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ABSTRACT A wide range of new ultra reliable low latency communication (URLLC) applications in
next generation (NG) wireless systems demand real-time radio frequency (RF) data analytics of channel
utilization (CU) that can help in making proactive resource allocation decisions. However, such real-time
RF data analytics require processing of tens of millions of in-phase and quadrature (IQ) samples per second
and sending huge quantities of samples to a resource allocating entity is not practical. We present design and
implementation of an RF data analytics system which utilizes field-programmable gate arrays (FPGAs) at
the network edge to process real-time streaming 1Q samples from RF transceiver. FPGAs process millions of
samples per second and output low-overhead descriptive statistics of wireless CU, such as mean CU values,
maximum CU values, and entire histograms to obtain probability distribution of CU values, to a resource
controller server where a quantile estimation based technique is used to detect congestion in CU in real-time.
The FPGA-based modules are implemented on Xilinx’s Zyng-7000 devices mounted with RF transceivers.
We evaluate the performance of the implemented analytics system using extensive measurements, testing,
and statistical analyses that are performed in both laboratory and over-the-air environments.

INDEX TERMS ARM, channel utilization, data analytics system, FPGA, histogram, measurements,

prototyping, quantile, radio frequency, wireless systems, Xilinx.

I. INTRODUCTION

Next generation (NG) wireless networks are being designed
to deliver not only very high data rates for enhanced mobile
broadband but also to provide support for a wide range of new
ultra reliable low latency communication (URLLC) applica-
tions [1]. The new URLLC applications include wireless con-
nectivity solutions for autonomous vehicles, robotics, virtual
reality (VR), and the internet of things (IoT) [2].

The creation of next generations of wireless networks that
can support a variety of new applications and technologies
will require transformation in a variety of ways. One such
way is to use cloud technology based resource controllers
that use dedicated radio frequency (RF) monitoring modules
to collect/analyze data for better resource provisioning deci-
sions [3], [4]. For example, Cisco Meraki controller utilizes
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monitoring data collected via access points (APs) each of
which are equipped with dedicated RF modules which are
used solely for data collection/processing purposes [4]. Accu-
rate monitoring of the dynamic nature of RF environment
requires real-time RF analytics. Real-time RF data analytics
is the measurement, collection, and analysis of wireless data
in real-time for purposes of understanding and optimizing
network resource usage on the fly.

The main purpose of our work is to present design and
implementation of a RF data analytics system that can process
in-phase and quadrature (IQ) samples to obtain in real-time
wireless channel utilization (CU) descriptive statistics. These
statistics can help in making proactive resource allocation
decisions at cloud technology based resource controllers.
Accurate data analytics of the dynamic nature of wireless CU
requires real-time processing of tens of millions of streaming
IQ samples per second at a single wireless AP. For example,
monitoring a single 20 MHz channel at Nyquist sampling rate
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FIGURE 1. Example of over the air measurement results. a) Five days of collected mean and max %CU (percent CU) values using
the implemented RA device; and b) Mean and max %CU values collected during high utilization test performed using Skype video,

YouTube HD, and large file download (see Section VI).

and using a 4-byte word for each sample transfer can generate
a stream of several hundred million bits per second. Sending
such huge quantities of streaming data to the cloud server for
analytics may be impractical due to high overhead incurred in
the process of sending the data, and also high latency incurred
in the process of waiting for the data to reach the cloud for
analysis and the subsequent decisions to be delivered back.
This factor becomes particularly critical for URLLC applica-
tions which require real-time responses. Moreover, even for
use cases that may not need strict real-time decisions, sending
only limited data that indicates important information relating
to the estimated performance metric of interest makes more
sense than sending large volumes of streaming samples of
data to the controller. An RF data analytics system which uses
hardware-accelerated data processing modules at the network
edge can solve the problem of latency and sample transfer
overhead. We use low-cost field-programmable gate arrays
(FPGA) to process 1Q samples to obtain CU descriptive
statistics in real-time. In our work, we call such hardware-
accelerated modules as RF analytic (RA) devices.
The main contributions of our work can be summarized as:
o« We present a low cost real-time RF analytics sys-
tem which consists of RA devices and a controller
server. Each RA device acts directly in real-time on gap-
less streaming IQ samples from RF transceiver and pro-
cesses them to output low-overhead descriptive statistics
to a resource controller server. Fast real time processing
of samples is achieved by offloading statistical signal
processing tasks to the FPGA part of the RA device.
This is different from previous works which have mostly
focused on non-real time RF analytics where IQ samples
are collected via off-the-shelf spectrum analyzers, or via
software defined radio (SDR) platforms, such as USRP
with GNU radio functions or WARP with WARPLab
functions [5], [6]. In such non real-time approaches,
the collected 1Q samples are stored in memory buffers
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and then transferred to a separate module, such as a
laptop or a PC server, for processing. This can lead to
delay in processing of samples due to slow transfer speed
between IQ data collection module and the host process-
ing them. Moreover, limitations in memory buffer size
can lead to gaps in collected data which can degrade the
performance of data analytics system.

We utilize the implemented RA devices to collect
low-overhead descriptive statistics relating to real-time
channel utilization (CU). The RA devices measure
CU and provide meaningful insights to the server by
calculating mean/maximum CU values and also his-
togram of CU values in real-time. This is different from
approaches which tend to focus solely on mean statistics
of the CU. However, mean alone cannot be a good
measure as RF data exhibits very often skewed distri-
bution. As an example, in Figs. 1a and 1b we illustrate
mean/maximum statistics of wireless channel utilization
(CU) collected over an unlicensed channel by us in the
University of Oulu. The statistics in Figs. la and 1b
were collected using our implemented RA device. It can
be seen from the figures that at times maximum CU
values alone can lead to over estimation of CU, and at
times mean CU values alone can lead to under estimation
of CU. We explain this observation further in Section VL.
We present a proactive CU congestion control method
which can utilize real-time CU statistics collected via
implemented RA devices to determine if an AP needs
more resources than allocated to it. In the presented
method, at every fixed interval ¢, the server receives
processed statistics from the RA device. As quantiles of
elements in streaming data can provide more meaning-
ful information than mean or and/or maximum values
alone, we use quantile estimation techniques on col-
lected mean CU, max CU and histogram of CU samples.
We show that a quantile estimation based technique can
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FIGURE 2. Various components of our prototyped RA device and data analytics system.

be used to design a proactive CU congestion control
method at a resource controller. The method can help the
controller to scale up resources when required based on
real-time information guided by statistical evidence. For
example, the quantile characterization of CU is used to
assess the risk of getting CU above some threshold value
that can cause degradation in channel usage quality
for various applications, e.g, degraded quality of Skype
video call.

« The RA device is realized in practical implementation by
prototyping it on a low-cost ZedBoard with AD9361 RF
transceiver attached to it. ZedBoard is equipped with
a Xilinx Zyng-7000 system on chip (SoC). We pro-
vide extensive measurement/testing results that eval-
uate the real-time performance of the implemented
device under three different setups: 1) laboratory mea-
surement/testing using a signal generator which gener-
ated pulses of different duty cycles and under varied
signal to noise ratios (SNRs). The laboratory testing
allowed us to quantify the CU measurement perfor-
mance of the prototyped RA device by testing it with
known signal pulses; 2) anechoic chamber measure-
ment/testing in which wireless signals from multiple
user devices using various video/audio/real-time appli-
cations were allowed to propagate inside the room; and
3) measurements/testing in a real wireless network in
which we collected data for two weeks using three
ZedBoards on each of which RA device algorithms were
prototyped.

In Fig. 2, we illustrate the RF analytics system presented in
this paper. It shows the following components of the imple-
mented RA device: 1) An AD9361 RF frontend attached to
the RA device for streaming reception of 1Q samples from
multiple active APs; 2) Various FPGA accelerated modules,
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such as noise floor estimation, signal detection, and CU state
calculations; 3) Embedded processor modules, such as sam-
ple transfer via direct memory access (DMA) from FPGA,
mean CU, maximum CU, and CU histogram computations;
and 4) a communication module between the RA device and
the server for streaming transfer of processed CU samples.
The figure also shows a server where a high quantile esti-
mation based technique on collected CU descriptive statistics
samples is used to design a proactive CU congestion control
method at the server.

It is important to note that our proposed solution is not
only more efficient but also less costly than approaches used
in other research works which use commercial measure-
ment devices, such as spectrum/signal analyzers or software
defined radio (SDR) boards, to collect IQ samples and then
use a host computer for their processing. An advanced spec-
trum/signal analyzer in general costs tens of thousands of
dollars. An SDR board like WARP and USRP can cost from
a few thousand to several thousand dollars. Our solution is
less costly because the total cost of a system on chip SoC
device with an RF module that can be used for prototyping
our algorithms is less than a thousand dollars. Moreover, this
cost can be reduced considerably further by FPGA-to-ASIC
conversion and mass production.

The rest of the paper is organized as follows: In Section II,
we present an overview of the related literature. We then
provide a background on collected descriptive statistics
and quantile estimation framework in Section III. Then in
Section IV, design and architecture of the implemented RA
device is presented. Validation of the device through mea-
surements and tests is presented in Section V. In Section VI,
we provide results in terms of quantile estimates of over-the-
air (OTA) collected samples. Before concluding our work,
in Section VII, we present a quantile estimation based method

4385



IEEE Access

Z. Khan, J. J. Lehtomé&ki: FPGA-Assisted Real-Time RF Wireless Data Analytics System: Design, Implementation, and Statistical Analyses

that can help proactive CU congestion control at a resource
controller.

Il. RELATED LITERATURE

The importance of data driven solutions for 5G and beyond
wireless systems has been recognized in several recent
research works [7]-[9]. To incorporate data analytics func-
tionality, 3rd Generation Partnership Project (3GPP) has
taken a first step in this direction by introducing a network
data analytics function (NWDAF) [10]. Advances in soft-
ware/hardware technologies and internet of things (IoTs)
allow wireless systems to collect in real-time various types
of data sets from user equipments and also from wireless
network elements. For example, the work in [7] provides
an intelligent information forwarder solution for healthcare
related big data systems using distributed wearable sensors.
Moreover, use of dedicated sensors that act as RA devices for
fifth generation (5G) wireless systems have been proposed
in [11], [12].

To exploit useful information from analytics for a network
control, configuration and management, dedicated RF mea-
surement/data collection modules are deployed by wireless
industry. The information from these dedicated modules are
given to virtualized cloud-based resource controllers for effi-
cient resource allocation. For example, Cisco System’s Mer-
aki Cloud Controller (MCC) utilizes dedicated radio module
called Air Marshal in each Meraki AP [4]. The dedicated
module monitors radio environment of the network. However,
unlike our work, MCC collects only average CU values.

An overview for the adoption of data analytics capabili-
ties as part of a ‘‘next-generation” architecture is provided
in [13]. The work in [14] explores various means of inte-
grating big data analytics with network optimization towards
the objective of improving users quality of experience. Use
of measurement capable devices (MCDs) and data analytics
for 5G networks have been proposed in [11]. The works
in [15], [16] have focused on exploiting the RF analytics
using processor based modules. However, all these works
perform analytics by processing off-line (stored) wireless net-
work data. Different from these works, our solution enables
an agile resource controller to exploit analytics that is derived
from the knowledge of real-time gapless streaming data.

SoCs with hardware/software programmability have
attracted strong interest in performing analytics and design-
ing modules that can provide intelligence in the edge
devices [12], [17]-[19]. Offloading real-time measurements
and signal processing tasks relating to RF analytics on FPGA
part of the SoC offers a fast flexible programmable hardware
solution. Moreover, an FPGA can perform multiple process-
ing tasks in parallel and it can also act and react in real-time
on large volumes of IQ data samples. In [20], FPGAs are
utilized for the implementation of an enhanced WLAN Secu-
rity System targeting multimedia applications. An FPGA
prototype of reconfigurable architecture of universal filtered
multicarrier transmitter for 5SG wireless systems is presented
in [21]. The authors in [22] have highlighted the benefits
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of using SoC devices for real-time RF analytics, and they
have also presented an FPGA implementation design for a
deep learning algorithm. The authors in [23] have presented
a hardware design for a spectrum sensor for next generation
LTE-A wireless networks.

Ill. BACKGROUND TO CU, DESCRIPTIVE STATISTICS,
AND QUANTILE ESTIMATION

A. CU AND DESCRIPTIVE STATISTICS

CU indicates how much any transmissions the RA device can
“hear”” on a channel, from all sources. Typically, this statistic
is often given in a percentage between 0% to 100% and
indicates the amount of time the RA device finds the channel
busy. It includes all types of transmissions from all APs,
and their clients. For the channels which are shared among
multiple wireless technologies it will also include any other
technology devices using the same channel.

To measure the CU, the RA device directly processes
1Q samples on the FPGA in real-time (with processing speed
of several million samples per second). To accurately detect
signals in real-time, it is important to estimate noise level and
set the detection threshold value appropriately. The threshold
setting separates desired signal level versus unwanted noise
level. When received /> 4+ Q” value exceeds a pre-defined
threshold then signal is declared to be present, otherwise, it is
declared to be absent. The streaming signal detection outputs
are processed sample-by-sample on FPGA using busy/free
state counters which are implemented with a two-state finite
state machine (FSM). The CU value in a time interval ¢ is:

~ Lr+Lo

where Lr represents the number of samples in time instant ¢
in which signal is declared to be present, Lo represents the
number of samples in time instant ¢ in which signal is declared
to be absent, and Lr + Lo is the total number of samples in
time instant #. Note that depending on the channel bandwidth,
sampling rate, etc., the number of samples in time instant ¢
may vary from several hundred thousands to a few million.
A block diagram showing high level architecture of imple-
mented CU statistics processing modules is given in Fig. 3.

Every short interval of n time units called sample
block contains a sequence of CU observations A; =
{ag, ag, ..... , o} from an unknown distribution function F'.
Let M; = max.A; denote the maximum value of the observa-
tions, and m; = mean.A; denote the mean of the observations.
The CU sample distribution can vary highly over time and it
is often highly skewed. Hence, to understand behavior when
CU gets closer to congestion, it may not be enough to utilize
information from only mean CU sample values. In Section V,
where we present our detailed RF data analytics results, we
show how measuring only mean and/or max CU can be
misleading in terms of handling congestion in CU. To address
this problem, we also track frequency distribution of
CU values in real-time by constructing histograms of mea-
sured CU values.

ey
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FIGURE 3. a) High level design of the implemented CU statistics processing chain; b) Circuit diagram for the noise floor estimator and the signal detection

threshold calculator modules shown in the high level design.

For the short interval of n time units, a histogram H; of CU
observations is given by

Hl' = {(Ilsnl)9(1277[2)’ ,(Ib,ﬂb)} (2)

where I, I, - - - , I, are partitioning of CU into b contiguous
intervals also known as bins. Each bin is defined as I; =
[L i I;) with L j as the minimum value and /; as the maximum
value. When a sample of CU is within some bin /; then
the counter for that bin is incremented by one or else it
remains the same. The count values for b bins are given by
my, o, - - -, Mp. The histogram is based on all CU samples
in a block. Approximate CU values from a histogram can
be recalculated by having a sufficiently large number of
bins. The mean and max values are based on mean CU and
maximum CU for each block so they carry in principle less
information than the histogram.

B. QUANTILES OF CU STATISTICS
Every time interval of duration ;, we compute quantiles
of the elements in block mean, block maximum, and block
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CU sample vectors. Fig. 4 presents an illustrative example
of continuously collected samples and samples within dura-
tion /;. Quantiles of the sample elements in the interval I;
can be explained as follows. One can arrange the N num-
ber of sample observations in the interval I; represented as
X1, X3, .... Xy to get the order statistics X(1) < X2) <, ..... , <
Xv). Quantiles are order statistics and we can now define
g-quantile as

Definition 1: The g-quantile of ordered sample observa-
tions in the interval I} is a number z such that gN elements of
ordered sample observations are less than or equal to z and
the remaining (1 — q)N are greater than z.

C. QUANTILE ESTIMATES OF BLOCK MEAN SAMPLES

When we are interested in studying a series of block mean
CU samples in the interval I; then it is usual practice
to approximate the distribution of samples by the normal
distribution. This is due to the well known Central Limit
Theorem which states that no matter what the shape of the
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population distribution is, the sampling distribution of the
sample means approaches a normal distribution as the sample
size gets larger. This fact holds especially true for sample
sizes 30 or above. The normal cumulative distribution func-
tion (cdf) of sample means can be given as

)] o

where u and ¢ > 0 are fixed parameters that represent
expectation and standard deviation, and p is the probability
that a single observation from a normal distribution with
parameters w1 and o falls in the interval (—oo, x]. Quantile
estimates of the mean distribution can be obtained by invert-
ing (3) and its closed-form expression is given as

p=Fk)=

G =x=p+ov2erf '2p—1),pe 1) 4)
so that F(¢g*) = p

D. QUANTILE ESTIMATOR OF BLOCK MAXIMA

When a series of block maxima samples are studied then
the extremal type theorem has shown that the generalized
extreme value (GEV) distributions may approximate the dis-
tribution of sample maxima [24]. The three important fam-
ilies of the GEVs can be combined into a single family of

models having cdf
- —1/8
exp {1+é;‘ ( )} ,  with&#£0
o
p=G6=

|
exp {— exp 4— P )

where 1, 0, and & are location, scale, and tail shape parame-
ters, respectively, and p is the probability that a single obser-
vation from the distribution with parameters i, o, and & falls
in the interval (—oo, x]. By inverting (5), quantile estimates
of the max sample distribution for & # 0 can be given as [24]

with £ =0
)

* -

g =x=ji+— |{~logp)}* -1} (6)

VT‘r‘lQl

so that G(¢g*) = p
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E. QUANTILE ESTIMATOR OF VALUES OVER THRESHOLD
Using only block mean and/or block maxima CU samples is
not enough for CU analysis. The use of hardware accelerated
data collection modules allow the possibility of obtaining
large number of streaming samples. This means that we can
look at beyond mean and max CU values. We use another
extreme value analysis that is more efficient as it views all
those observations as extreme observations that surpass a
defined threshold level 7. Hence, now we are interested in
all excess CU values over the threshold t. To achieve this the
observations in collected histograms during the interval /; are
utilized to study extreme values that exceed T. We can write
the empirical cumulative distributive function (ecdf) of the
excess CU values above ©

Fra)=Pla—t<a|la>r1}
_Fla+o-F@) @)

1—F(7)

for 0 < a < ay — 7. The finite right endpoint of the
distribution F is denoted by ay. F;(a) is thus the probability
that a CU sample exceeds the threshold 7 by no more than an
amount a, given that the threshold is exceeded. Generalized
Pareto (GP) distribution may approximate the distribution of
sample values exceeding the threshold t [24]. The cdf can be
written as

N
) 1—<L+g<”v“>> . with £ £0
p=Gl)= e ®
1— ﬁﬂ—( U“)L with £ =0

where ji, &, and & are location, scale, and shape parameters,
respectively, p is the probability that a single observation
from the distribution with parameters (i, &, and & falls in the
interval (—oo, x]. By inverting (8), quantile estimates of the
sample distribution for & # 0 can be given as [24]

q'=x=[+_

EM—m*—u )

so that G(¢*) = p

IV. RF ANALYTICS SYSTEM AND IMPLEMENTED

RA DEVICE DESIGN

RF IQ data acquisition in a wireless system with MHz
channel bandwidths can produce several millions of samples
per second. Signal detection, channel utilization and descrip-
tive statistics modules implemented on a device close to the
network edge reduces overhead as transfer of several million
raw 1Q samples is no longer required. It also increases mea-
surement speed, accuracy, and performance. For example,
as gaps in IQ data acquisition can have adverse effect on valid
inference in real-time CU analysis, hardware acceleration
of signal processing modules allows gapless acquisition and
processing of streaming raw samples in parallel. Gapless
streaming also provides increase in the number of descriptive
statistics samples that can be used to estimate quantiles.
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A. TOOLS FOR HDL DESIGN OF THE RA DEVICE

The RA device solution presented in this work is imple-
mented on a low-cost Zedboard which adopt’s SoC tech-
nology based on Xilinx’s Zynq architecture [25]. Zedboard
provides in the same chip a multi-core ARM processor tightly
coupled to an FPGA. Moreover, it also allows to connect
to it with an agile RF transceiver via its FPGA Mezzanine
Card (FMC) connector. We have used AD9361 which is a
high performance, highly integrated agile RF transceiver. The
data processing modules which output various CU related
statistics are implemented by incorporating new IP cores
in the programmable logic part of the FMCOMMS?2 HDL
reference design of Analog Devices [26], and also by mod-
ifying their No-OS software for the processor unit. For the
FPGA part, the processing modules in the form of IP cores
are developed and incorporated in the reference design by
using three different tools: 1) Vivado which is a software pro-
duced by Xilinx for synthesis and analysis of HDL designs;
2) Xilinx system generator (XSG) for digital signal process-
ing (DSP) which can be used to design, test and implement
high-performance DSP algorithms on Xilinx FPGA devices.
XSG allows to package the implemented DSP design as an
IP core that can be added to the Vivado IP catalog for use
in another HDL design. Another advantage of using XSG is
that it provides the possibility of simulation even before the
compilation of the model; and 3) Vivado high level synthesis
(HLS) which enables processing modules written in C/C++
code to be targeted into Xilinx devices without the need to
manually create register-transfer level (RTL) design. This
greatly reduces the implementation time. For the embedded
processor, the C programming software is created using the
Xilinx’s Software Development Kit.

B. MAIN HARDWARE/SOFTWARE COMPONENTS

OF THE RA DEVICE

Fig. 5 shows high level data flow between various IP cores of
our implemented RA device on Zyng-7000 based Zedboard
with AD9361 RF transceiver. The figure also includes the
IP cores of the original FMCOMMS?2 reference design [26].
It can be seen from the figure that the AXI AD9361 IP core
interfaces to the RF transceiver device. The main function
of this core is to handle all the low level signaling, which is
defined by the device’s digital data interface, and to forward
the received IQ data to a more simple first in, first out (FIFO)
interface. Our implemented IP cores take streaming IQ sam-
ples and perform CU related processing. As shown in Fig. 5,
the ADC PACK core collects samples from our implemented
IP cores and passes them to the DMA core. The DMA core
writes CU data to the main memory.

The use of an FPGA and an embedded processing unit
to obtain various CU related statistics allows partitioning of
time critical signal processing tasks to be done on FPGA,
letting the processor do less critical processing. In Fig. 3,
we illustrate this partitioning of tasks between the FPGA
and the embedded processor. Various hardware modules
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FIGURE 5. CU statistics processing chain (including IP cores from the
FMCOMMS?2 reference design [26]) showing data flow among IP cores.

implemented on the FPGA of Zedboard are explained in the
next subsections.

1) ADAPTIVE NOISE FLOOR ESTIMATOR AND DETECTION
THRESHOLD CALCULATOR

To measure CU on a channel in real-time, it is important
to distinguish between desired wireless signals present in
the channel and unwanted noise. To achieve this typically
requires estimation of noise level, and setting an appropriate
signal detection threshold value. Our implemented adaptive
noise floor estimation (NFE) module operates in real-time
directly on the streaming samples which are an unknown
combination of signal samples and noise samples (see Fig. 3b
for the design details). The NFE module is based on statisti-
cal extreme value theory. The module exploits the wireless
signal samples property that mostly they are not randomly
distributed among all the received samples but are clustered
together, for example in the form of a data packet. Also,
samples corresponding to the noise only represent that no
wireless transmissions are present and they are clustered
together in time domain. We use minimum operation to find
the energy detector output with noise-only samples, and use
it to estimate noise floor. As noise floor can change with time,
this is taken into account by updating the estimated noise floor
value after every fixed interval of time. We implement this in
the hardware by using a counter. When the counter reaches
the value representing fixed interval the comparator circuit
is triggered and the estimated noise floor value is updated.
The estimated noise floor is used to calculate/update the
detection threshold 7; which is typically a value y dB above
the estimated noise floor level. The threshold setting separates
desired signal level versus unwanted noise level. Typically,
the value y is selected after lab testing the RF transceiver with
signals of various signal-to-noise ratios (SNRs).

2) CU BUSY/FREE STATE AND ITS DWELL TIME CALCULATOR
The high speed and parallel-processing capabilities of an
FPGA in Zedboards allows us to use CU state calculator
module in parallel with NFE/detection modules. The sample
level CU state can be either busy (meaning desired wireless
signal is declared to be present) or free (meaning desired
wireless signal is declared to be absent) state. When the

4389



IEEE Access

Z. Khan, J. J. Lehtomé&ki: FPGA-Assisted Real-Time RF Wireless Data Analytics System: Design, Implementation, and Statistical Analyses

I?+Q? value exceeds the detection threshold 7, then wireless
signal is declared to be present, otherwise, it is declared to
be absent. A comparator is used to compare the streaming
I? + Q7 samples against 74. It compares them and gives as
output either 1 (signal present) or 0 (signal absent) values.
The streaming output of the comparator is given as input
to the channel state dwell time calculator IP core. The pseu-
docode of its implementation on FPGA using Vivado HLS
is given in Fig. 3. The IP core has two outputs: i) length of
occupied (busy) state; and ii) length of free (vacant) state. For
the first output, when the channel is observed busy it starts
calculating for how long (in terms of number of samples) the
channel remains in the busy state. It outputs the length of busy
state (denoted as /r) when the state changes from the busy to
vacant. For the second output, when the channel is observed
vacant it starts calculating for how long the channel remains
in the vacant state. It outputs the length of vacant state [,
when the state changes from vacant to busy. Following (1),
the streaming outputs of lengths of vacant/busy channel state
can be used to calculate CU within some time interval as

Lk 2j—1lr
Lr+Lo Y joilrj+ 2k lok
where n and m are the number of busy/vacant periods,
respectively.
Various software modules implemented on the embedded

processing system of the Zedboard are explained in the next
subsections.

(10)

(043

3) DMA CONFIGURATION USING INTERRUPTS FOR DATA
TRANSFER

Fast streaming channel state samples are required to be
moved to the Zynq embedded (processor system) PS where
the samples are further processed to calculate descriptive
statistics in real-time, such as mean, maximum and CU his-
togram values. The challenge in this case is the efficient
delivery of samples from the FPGA of Zynq to the main
memory of the system without the intervention of the PS
so that the computational power of the PS can be used
for the fast real time processing of samples. To achieve
this we have used AXI DMA configuration with interrupts.
DMA allows direct access to the main memory and is used
here to quickly transfer data between the memory and the
FPGA without the intervention of the PS. Note that without
DMA with interrupts typically data transfers which involve
the PS can incur a lot of overhead during each transfer which
can slow down the system and can lead to gaps in the collected
streaming samples.

The transfer flow involves FPGA using the DMA con-
troller (DMAC) to write to the memory and the PS reads
from the memory for further processing. The implemented
interrupt-based control of the AXI DMA controller allows
the PS to initiate the transfer only, then it does processing
of samples while the transfer is in progress, and it finally
receives an interrupt from the DMAC when the submitted
transfer is completed. As the FPGA sends streaming channel
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TABLE 1. Resource utilization of the prototyped RA device.

Resource Utilization Available Utilization
%

LUT 11601 53200 21.81

LUTRAM 694 17400 3.99

FF 20697 106400 19.45

BRAM 6.50 140 4.64

DSP 69 220 31.36

10 124 200 62

Power
] Dynamic: 2.789W (93%

[5% ]

5% | [Clocks: 0.143W
3% 2

B [signals:  0.143W
5%

- [ Logic: 0.083W

BRAM:  0.023W
17%
93% I DsP: 0.151W

EMMCM:  0.220W
Or1fo: 0.484W
W PS7: L592W (55%;

[ static: 0.200 W

7% | 100% | [PLStatic:  0.200W (100°

Summary | On-Chip

FIGURE 6. Power consumption of the prototyped RA device.

state samples in real time, the DMAC will almost continu-
ously write to the main memory. For the DMAC to write and
the PS to read without any collisions, ping pong buffers based
scheme is utilized.

4) PING PONG BUFFERS BASED PROCESSING

Our implementation of ping pong buffers can be explained
as follows. We divide part of the main memory into two
buffers which we name as ping pong buffers. The DMAC
writes to only the parts of the memory allocated to the two
buffers. When the DMAC writes to the ping buffer part the
PS processes samples written to the pong buffer, and when
the DMAC writes to the pong buffer the PS processes samples
written to the ping buffer. The PS keeps moving between the
two buffers and performs stream processing of the CU sam-
ples. Fig. 5 shows the use of ping pong buffers.

5) BLOCK MEAN, MAX, AND HISTOGRAM CALCULATION
The PS obtains block mean m; and block maximum M; CU
values from the streaming CU samples by simply calculating
mean and maximum of values for every n samples, where n
is the block size that should be sufficiently large. It also con-
structs an entire histogram #; (see (2)) for every n samples.

V. VALIDATION OF THE PROPOSED DEVICE THROUGH
MEASUREMENTS AND TESTS

In Table 1, we show the resource utilization of the imple-
mented design on FPGA. It can be seen from Table 1 that
most resource utilization occurs in terms of lookup tables
(LUTs), digital signal processing (DSP) blocks, flip-flops
(FFs) and input/output (I0) blocks. In Fig. 6, we show power
consumption of the implemented design. It can be seen from
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FIGURE 7. Measurement/testing results of the RA device using signal generator under various scenarios.

the figure that out of a total power consumption of 2.9 watts
55% is consumed by the embedded processor (PS7) block.

Before the implemented SoC-based RA device is
deployed, it is also important to evaluate its measurement
performance under various controlled laboratory testing sce-
narios. In our work, we evaluate the measurement perfor-
mance of the implemented device under different scenarios:
1) Testing with various signals using a signal generator
connected via wire to the antenna connector of the RF front
end of the device; and 2) OTA testing with various signals
using a signal generator connected with an antenna and the
device RF front end also connected with an antenna. In all
the testing setups, the Zedboard board with RF front end was
connected to a laptop computer via UART serial port. The
results outputs on the laptop computer were generated using
the MATLAB software.

A. TESTING WITH WIRED SIGNAL GENERATOR

In our measurements/testing laboratory, we tested the sig-
nal detection performance of the implemented device with
2.4 GHz pulse signals of various duty cycles (the fraction
of one period in which signal is ON) and various absolute
power levels. For example, the device is tested with very short
signals having duty cycle of only 2%. In wireless networks
such short pulse signals can be beacon signals which are used
for transmitting critical information about the network. The
device is also tested with pulses having 50% and more than
50% duty cycles. In wireless networks, such medium to high
duty cycle pulse signals can represent high utilization of chan-
nel by multiple users. We varied the signal power levels from
—90dBm to —75dBm. The signals were generated using an
Agilent E4438C vector signal generator which was connected
via wire to the antenna connector of the Zedboard board’s
RF front end running the implemented algorithms. The result
outputs of the tests were recorded on a laptop computer via
serial port connection between the Zedboard and the laptop.
The signal generator was used to repetitively generate a group
of streaming pulse signals in real-time. In Fig. 7(a), our device
testing results show that even at —85dBm the implemented
device can detect streaming signal pulses accurately. Fig. 7(a)
shows results for pulse with 50% duty cycle.
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B. SIGNAL GENERATOR TESTING WITH ANTENNA
ATTACHED

We also performed OTA testing using the signal generator
in our laboratory. The signal detection was tested with pulse
signals of various duty cycles and various absolute power
levels. The signals were transmitted using antenna connected
to signal generator and were received at Zedboard board also
connected with an antenna. In Fig. 7(b), we present example
results of OTA device testing showing that even at —30dBm
the implemented device can detect streaming OTA signal
pulses accurately. Streaming pulses with 50% duty cycle are
used in the results of Fig. 7(b). The accuracy results relating
to measuring the duty cycle for short (2% duty cycle, test
case 1), medium (50% duty cycle, test case 2), and high
(72% duty cycle, test case 3) pulses for both OTA and wired
signal generator transmissions are presented in Fig. 7(c).
It can be seen from the figure that under both OTA and wired
scenarios the implemented device measured the duty cycle
correctly.

VI. OTA DATA COLLECTION, AND QUANTILES
A. DATA COLLECTION IN AN ANACHOIC CHAMBER
We use the implemented device to calculate real-time descrip-
tive statistics of OTA wireless transmissions so that we have
some idea what the OTA data looks like and how spread out
it is in terms of block mean CU values, block max CU values,
and CU values in block histograms. The implemented device
was first used in the anechoic chamber of the University
of Oulu where also a WiFi access point was deployed for
measurement purposes. An anechoic chamber is a room that
almost completely blocks outside RF signals. This allowed
RF signals from only one WiFi access point to propagate
inside the room. In the same room, one HP laptop and two
smart phones were connected to the access point using WiFi.
To see how OTA CU data behaves we ran on the
devices applications like high definition (HD) YouTube
(YT) which is an example of streaming application, Skype
audio (SA), Skype Video (SV) which are examples of real-
time applications, Skype video plus YouTube (real-time and
streaming applications), and downloading large file (DF).
In Figs. 8a, 8b and 8c, we show quantiles for the block mean
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FIGURE 8. Anachoic chamber results for various applications showing quantiles for the cumulative probabilities p in the interval (0,1].

CU samples, block max CU samples, and CU samples from
histograms, respectively. The three figures show quantiles for
20 evenly spaced cumulative probabilities from 0.05 to 1.
The results in the three figures tell us that both block mean
and block max sample data can be sometimes misleading.
For example, block mean CU samples data for a streaming
application like HD YouTube videos shows that the quantile
for 0.8 probability is 15% or less, block max CU sample data
shows that the quantile for 0.8 probability is 70% or less, and
the block CU sample data shows that the quantile for 0.8 prob-
ability is only 3% or less. This means that if only block max
sample data is used for CU analysis then one can be mislead to
believe that the channel is highly utilized. However, in reality
channel is mostly not used as shown by the quantile of block
CU sample data. On the other hand, block mean CU sample
data for the same streaming applications also show that quan-
tile for 1 probability is 30% or less. However, both block max
CU sample and block CU sample data shows that the quantile
for the same probability is 88% or less. This means that if only
block mean sample data is used for CU analysis then one can
be mislead to believe that the channel is lightly utilized all the
time. However, in reality although channel is mostly not used
but when it is used it is utilized very highly. Moreover, for the
streaming application case, quantiles in the three figures tell
us that up to 0.8 probability, mean CU data is close to CU data
and between 0.8 to 1 probabilities it is max CU data which is
closer to CU data.

Our results in the three figures show that use of streaming
application alone or its use with other applications (such as
YouTube plus Skype) can lead to greater differences among
mean CU, max CU and CU values for the same medium
and/or high quantiles. However, interestingly this difference
is significantly reduced for real-time applications. For exam-
ple, the three figures show that for real-time applications
(such as Skype audio plus video) the quantile for 0.8 prob-
ability values are 20% or less for the block mean, 25% or less
for the block max and 21% for the block CU.

Overall, the results show that for high CU estimation mean
CU measurements alone can be misleading because of uneven
spread in CU values, and maximum measurements alone
can be misleading when CU traffic is low but bursty. The
CU samples obtained from collected histograms provide
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better accuracy in terms of distribution of values and hence
can be more useful for estimation of high CU.

B. OTA HIGH CU MEASUREMENTS

We also performed a high CU stress test in which three
laptops and four smart phones were used. The purpose of
the test was to increase the number of simultaneous high CU
applications (such as Skype video, HD YouTube, and File
Download) on multiple devices to a point where application
performance is degraded. This test allowed us to evaluate
how the CU statistics behave under congested utilisation of a
channel. The laptops and smart phones were connected using
a 2.4 GHz channel to a WiFi AP. The implemented device
was set to collect statistics in the same channel. A standard
speed test software showed that the WiFi link had 54 Mbps
upload/download speeds. The stress test measurements were
performed for 40 minutes. In the first 30 minutes no degra-
dation in performance was observed when all 7 devices were
using skype video call session and three laptops were also
running HD YouTube vidoes in parallel. In the last 10 min-
utes, when one laptop computer also started downloading a
large file this started some degradation in the Skype video
quality. In Figs. 9a, 9b and 9c, we present results that quantify
CU behavior across various quantiles. In the three figures,
we show quantiles of the block mean CU samples, block
max CU samples, and block CU samples obtained from
the histogram, respectively. The quantiles are computed for
collected samples during every [; = 10 minutes of time
duration. Duration 1 samples show quantiles for the first ten
minutes of the stress test, Duration 2 samples show quantiles
for the second ten minutes of the stress test, and so on.
It can be seen from the two figures Fig. 9a and Fig. 9c that
up to the quantile for 0.9 probability, the mean CU values
estimate accurately the CU, however, between the quantile
for 0.9 probability and the quantile for 1 probability the mean
CU values underestimate the CU. On the other hand, Fig. 9b
and Fig. 9c show that until the quantile for 0.9 probability
the max values can overestimate the CU, however, between
the quantile for 0.9 probability and the quantile for 1 prob-
ability the max values estimate more accurately the CU as
compared to the mean values. For the Duration 4, i.e., the last
10 minutes of the stress test in which service quality degraded
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FIGURE 9. High CU measurement results showing quantiles for the cumulative probabilities p in the interval (0,1].

(as discussed earlier), we can see from Fig. 9c that even the
quantile for 0.4 probability can be as high as 62% CU.

VII. QUANTILE BASED CONGESTION DETECTION

Our experiments presented in the previous sections allowed
us to collect and analyse CU data under various scenarios.
By understanding how CU behaves under various real/non-
real time applications and different network conditions, we
next present a quantile estimation based CU congestion detec-
tion method. The method utilizes the CU data from the
implemented RA device. By detecting the signs of congestion
in CU, a resource controller can avoid the wireless users
being effected by it by adapting its resource allocation among
multiple APs.

A. COLLECTED DATA AND VALIDITY OF DISTRIBUTION
MODELS

Before we present the CU congestion detection method, it is
important to present results which verify that quantiles of CU
data of a real wireless network can be estimated well by using
the statistical distribution models introduced in Section III.
To achieve this, the implemented RA device was used to
collect the OTA CU descriptive statistics over a period of two
weeks in one of the busiest part of the University of Oulu.
The device collected mean CU, maximum CU and CU values
from histograms in a 2.4GHz WLAN channel where three
APs were operating. The RA device was configured to output
every 20 seconds a block mean, a block max value, and a
CU histogram. Fig. 1 shows collected block mean and block
maximum CU data values in percentage for six days. It can be
seen from the figure that there is a daily pattern for weekdays
(Feb 19-22) where there is high CU from 8am till 6 pm and
there is less traffic usage in other times during the same week
days. In general, there is less traffic utilization for all the times
in weekend (Feb 17-18). The collected data was used to verify
that its block mean CU values are well-modeled by a normal
distribution, its block max CU values are well-modeled by a
GEV distribution, and its CU values over threshold are well
modeled by a GP distribution. In Fig. 10, we compare proba-
bility distribution functions (pdfs) approximated by sample
histograms with theoretical pdfs. Fig. 10a, 10b and 10c,
show the obtained histograms for the block mean, block max,
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and values over threshold data, respectively. The figures also
show the overlay of the normal, GEV and GP distribution
functions, respectively, computed for the same data from
MATLAB. It can be seen from Figs. 10a and 10b that the nor-
malized mean and max sample data histograms approximate
the normal and GEV distributions, respectively, even when a
small number of 10 x 3 = 30 samples are used. However,
Fig. 10c shows that the normalized histogram approximates
the GP distribution much better. This is due to the reason
that the sample values over threshold histogram in Fig. 10c
is constructed from a larger number of CU samples obtained
from 10 x 3 = 30 CU histograms (with each histogram based
on large number of samples). In the figures, as the area of
pdf is summing to one so that the normalized histogram’s
integral over the range is 1. We have chosen in the figure bin
width = 5. So sum of values of bars needs to be multiplied
by 5 to get sum of the values of bars equal to 1. This scal-
ing is necessary to be able to compare theoretical pdf with
histogram.

To provide a comparison, we have considered WARPLab
framework of WARP which is a widely used SDR plat-
form [5]. It has been widely used by research works (see [6])
to obtain various wireless network statistics, such as RSSI
and CSI values. In WARPLab, on the FPGA part a base-
band module buffers incoming IQ samples from an attached
radio interface. The buffered samples are then transferred
to the host computer via Ethernet, or USB communication
interface where the IQ samples can be processed to obtain
CU statistics. However, using buffers to store, transfer and
then process on a host computer leads to large gaps in the
collected samples. The size of these gaps depend on the
limited size of buffer and also on the interface used between
SDR and the computer for transferring the samples.

In Figs. 10 and 11, we compare the performance in terms
of obtained data quality via WARP SDR platform with our
implemented solution. As discussed in details in the previous
paragraphs, Figs. 10a, 10b, and 10c show that the CU sta-
tistical data sets obtained via our implemented solution are
well-modeled by theoretical distributions. For the same time
duration, however, Figs. 11a, 11b, and 11c show that the CU
statistical data collected using the WARP cannot be modeled
by the distribution models. This is due to the presence of
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gaps in the collected IQ data via WARP which leads to lower
data quality. This means that due to the lower data quality
obtained via WARP, the quantiles of CU data of a wireless
network cannot be estimated well by using the statistical
distribution models. Hence, unlike our implemented solution,
typical SDR-based approaches cannot be utilized for reliable
real time RF data analytics.

In Figs. 12a, and 12b, we present absolute difference val-
ues between quantiles estimated using sample data ¢} and
quantiles estimated using closed form expressions ¢; given in
Section III, (see (4), and (6)). The results show that the mean
absolute difference |g; — ¢| is less than 4 for block mean
data and it is no more than 5 for block max data. Moreover,
as expected, the maximum absolute difference results show
that for higher values there can be more difference between
estimates obtained via sample quantiles and the closed form
expressions. This is a well known statistical feature due to
the reason that sample data can be sparser at the higher end
of the distribution, so modelling extreme quantiles will have
lower associated precision. However, the quantile estimates
obtained via closed form equations can be used to provide
more precise estimates than the sample data quantiles.

B. PROPOSED METHOD

The crux of the proposed method is to use the CU val-
ues obtained from the most recent |7{| histograms sent by
the RA device. First, the median quantile estimate g} of
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the CU data values is calculated and compared against a pre-
defined threshold CU value ¢;. Second, when ¢¥ > «; then
the values over threshold technique (presented in Section III)
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is used to estimate high quantile g; of CU data. If the
estimated high quantile gj; exceeds certain predefined high
CU value o/ then the resource allocation optimization should
be triggered. Steps involved in the method are presented
in Algorithm 1.

Algorithm 1 Quantile Estimation Based Congestion
Detection
Initialize: Threshold quantile g, high quantile g7, thresh-
old CU value «;, and high CU a,h
Input: H = {H1, Ha,---, Hy} histograms collected in
time duration [
Obtain CU value samples {x1, x2, - - - } from collected ||
histograms.
if ¢ < o, then
Go to Input
else
Fit the GP distribution to the CU samples that exceed the
o, and estimate parameters & and fi.
Estimate the high quantile g}, using (9)
if ¢ > ol then
Channel likely to be under congestion
Optimize resource allocation
Go to Input
else
Channel likely not under congestion
Go to Input
end if
end if

We observe from our extensive measurements (see for
example results in Fig. 9c) that the value of median quantile
to be 50 percent or more is a first good indicator of very
high CU. Hence, we suggest to use these values, i.e., median
quantile and oy = 50, as a trigger to initiate the value over
threshold technique to estimate high quantile g;. From our
measurements with real applications, such as Skype video,
YouTube HD, and large file downloads, we also observe that
when the high quantile, such as 0.7 quantile, is greater than
65 then the likelihood of CU getting congested increases and
the resource controller should optimize its allocation to avoid
this. Note that the suggested use of 0.7 quantile and ozth =65
are just an example. In our work, we set the time duration
I; = 10 minutes. This allowed us to use large number of CU
samples from 10 x 3 = 30 histograms for the quantiles shown
in Fig. 9c. In general, the choice of /; and also the choice of a
high quantile to perform optimization in resource allocation
is a design parameter.

VIIl. CONCLUDING REMARKS

We present design and implementation of a radio frequency
(RF) analytics system which enables collection/processing of
radio environment statistics in real-time. The analytics system
consists of hardware accelerated data collection/processing
modules and a resource controller server. The hardware accel-
erated modules are implemented on ZedBoards which are
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system on chip (SoC) devices, where each device is equipped
with a Xilinx Zynq-7000 Field Programmable Gate Array
(FPGA) and dual core embedded ARM processor. Each
device acts directly in real-time on streaming IQ samples
and processes them to obtain low-overhead descriptive statis-
tics, such as mean, maximum, and histogram of wireless
channel utilization (CU) values. The collected statistics are
sent as low-overhead data (16-bit values) to a resource con-
troller server. The resource controller uses CU statistics, their
quantile estimates, and a quantile based congestion detection
method to proactively control congestion in CU.

We provide extensive measurement results that evaluate
the real-time performance of the implemented measure-
ment/analytics algorithms on the ZedBoards under three dif-
ferent setups: 1) laboratory measurements/testing; 2) over
the air (OTA) measurements/testing in an anechoic chamber
using various video/audio/real-time applications running on
wireless devices; and 3) measurements/test in a real wireless
network in which we collected measurements data for two
weeks. Our results show that the implemented RF analytics
system can help fulfill the 5G and beyond vision of real-time
analytics driven proactive resource allocation for wireless
networks. Moreover, proactive detection of congestion point
in wireless CU can also help in ensuring better co-existence
of multiple wireless systems operating in a same spectrum
band.
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