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ABSTRACT Micro-expression recognition (MER) has attracted much attention with various practical
applications, particularly in clinical diagnosis and interrogations. In this paper, we propose a three-stream
convolutional neural network (TSCNN) to recognize MEs by learning ME-discriminative features in three
key frames of ME videos. We design a dynamic-temporal stream, static-spatial stream, and local-spatial
stream module for the TSCNN that respectively attempt to learn and integrate temporal, entire facial region,
and facial local region cues in ME videos with the goal of recognizingMEs. In addition, to allow the TSCNN
to recognize MEs without using the index values of apex frames, we design a reliable apex frame detection
algorithm. Extensive experiments are conducted with five public ME databases: CASME II, SMIC-HS,
SAMM, CAS(ME)2, and CASME. Our proposed TSCNN is shown to achieve more promising recognition
results when compared with many other methods.

INDEX TERMS Micro-expression recognition, convolutional neural networks, apex frame location, spa-
tiotemporal information.

I. INTRODUCTION
A special facial expression, a micro-expression (ME) is
a rapid facial movement that is not subject to people’s
conscious recognition and can reveal someone’s genuine
emotion [1]. Compared with typical macro-expressions, MEs
are of short duration (typically only 1/25s to 1/3s) and low
intensity (the muscle movements only emerge in small facial
regions) [2]. Due to these facts, MER is very difficult for a
human to perform, and Ekman suggests that for MER tasks,
people without training perform only slightly better than
chance on average [3]. Thus, an automatic and reliable MER
method should be developed to assist people in recognizing
MEs accurately, particularly for application in fields such as
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clinical diagnosis [4], emotional interfaces [5], and interroga-
tions [6], [7].

Recently, MER became a popular research topic, and
extensive effective approaches have been proposed to per-
form this task. Typical MER approaches have two main com-
ponents: facial feature extraction, which aims to extract useful
information from facial videos to describe ME, and ME
classification, which designs a classifier based on features
extracted in the first step for MER tasks. Designing reliable
facial features that can effectively describe the subtle changes
of MEs would improve performance when performing MER
tasks [8]. Facial feature extraction has attracted increasing
attention from researchers. Among these feature extraction
methods, local binary patterns on three orthogonal planes
(LBP-TOP) and its variant are widely applied in video-based
MER and other computer-vision tasks [9]–[11]. In addition,
it is observed by the researchers in studies [5], [12] that the
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temporal dynamics of video sequences can improve MER
performance because they can represent the motion across a
sequence of ME frames effectively. Some researchers have
employed optical flow (OF) based techniques to extract spa-
tiotemporal motion-dependent information from MEs, and
many studies [13]–[15] have demonstrated their effectiveness
for MER problems. For ME classification, various types of
classifiers are mainly based on machine learning, such as
support vector machine (SVM), relaxed K-SVD, and group
sparse learning (GSL). Specifically, Zong et al. [16] proposed
a kernelized GSL to facilitate the process of learning a set
of weights from hierarchical spatiotemporal descriptors that
can aid the selection of the important blocks from various
facial blocks. Zheng et al. [17] proposed a relaxed K-SVD
that learns a sparse dictionary to distinguish different MEs
by minimizing the variance of sparse coefficients.

In recent years, researchers have also investigated deep
learning methods to address the MER problem. For exam-
ple, Kim et al. [18] proposed a deep learning method based
on LSTM for MER tasks with spatiotemporal information
extracted by CNN. Another study that uses a similar deep
spatiotemporal structure is ELRCN [19], which uses optical
flow features for the VGG-Faces model and then passes
them on to recurrent layers. In [20], Xia et al. proposed
a spatiotemporal extension of RNNs to jointly learn from
both spatial and temporal cues of the ME samples to rec-
ognize MEs. A recent study [21] by Reddy et al. pro-
posed two 3D-CNN-based models (MicroExpSTCNN and
MicroExpFuseNet) to recognize MEs by extracting both the
spatial and temporal information simultaneously by apply-
ing a 3D convolution operation to ME videos. Zhi et al.
[22] similarly suggested 3D convolutional neural networks
(3D-CNNs) architecture for self-learning feature extraction to
represent facial MEs. Khor et al. [23] proposed a lightweight
dual-stream shallow network as a pair of truncated CNNs
with heterogeneous input features in MER tasks. Gan et al.
[24] proposed an OFF-ApexNet to recognize MEs by learn-
ing optical flow features from some key frames of a ME
video. In [25], Zhou et al. proposed a dual-inception network
for MER. These deep learning methods perform well with
MER tasks and outperform manual features and shallow
classifiers.

Inspired by the success of these methods with MER,
we propose a novel MER method called the three-stream
CNN (TSCNN) in our conference paper [26]. The TSCNN
consists of three major convolutional recognition streams
that are used to learn the static-spatial, local-spatial, and
temporal features from three different cues in ME videos,
respectively. Some of recent studies [8], [27], [28] showed
that the apex frame contains more ME-aware information,
and thus we design a static-spatial streamCNN in the TSCNN
to learn the static-spatial feature from the gray image of
the apex frame for MER. The main reason of adding the
local-spatial stream CNN is mainly inspired by recent find-
ings in [9], [16], [29], [30]. Their studies have proved that
the facial local region information has indeed contributions

to distinguishing different MEs. Finally, following some
studies in [19], [24], [25], [31], a dynamic-temporal stream
CNN is also included in TSCNN to learn the temporal fea-
tures from the optical flow field to deal with MER. Thus,
such design explicitly describes facial texture and the sub-
tle changes between ME video frames, reducing the com-
plexity of ME recognition. Decoupling the static-spatial and
temporal recognition streams also allows us to exploit the
availability of large amounts of annotated image data by
pretraining the static-spatial recognition stream using some
large facial expression databases such as the FER2013 or
ImageNet databases. In addition, our proposed method only
analyzes three key frames (the onset, apex, and offset frames)
instead of spotting facial micro-movements in all frames in
an ME short video. It can avoid the interference of use-
less frames on the accuracy of MER and reduce redun-
dant data. Thus, the TSCNN achieve parameters fitting
in a short time and provide the possibility for real-time
application.

This paper is an extended version of our conference paper.
We will reinvestigate some problems in MER and extend
our conference work. In addition to the contribution of our
preliminary work, this paper contains the following main
contributions:

1) A reliable apex frame detection algorithm is designed
for the TSCNN without using the index values of apex
frames given in ME videos from databases. Further-
more, we investigate the influence of parameter λ on
the accuracy of TSCNN in MER tasks when locating
apex frames from ME videos.

2) More extensive experiments are conducted to evaluate
the TSCNN on five public ME databases: CASME II,
SAMM, SMIC-HS, CAS(ME)2, and CASME. In addi-
tion, we investigate the networks that have different
combinations of three separate recognition streams
using the above databases.

The rest of the paper is organized as follows. Our proposed
method for MER is presented in Section II. Then, we discuss
the experimental results for our method in Section III. Finally,
conclusions are drawn in Section IV.

II. PROPOSED METHOD
In this section, we present our proposed method for recogniz-
ing MEs in detail. As shown in Fig. 1, our proposed method
can be divided into three main parts: apex frames location,
spatiotemporal feature extraction, and TSCNN modeling.
In the first part, we introduce a reliable apex frame detec-
tion algorithm designed for the TSCNN in MER tasks with-
out using the indices of apex frames given in ME videos.
In the second part, we introduce the process of extract-
ing spatiotemporal feature from the perspective of feature
fusion on the network layer of the TSCNN, as well as its
form. In the third part, we present the proposed TSCNN,
including its detailed structure and how it deals with MER
tasks. The details of each part are described in the following
subsections.
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FIGURE 1. The framework of our proposed method for micro-expression recognition.

FIGURE 2. A demonstration of an ME short video. The FACS label of this
sample is AU4, which indicates angry. The apex frame presents at the
54-th frame of this video. We can easily notice a subtle frowning action
on the apex frame when observing each frame of the ME video with the
naked eye.

A. IDENTIFYING APEX FRAMES
Index values of some key frames are typically given in ME
videos from databases. For example, as shown in Fig. 2,
the starting frame when an ME occurs is called an onset
frame. The apex frame is the frame where ME intensity
reaches its maximum. The ending frame is called the off-
set frame. The apex frame carries more spatial informa-
tion about facial muscle micro-movement than other frames
because micro-expression intensity reaches its maximum in
this frame. The changes of optical flow between these three
frames are most obvious in the whole video. So we sug-
gest that the proposed TSCNN network can learn the sig-
nificant features from spatiotemporal information carried by
these three frames. In addition, some studies [8], [28] also
suggest that the apex frame is typically the most expres-
sive in an ME video, making it more discriminative and
effective for ME recognition. For these reasons, we only
need to analyze three frames (the onset, apex, and offset
frames) instead of spotting facial micro-movements in all
frames in an ME short video. Thus, apex frame location
plays a critical role in MER tasks, especially when analyz-
ing ME videos without using the indices of apex frames
given by databases. In this subsection, we introduce an
approach that can locate apex frames fromME videos for the
TSCNN.

To avoid the interference from blank regions without
MEs, we use a face-detection method, based on the work of
Rowley et al. [32], to segment the facial region in each frame
of the ME videos and then use the landmark algorithm in [33]
to locate 68 facial landmarks using an ensemble of regression
trees (ERT). To remove the influence of head posture, we first
align facial regions. As shown in Fig. 3, we locate two inner
eye corners, (x1, y1) and (x2, y2), and calculate the rotation

FIGURE 3. An example of 36 facial blocks yielded by 6×6 grid on a frame
in the ME short video.

matrix R as described below.

R=


x2−x1√

(y2−y1)2+(x2−x1)2
y1−y2√

(y2−y1)2+(x2−x1)2
y2−y1√

(y2−y1)2+(x2−x1)2
x2−x1√

(y2−y1)2+(x2−x1)2
.


(1)

In-plane rotation and facial size variations within the facial
region are corrected based on(

x ′, y′
)
= (x, y)RT . (2)

After facial alignment, we obtain the inner eye corners
(x ′1, y

′

1), (x
′

2, y
′

2) and the nasal spine point (x ′3, y
′

3). We then
determine the width ω = (x ′2 − x ′1)/2 and the height
h = (y′3 − y′1)/2 of every division block and the starting
point (2x ′1 − x

′

2, 2y
′

1 − y
′

3) based on these three points. Then,
the facial region is divided into 6× 6 equal-sized blocks,
as shown in Fig. 3.

To distinguish the relevant peaks from local magnitude
variations in each frame in ME short videos and determine
when ME reaches its maximum, we analyze facial texture
and shape appearance. In many studies, LBP and its variant
are preferred when analyzing facial texture and shape appear-
ance [9]. Ojala et al. [34] proposed a uniform pattern LBP
(UP-LBP) to reduce the sparse conditions caused by feature
dimensions and improve the statistical properties of facial
features. Thus, we calculate the UP-LBP histogram from each
block in the facial area of each frame to describe facial texture
and shape appearance to determine which can yield the best
performance. For each frame of the input video, we calculate
the UP-LBP histogram with P = 8 & R = 3 for each of
its 36 blocks as Hi,0,Hi,1, . . . ,Hi,35. The dimension of each
histogram is 10; thus, each frame in videos will correspond
to 36 10-dimensional vectors as Hi : Hi,0,Hi,1, . . . ,Hi,35.
Feature difference (FD) analysis compares the differences

in the appearance-based features of sequential video frames
within a specified interval and provides information about
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FIGURE 4. An illustration of how to identify apex frames from ME short videos. The top describes the UP-LBP histogram of each block in facial regions,
which describes the facial texture and shape appearance of each frame. The bottom presents that FD is calculated to locate the apex frame
(i.e., the highest intensity frame of rapid facial movements).

spatial location in identified facial movements. To capture
the greatest changes, we use FD values to roughly locate the
apex frame (i.e., the highest intensity frame of rapid facial
movements). The FD value between Hi of the i-th frame and
Hj of the j-th frame is given by:

dk =
1
10

10∑
α=1

(H (α)
i,k − H

(α)
j,k )

2

H (α)
i,k + H

(α)
j,k

, k = 0, 1, 2, . . . , 35

{d ′0, d
′

1, . . . , d
′

35}

= {d0, d1, . . . , d35}, d ′0 > d ′1 > · · · > d ′35

FDHiHj =
1
λ

λ−1∑
β=0

d ′β . (3)

where H (α)
i,k and H (α)

j,k respectively represent the values of the
same dimension α in the k-th UP-LBP histogram correspond-
ing to Hi and Hj. Only the largest λ values among the 36 dis-
tances are used in calculations, because the occurrence of an
ME will result in larger di values in some (but not all) blocks
between two adjacent frames. More details using different
values of λ are presented and discussed in Section III.D.

Finally, we calculate Honset of the onset frame and Hoffset
of the offset frame in an ME short video respectively, and
then calculate the average valueH betweenHonset andHoffset .
If the FDHk ,H value between Hk of the k-th frame and H
exists the greatest value, the k-th frame is seen as the apex
frame in the whole video. As shown in Fig. 4, a higher value
of FDHk ,H indicates that a muscle movement with a larger
amplitude exists in the facial area of the frame.

B. SPATIOTEMPORAL FEATURE EXTRACTED BY THE
TSCNN FOR MER
Spatiotemporal feature is characterized by the type of infor-
mation encoded in space and time, which can describeMEs in
videos and allows it to represent subtle expressions in videos
more efficiently. In this paper, our proposed spatiotemporal
feature consists of three components: static-spatial, local-
spatial, and temporal components. Details of each component
are described below.

1) STATIC-SPATIAL COMPONENT
Static-spatial information, especially some appearance and
overall outline information, has gained increasing attention
in facial image analysis and has been shown to be effective
in tackling the MER problems [9], [35], [36]. The static
appearance and overall outline of a whole face is the most
intuitive since some facial expressions are strongly associated
with particular facial muscle contractions. In an ME video,
the apex frame carriesmore spatial information because facial
muscle micro-movement of this frame is more obvious than
that of other frames. Thus, we consider the gray image of
the whole face in the apex frame as the input of the static-
spatial recognition stream in the TSCNN, which is cropped
to 48× 48 pixels. Finally, the static-spatial feature extracted
from the whole face is fused together with two other feature
vectors from the other two recognition streams at the second
fully connected layer of the TSCNN network.

2) LOCAL-SPATIAL COMPONENT
However, it is not sufficient to represent all characteristics of
ME videos if only static-spatial components are considered
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FIGURE 5. Images split into 2 × 2 blocks (left), 3 × 3 blocks
(intermediate), and 4 × 4 blocks (right).

when performing ME recognition. Since ME muscle move-
ments only appear in facial local regions (e.g., mouth, cheek,
eyebrows, and eyes), motion changes at these regions and
conveys meaningful information from different MEs. Block-
based segmentation of a face to extract facial local features
is a common practice when extracting facial local features,
that can be assigned to regions that contain key facial features
with the goal of enhancing recognition power [16]. Some
studies [9], [16], [29], [30] have proved that the facial local
region information has indeed contributions to distinguishing
different MEs.

However, many methods use block-based segmentation of
a face without considering the effects of block size. Ideally,
the contribution from all blocks in a face should be varied
greatly from different grid divisions of a face. Thus, we use
spatial grids with multiple sizes {n× n|2× 2, 3× 3, 4× 4}
to divide the grayscale image of the apex frame into several
facial blocks and then stack them up to obtain a facial block
sequence to serve as the input of local-spatial stream CNN
in the TSCNN, where the division detail is shown in Fig. 5.
Specifically, the gray image of the apex frame in an ME
video sample is scaled to 48n×48n before image segmen-
tation. The facial block sequence as input is an n2-channel
gray image, and the size of each channel is 48×48 pixels.
Finally, we obtain the local-spatial component at the last fully
connected layer of the local-spatial stream in the TSCNN.

3) TEMPORAL COMPONENT
Compared to still image classification, videos provide data
augmentation for single image classification. The temporal
components of videos provide an additional information for
MER. Many muscle movements emerge in facial regions and
can be reliably recognized based on the motion information
[31]. For example, we select the onset frame F21, the apex
frame F54 and the offset frame F76 in the sub01/EP04 02.avi
sample of the CASME II database, to calculate the horizontal
and vertical optical flow field and visualize it (see Fig. 6). The
FACS label of this sample (AU4) indicates a frowning action.
Using this image of the optical flow field, we can observe the
muscle movements in the subject’s eyebrows from the occur-
rence to the disappearance of an angry micro-expression,
although the amplitude of the facial muscle motion between
adjacent frames is very small. Thus, using only the spatial
component does not capture the motion well in ME videos.
In this section, we describe the process of extracting the tem-
poral component from ME videos using dynamic-temporal
stream in the TSCNN.

FIGURE 6. The horizontal and vertical optic flow fields and visualization.

Many studies have used methods based on optic-flow (OF)
[37]–[42] to characterize the local dynamics of a tempo-
ral texture and detect motion information between adjacent
frames. The optical flow field is a set of displacement vector
fields between pairs of consecutive frames. The horizontal
and vertical components of the vector field can be thought of
as image channels. Thus, it is suitable for deep networks to
learn advanced features.

Optical flow fields between three frames (the onset, apex,
and offset frames) are calculated by the approach in [43],
in which the function flow(F1,F2) takes two frames as inputs
and a horizontal optical flow field X and a vertical optical
flow field Y as outputs, as described below,

X1,Y1 = flow
(
Fonset ,Fapex

)
,

X2,Y2 = flow
(
Fapex ,Foffset

)
. (4)

where Fonset , Fapex , and Foffset represent the onset frame,
the apex frame and the offset frame in an ME video, respec-
tively. Two sets of optical flow fields are obtained via the
formula above. Each set contains two optical flow fields
(horizontal and vertical) that move pixels in the x- and y-
directions, respectively. Thus, the two sets of optical flow
fields can completely represent ME movements from occur-
rence to peak and then from peak to termination.

Since data in optical flow fields is represented as
float64 values, we must normalize the optical flow matrix via
min-max normalization as follows:

Hnorm =
Horg −min(Horg)

max(Horg)−min(Horg)
. (5)

where Horg and Hnorm are the matrix before and after
normalization, respectively. By transforming the original
matrix linearly, all elements fall into the [0,1] interval. Thus,
we obtained two sets of normalized optical flow fields for
each ME video in a given database and then stack them
in the same way as processing the local-spatial component,
which can be considered a 4-channel image of size 48 × 48
pixels. Finally, we take the 4-channel image as the input
of the dynamic-temporal recognition stream and obtain the
temporal component that is a 1024-dimension vector.
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TABLE 1. The configuration of the TSCNN network.

FIGURE 7. The architecture of the TSCNN network.

C. TSCNN MODEL FOR ME RECOGNITION
The proposed TSCNN is based on the research on CNN
networks. It is composed of multiple processing layers in
a multi-stream architecture and can learn representations of
data using multiple levels of abstraction. The TSCNN con-
sists of three-stream CNNs (i.e., the static-spatial stream (S),
the local-spatial stream (L), and the dynamic-temporal stream
(T)), which learn discriminative features for recognizing ME
from three different clues in three key frames from ME
videos. Its detailed structure and how it deals withMER tasks,
is shown in Fig. 7.

To reduce the redundant parameters and realize param-
eters sharing, each stream module in the TSCNN has the
same structure. This design aim to make the TSCNN achieve
parameters fitting in a short time and reduce the amount of
training. As shown in Table 1, each recognition stream is
a simplified network that uses a 2D convolution kernel and
pooling cell to automatically represent the properties of subtle
facial movements. The three recognition streams are then
combined by late fusion in a fully connected layer.

Among the three recognition streams in our TSCNN,
the static-spatial recognition stream (S) operates on individ-
ual video frames (e.g., the apex frame), effectively perform-
ing action recognition using still images. We consider the

gray image of the apex frame as the input of this recognition
stream. The local-spatial recognition stream (L) operates on
the n2-channel gray image after stacking n × n blocks of
the gray image of the apex frame. The input to the dynamic-
temporal stream (T) contains optical flow displacement fields
between three frames (the onset, apex, and offset frames),
whose center frame is the apex frame. We use the dynamic-
temporal streamwith optical flow sequences to ensure that the
TSCNN networks can further acquire higher-level features.
Such inputs explicitly describes the motion between video
frames, which significantly improves accuracy and makes
ME recognition easier.

Each recognition stream is compacted with only 9 layers:
5 convolutional layers, 3 pooling layers and 1 fully connected
layer. For the first convolution layer in each recognition
stream, the kernel size is set equal to 5×5, the stride size is set
equal to 1, and zero padding is set equal to ‘‘valid’’. For other
four convolutional layers in every recognition stream, we use
a kernel size of 3×3 with a stride of S = 1, and zero padding
is set equal to 1. The number of kernels (N) for each layer
is 64, 64, 64, 128, and 128 respectively. The N value of the
last two convolutional layers is much larger than that of the
other layers and will increase the computational complexity
of the network. Many studies [9], [44] have demonstrated
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that a large N can cover more abstract features of certain
important facial regions, such as the eye or mouth region, and
thus improve the performance of MER.

Three pooling layers of every stream are used to down-
sample the spatial dimensions of the input, which contains a
max pooling layer with a window size of 5×5, and two mean
pooling layers with a window size of 3×3. The stride of each
pooling layer is 2, and the number of kernels (N) is set equal
to 64, 64, and 128, respectively. This design is important in
real applications because there is no agreed standard frame
rate so far for recoding the micro-expressions (i.e., the ME
video could be recorded in various frame rate). The design of
different network streams can adapt to different frame rates,
which may make the whole network robust to the frame rate
of the input data.

The final layer of every recognition stream is a fully con-
nected layer that has the same configuration. Their output
dimension are all set equal to 1024 to reduce the number
of parameters in the model, and prevents overfitting. Then,
the output of three recognition streams are merged into a
3072-dimensional feature vector. In the final layer of the
TSCNN, we transform the feature vector to one having the
same dimension as the ME class number in MER tasks. Thus,
the output dimension of the final layer is different for different
databases.

All hidden layers are equipped with the Parametric Rec-
tified Linear Unit (PRELU) function, which is defined as
follows:

PReLU (yi) =

{
yi, yi > 0
aiyi, yi 6 0

(6)

where i denotes the channel, and ai is a parameter obtained
during training. Compared with the traditional activation
function (sigmoid, tanh, ReLU, etc.), the PReLU can improve
classification of the CNN model at a cost of overfitting and
computational complexity.

Cross entropy is used to calculate the loss function of
TSCNN, which can be defined as:

L = −
1
N

N∑
n=1

Y∑
j=1

τ (yn, j)× logPn,j, (7)

where N denotes the number of the training samples, Y is the
number of emotion types, yn is the label of n-th training sam-
ple and Pn,j represents the value of the prediction that the n-th
training sample is predicted to be the j-th class. We use the
backpropagation (BP) algorithm to minimize the loss func-
tion of the TSCNN and update the weight parameters. The
training optimizer is the stochastic gradient descent (SGD)
algorithm with Nesterov Momentum.

The iterative process is as follows:

υt = γ υt−1 + α∇θJ (θ − γ υt−1) ,

θ ← θ − υt . (8)

where α represents the learning rate. The attenuation of the
weight parameters is set equal to 10−5, and the correction
factor is set equal to 0.9.

III. EXPERIMENTS
In this section, we present experimental results of our pro-
posed method in detail, including the datasets we used,
the implementation details, and the comparison of experi-
mental results, etc.

A. DATABASES AND EXPERIMENT SETTING
In this section, we conduct extensive MER experiments to
evaluate our proposed TSCNN method. The CASME II [45],
SMIC-HS [46], SAMM [47], CAS(ME)2 [48], and CASME
databases [49] are used in our experiments as they are widely
used spontaneous ME databases. Details of the five sponta-
neous ME databases used in this paper are listed below.

1) The CASME II database was collected by Yan et al.
from the Institute of Psychology, Chinese Academy of
Science. The database includes 247 ME samples with
high spatial and temporal resolutions from 26 subjects.
The face videos were recorded at 200 fps, with an aver-
age face size of 280×340. These samples are catego-
rized into 5 ME classes: happiness (32), surprise (25),
disgust (64), repression (27), and others (99), where the
number in the brackets are the number of corresponding
MEs present in the database. We pick all ME samples
in the CASME II database for experimentation.

2) The SMIC-HS database was collected by Li et al. from
the University of Oulu. The database includes 164 ME
samples from 16 subjects, which are recorded at 100 fps
with an average face size of 280×340. These samples
are divided into 3 classes: positive (51), negative (70),
and surprise (43), where the number in the brackets
are the number of corresponding MEs present in the
database. We use all ME samples in the SMIC-HS
database for experimentation.

3) The SAMM database was collected by Davison et al.
from Manchester City University. The database
includes 159 ME samples from 29 subjects. These
samples are divided into 8 ME classes. The face videos
were recorded at 200 fps with an average face size
of 650× 960. Note that since the sample number of
several MEs in SAMM is small, we only use ME
samples whose number is larger than 10 for exper-
imentation; these include anger (57), contempt (12),
happiness (26), surprise (15), and others (26), where the
number in the brackets are the number of corresponding
MEs present in the database.

4) The CAS(ME)2 database (Chinese Academy of Sci-
ence Macro- and Micro-expression) was established
by the Chinese Academy of Science. The database
includes both spontaneous macro (300) and micro (57)
expression video sequences of 22 subjects (13 females
and 9 males). These videos have been captured by a
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camera with a 500-ms shutter speed, and the recorder’s
resolution was set equal to 640×480 pixels at 30 frames
per second. By extracting more than 600 AUs, these
image sequences are categorized into three emotion
classes: anger, happy and disgust. In our experimental
setup, we selected 341 image sequences, anger (102),
happy (151) and disgust (88) of macro- and micro-
expressions, where the number in the brackets is the
number of corresponding expressions present in the
database. To ensure fair comparisons and following
other methods, such as 3D CNN based techniques in
the literature [21], we also report the recognition results
under the same conditions as the literature.

5) The CASME database was built by the Chinese
Academy of Sciences. The database contains two
datasets A and B with 195 ME samples from 19 sub-
jects; videos were recorded at 60 fps. The video clips
in dataset A of the database were recorded with the
resolution of 1280× 720 pixels in natural light. The
samples in dataset B were recorded with the reso-
lution of 640× 480 pixels under LED illumination.
All samples were coded with onset, apex and offset
frames with action units (AUs) marked and emotions
labeled. There are 8 classes of the micro-expressions
in this database: tense, disgust, repression, surprise,
happiness, fear, sadness, and contempt. Since the three
classes of happiness, fear and sadness contain very few
samples, we chose the remaining four classes in our
experiment: tense (69), disgust (44), repression (38),
and surprise (20).

For all experiments in the above five public databases,
the leave-one-subject-out (LOSO) protocol is used to calcu-
late the recognition accuracy and mean F1-score to report the
performance of the MER methods. In each fold, the samples
of one subject are used as the test set, while the remaining
samples are used for training. This method can eliminate
appearances of samples from the same subject in the train-
ing and verification sets, thus ensuring the reliability of the
experimental results.

The accuracy rate can be calculated as follows:

Accuracy =

∑S
i=1 Ti∑S
i=1 Ni

× 100%. (9)

where Ti and Ni are the number of correct predictions and the
number of testing samples, respectively, when the samples of
the i-th subject is used as the test set. The accuracy rate shows
the average ‘‘hit rate’’ across all classes and does not evaluate
the performance of the algorithm objectively.

The CASME II, SMIC-HS, SAMM, CAS(ME)2, and
CASME databases are highly imbalanced [19], [48]–[52],
which means that the number of one type of micro-expression
samples is significantly more or less abundant than other
types of ME samples. The performance of the classifier that
deals with each emotion class is not revealed. Thus, we cal-
culate an F1-score to describe the classification effect for

FIGURE 8. Expansion of training samples.

each class, and use it as a criterion to measure the network
performance along with the accuracy rate. The F1-score can
be defined as:

F =
1
c

c∑
i=1

2pi × ri
pi + ri

. (10)

where pi and ri are the precision and recall of the i-th
micro-expression, respectively, and c is the number of micro-
expressions.

B. IMPLEMENTATION DETAILS
We set the input image size of each recognition stream in the
TSCNN equal to 48×48, and the facial block number in the
local-spatial stream is set equal to 3×3. The base learning
rate is set equal to 10−3 in the experiment due to difficulties
related to the subtlety of MEs. The attenuation of weight
parameters is set equal to 10−5, and the correction factor is
set equal to 0.9 in the experiment. Dropout is used on all fully
connected layers in the TSCNN model to avoid overfitting
problem. The λ values of the carrying experiments with the
CASME II, SMIC-HS, SAMM, CAS(ME)2, and CASME
databases equal 25, 21, 23, 25, and 20, respectively, when
locating apex frames from ME videos.

To train the TSCNN model to distinguish MEs, large
amounts of training data is needed. However, only a few key
expression frames can be selected for the training in an ME
video. We thus expand the number of training samples by
taking the original samples and applying a horizontal flip
and clockwise/counterclockwise rotation in 5 or 10 degree
increments a total of 10 times, as shown in Fig. 8. This
process yields 2470, 1360, 1640, 3410, and 1710 samples
from the CASME II, SAMM, SMIC-HS, CAS(ME)2 and
CASME databases, respectively. When the training data is
ready, we begin to train the TSCNN network according to
our purposes.

We pretrain the static-spatial recognition stream using the
large facial expression database FER2013, where obtained
weights are used for initialization. The weights of the local-
spatial recognition stream and dynamic temporal recognition
stream are randomly initialized. Mini-batch is not applied in
the experiment due to the small sample size. Early stopping
is used to train our TSCNNmodel over 500 iterated epochs in
each fold. When the validation loss curve is generally stable,
training for each fold will stop, and our TSCNN model will
output the emotion classification label.
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TABLE 2. Comparison between our method with some state-of-the-art
methods on CASME II database.

C. COMPARISON WITH THE STATE-OF-THE-ART METHODS
In this subsection, we compare the best result achieved by
our method with those of other state-of-the-art methods [5],
[9], [16], [18]–[25], [29], [50]–[84] using the five public
ME databases (CASME II, SMIC-HS, SAMM, CAS(ME)2,
and CASME). The LOSO protocol was used for all the
methods. In Tables 2 through 6, TSCNN-II represents the
results achieved by TSCNNwhen using the apex frame given
by databases. TSCNN-I represents the results achieved by
TSCNN when using the apex frame located by our proposed
approach in Section II.A.

From Tables 2 through 6, our TSCNN is shown to yield
an accuracy of 80.97% and an F1-score of 0.8070 with the
CASME-II database; 71.76% and 0.6942 with the SAMM
database; 75.41% and 0.7463 with the CAS(ME)2 database;
and 73.88% and 0.7270 with the CASME database when we
use index values of some key frames given by these databases
in MER tasks. Thus, our TSCNN shows significant improve-
ment in recognition compared to other methods. Additionally,
our TSCNNmodel achieves improved classification results in
MER tasks, especially when assuming that these databases
do not provide us with index values and that apex frames
must be located. In this case, the accuracies and F1-score

with the CASME II, SMIC-HS, SAMM, CAS(ME)2, and
CASME databases are 74.05% and 0.7327; 72.74% and
0.7236; 63.53% and 0.6065; 71.62% and 0.7129; and 70.73%
and 0.6736, respectively.

As described above, the experimental performance of the
TSCNN-I in MER is worse than that of the TSCNN-II.
This result agrees with our expectations, because accurately
locating an apex frame in an ME video is difficult and may
decrease the performance of the deep learning method. Addi-
tionally, many other methods [8], [28], [85], [86] only locate
apex-feature time intervals roughly.

Next, to analyze the recognition performance of our
TSCNN in MER tasks, we only compare the results of the
TSCNN-I and other methods when simulating theMER prob-
lem without using true indices given by the databases.

1) Comparison of results using the CASME II database:
As shown in Table 2, we report the performance of
the TSCNN-I for MER tasks using the CASME II
database and compare it with that of other methods
[5], [16], [18], [19], [22], [23], [50]–[57], [63], [64],
[66], [70], [71], [75] using the LOSO protocol. Our
TSCNN-I yielded an accuracy of 74.05% and a mean
F1-score of 0.7327 using the CASME II database.
Compared with state-of-the-art methods (FMBH [63],
OF+CNN [71], ELRCN [19], SSSN [23], DSSN [23],
and 3D-CNNs [22]), our method exhibits an improve-
ment of 4.94%, 17.11%, 21.61%, 2.86%, 3.27%, and
8.15% in accuracy, respectively. Thus, our TSCNN-I
yielded improved recognition, especially in the absence
of index values given by the databases.

2) Comparison of results using the SMIC-HS database:
As shown in Table 3, our TSCNN-I yields the
highest recognition accuracy (72.74%) and F1-score
(0.7236) among other state-of-the-art approaches [16],
[22]–[25], [50], [51], [53], [54], [56], [58]–[60],
[63]–[69], [72]–[75]. Compared with the best results of
othermethods (Bi-WOOF+Phase [67], TIM+DCNN+
SVM [75], Dual-Inception Network [25], SSSN [23],
DSSN [23], 3D-CNNs [22], OFF-ApexNet [24], and
3D-FCNN [74]), our method yields 4.45%, 6.84%,
6.74%, 9.33%, 9.33%, 6.44%, 4.96%, and 17.25%
better recognition accuracy, respectively.

3) Comparison of results using the SAMM database: As
shown in Table 4, our TSCNN-I yields a recognition
accuracy of 63.53% and an F1-score of 0.6065, which
are considerably better than the other methods [5], [9],
[20], [23], [61], [62], [66]. Xia et al. [20]’s STRCN-G
yields a 78.60% recognition accuracy in 4 ME classes.
However, the results achieved by our TSCNN-I (5 ME
classes) are better than that of STRCN-A (4 ME
classes).

4) Comparison of results using the CAS(ME)2 database:
Since the CAS(ME)2 database is a mixed database of
spontaneous micro- and macro-expressions, few meth-
ods for micro-expression recognition [21], [65], [76],
[77] have been designed and tested using this database.

VOLUME 7, 2019 184545



B. Song et al.: Recognizing Spontaneous Micro-Expression Using a TSCNN

TABLE 3. Comparison between our method with some state-of-the-art
methods on SMIC-HS database.

Additionally, the number of samples and test types
selected for testing with this database are different
from each other in these studies. Therefore, to ensure
a fair comparison, our TSCNN was tested under two
different experimental conditions. One is the same as
that used in [65], [76], [77], which contains 341 image
sequences with macro- and micro-expressions selected
by the authors. The other is the same as that used in
[21], which only contains micro-expression videos that
have the same samples as the literature.
As shown in Table 5, our TSCNN-I yields a recognition
accuracy of 71.62% and an F1-score of 0.7129 when
a total of 341 image sequences of macro- and micro-
expressions are selected. Compared with the results
of other state-of-the-art approaches [65], [76], [77],
our method is very competitive using this database.
We also compare the TSCNNwith two 3D-CNNmeth-
ods (MicroExpSTCNN and MicroExpFuseNet) that
were proposed in [21] using only micro-expression
videos that have the same number of samples as

TABLE 4. Comparison between our method with some state-of-the-art
methods on SAMM database.

TABLE 5. Comparison between our method with some state-of-the-art
methods on CAS(ME)2 database.

in the literature. The recognition accuracy (84.47%)
of our TSCNN-I outperforms that (79.31%) of the
MicroExpFuseNet (Late) and 83.25% of MicroExp-
FuseNet (Intermediate) methods. The performance of
the MicroExpSTCNN method outperforms that of our
TSCNN-I. The above experimental results show that
our TSCNN is very competitive, comparedwith the two
3D-CNN based methods in [21].

5) Comparison of results using the CASME database: As
shown in Table 6, we report the performance of the
TSCNN-I in MER tasks using the CASME database
and compare it with other methods [9], [29], [53],
[54], [61], [78]–[84] using the LOSO protocol. Our
TSCNN-I yielded an accuracy of 70.73% and a mean
F1-score of 0.6736. Compared with other methods

184546 VOLUME 7, 2019



B. Song et al.: Recognizing Spontaneous Micro-Expression Using a TSCNN

TABLE 6. Comparison between our method with some state-of-the-art
methods on CASME database.

(LTOGP(with FS) [82], LTOGP(without FS) [82],
FDM [54], DiSTLBP-RIP [83], and STCLQP [53]),
our method exhibits an improvement of 2.09%, 9.66%,
14.59%, 6.4%, and 13.42% in accuracy. Thus, our
TSCNN-I yields better recognition and outperforms
othermethods, especially in the absence of index values
given by the databases.

We also calculate the confusion matrix for each of the five
databases to determine the recognition of the TSCNN for
each emotion label, as shown in Fig. 9. For the CASME-II
database, the TSCNN yielded an improved recognition, espe-
cially on the ‘‘surprise’’ and ‘‘others’’ labels. However,
the method still encountered a bottleneck with the ‘‘repres-
sion’’ label because repression emotions have a relatively
small range of muscle motion and is thus more difficult to
detect and classify correctly. For the SMIC-HS database, our
TSCNN yielded an improved recognition result for all labels.
For the SAMM database, the network also performed well on
two labels (anger and others) but did not perform well on the
‘‘contempt’’ and ‘‘surprise’’ labels. This result agrees with
our expectations because all poorly performing labels have
a small sample size, which hinders such deep-learning meth-
ods. For the CAS(ME)2 database, the network performedwell
on two labels (anger and disgust) but did not perform well on
the ‘‘happy’’ labels. For the CASME database, the TSCNN
performed well on three labels (disgust, surprise, and tense)
but did not perform well on the ‘‘Repression’’ labels. The
above results show that for MER tasks, the recognition of
our TSCNN is superior to that of the image feature extraction
method used by most previous researchers.

D. PARAMETER ANALYSIS
In this subsection, we analyze the parameters of the pro-
posed methods and evaluate the impact of these parameters

TABLE 7. Experimental results on CASME II, SMIC-HS, SAMM, CAS(ME)2,
and CASME databases under different division scheme.

individually. The block pattern of the input image for the
local-spatial stream, the number of the network’s recognition
stream, and the effect of λ on the TSCNN are reported and
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TABLE 8. The influence of parameter λ on TSCNN model.

FIGURE 9. Confusion matrices on CASME II, SAMM, SMIC-HS, CAS(ME)2, and CASME. The (a), (b), (c), (d), and (e) denote the results of CASME II, SAMM,
SMIC-HS, CAS(ME)2, and CASME, respectively.

discussed in this section. The following experimental results
are obtained with the assumption that the five databases do
not provide apex frame indices.

1) EVALUATION OF DIFFERENT BLOCK PATTERNS
The facial block sequence served as the input of the local
spatial recognition stream in the TSCNN is different when
we choose spatial grids with multiple sizes (2×2, 3×3, and
4× 4) to divide the gray image of the apex frame. To test
which block pattern is optimal, we compared the performance
of the TSCNN under three above cases. Experiment results
are shown in Table 7, which shows that the TSCNN yields
the best results (74.05% for the CASME II database, 72.74%
for the SMIC-HS database, 63.53% for the SAMM database,
71.62% for the CAS(ME)2 database, and 70.73% for the
CASME database) when the gray image of the apex frame
is divided into 3×3 image blocks and used as the input of the
local-spatial recognition stream in the TSCNN.

2) EVALUATION OF THE TSCNN ARCHITECTURE
To analyze our network’s structure in depth and find the
most prominent module, we compare the results between the
TSCNN with that of the network that retains two recognition
streams and that of the network that only retains a single
stream. We set the block pattern equal to 3×3 for the local-
spatial stream.

Results using five databases are shown in Table 9.
An accuracy of 74.05% using the CASME II database
is achieved by the TSCNN (L(3 × 3)+S+T), which
is higher than all single-stream networks (S: 60.08%,
L(3×3): 50.04% and T: 71.53%) and outperforms all
two-stream networks (L(3 × 3)+S: 59.23%, L(3 × 3)+T:
70.20% and S+T: 73.20%). Our TSCNN also shows better

TABLE 9. Experimental results on CASME II, SMIC-HS, SAMM, CAS(ME)2,
and CASME databases under different combination of recognition
streams.
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performance than the single-stream or two-stream net-
works when using the SMIC-HS, SAMM, CAS(ME)2, and
CASME databases. Thus, our proposed TSCNN yields the
best performance in both accuracy and F1-score (CASME
II: 74.05%/0.7327, SMIC-HS: 72.74%/0.7236, SAMM:
63.53%/0.6065, CAS(ME)2: 71.62%/0.7129, and CASME:
70.73%/0.6736).

The performance of the TSCNN is significantly better than
those of single-stream and two-stream networks, particularly
for the dynamic-temporal stream. These results agree with
our assumptions, because the calculated image of the optical
flow field can describe the two-dimensional projection of an
MEmovement intuitively and make it easy to distinguish ME
emotion categories. Additionally, the results show that the
three streams of our TSCNN can better utilize various forms
of effective characteristics forME recognition, yielding better
performance for MER tasks than single characteristics.

3) THE IMPACT OF PARAMETER λ ON THE TSCNN
In this subsection, we analyze how λ (see Section II.B) affects
the proposed TSCNN model for MER tasks. Its value is eval-
uated using the CASME II, SMIC-HS, SAMM, CAS(ME)2,
and CASME databases. Specifically, we change the value of
λ to observe the recognition results of the TSCNN with the
five databases, as shown in Table 8. The MER accuracy is
shown to be stable even when λ varies within a given range.
As shown in Table 8, we can see that the occurrence of MEs
is a process of gradual change in facial expression intensity.
If the apex frame located by our method falls on adjacent
frames of the real apex frame, the classification performance
of the TSCNN in MER tasks is stable and satisfactory when
these location frames are applied to the TSCNN.

IV. CONCLUSION
In this paper, we propose a three-stream convolutional neu-
ral network (TSCNN) for ME recognition. Experiments
are conducted on five public spontaneous ME databases,
(CASME II, SMIC-HS, SAMM, CAS(ME)2, and CASME)
to evaluate the proposed method. The experimental results
show that our method can effectively improve recognition
accuracy in MER tasks compared with the results of other
methods using the same five databases. Additionally, this
paper also summarizes the problems that have not received
sufficient attention in research to date but are crucial for
feasible MER interpretations. Incorporating static-spatial,
local-spatial and temporal information associated with MEs
is shown to be important when describing MEs and aides
distinguishing MEs. In our method, the dynamic-temporal
recognition stream plays a critical role and, depends on the
calculation of optical flow. However, this calculation has a
high computational cost and thus must occur offline; this is
the key bottleneck to the application of this method. In the
future, we plan to study faster optical flow calculation meth-
ods to facilitate using the proposed method in real-time iden-
tification. Additionally, we plan to design a simpler network
structure withmultiple recognition tubes to handleME details

and use different datasets of spontaneous MEs with various
kinds of metrics.
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