estimates generated by the
proposed method to apply for different resource utilization
scenarios of wireless communication channels.

Our measurement results have shown that when 50th quan-
tile contains 70% or above CU, then the channel can be
considered congested as the quality of service of real time
applications like Skype Video and streaming services degrade
significantly. By forecasting a particular quantile, we can
estimate whether the channel is experiencing congestion

FIGURE 14. Quantile estimation for p = 0.8 across time for proposed
method and MATLAB GEV method.

or not. This information can be utilized by a cloud controller
in making proactive decisions on resource allocation in a
wireless network. Hence, this ensures that the required ser-
vice level of a wireless network is satisfied.

VI. CONCLUSION
Recently, it has been recognized that real-time data analytics
play an important role in achieving efficient network control,
configuration and management. Real-time radio frequency
data analytics require that hundreds of millions of stream-
ing samples to be processed within a second and there-
fore, hardware acceleration using FPGAs can be consid-
ered more appropriate. In this paper, we have proposed a
real-time quantile-based resource utilization estimator mod-
ule for wireless networks using an FPGA. The proposed
method has less complexity and can perform the data ana-
lytics in real time.

As a proof of concept, we have presented our solution with
respect to estimating quantiles of real frequencyCUdata. Due
to the bursty nature of CU data, we used the block maxima
series of CU data which can be modeled using the GEV the-
ory. The proposed method is implemented using Xilinx Zynq-
7000 series AP SoC board using Vivado, Vivado HLS and
Xilinx SDK along with MATLAB. We thoroughly evaluated
the performance and accuracy of the proposedmethod against
the results obtained from the theoretical method using GEV
theory tool inMATLAB. The comparison of the results reveals
that the proposed algorithm performs almost equal to the
theoretical implementation of GEV and the results are within
a very small margin of error. The proposed method can be
used in streaming data and can be used with high throughput
applications requiring very low latency. Therefore, the imple-
mented device can easily be used to perform quantile estima-
tion and can be utilized for forecasting congestion in wireless
frequency spectrum utilization.
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