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ABSTRACT With the development of internet technology, the video data has been widely used in multimedia
devices, such as video surveillance, webcast, and so on. Lots of visual processing algorithms are developed
to handle the corresponding visual task, but the challenging problems still exist. In this paper, we propose a
weighted multiple instances based deep correlation filter for visual tracking processing, which utilizes the
importance of instances for training of deep learning model and correlation filter. First, the initial object
appearance is modeled based on the confidence of the object and background at the first frame. During the
tracking, the superpixel is used to capture the object appearance variations. Most importantly, our tracker
can enhance the discriminative ability of the object using deep residual network and improve the tracking
efficiency with correlation filter. Second, we introduce the sample importance into residual deep learning
model to improve the training performance. We define the importance of each instance by computing the
sore of all the pixels within the corresponding instance. Third, we update the parameters of deep learning
network and correlation filter in a fixed interval frames to reduce the object drift. Extensive experiments
on the OTB2015 benchmark and VOT2018 dataset demonstrate that the proposed object tracking algorithm

outperforms the state-of-the-art tracking algorithms.

INDEX TERMS Visual tracking, deep learning, correlation filter, multiple instance learning.

I. INTRODUCTION

For video security, the sensitive video content needs to be
protected before transmission. Data encryption is an efficient
way to achieve this purpose [1], [2]. Compared with the
text and binary data, the video data has large volume, and
requires real-time processing. Since the traditional encryption
algorithms don’t consider the video characteristics, efficient
video encryption algorithms should be designed for video
data security.

Object tracking is an important issue in computer vision
and is applicable in object recognition, action analysis,
anomaly detection, intelligent transportation, pattern classi-
fication and human-computer interaction. In the past decade,
various attempts, such as IVT [3], VTD [4], Fragment [5],
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TLD [6], MIL [7], SCM [8], are made to address some
challenging issues. Existing tracking algorithms can be
classified into either correlation filter or deep learning
approaches. Despite of decades of extensive research, visual
object tracking technique in the context of complex back-
ground and illumination appearance changes remains an open
problem.

In recent years, correlation filter (CF) tracking has received
considerable attention due to fast speed and higher accu-
racy. CF trackers learn a filter by the object state of the
first frame, and then the learned filter tracks the object
in successive frames. CF trackers lie in the approximate
dense sampling achieved by circulantly shifting the object
patch [9]. The remarkable runtime performance is achieved
by solving the underlying ridge regression problem in
Fourier domain [10]. Since the inception of CF trackers with
single-channel features [10], [11], they have been developed
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with multi-channel features [12], scale adaptation [13] and
kernels [14]. In addition, many CF trackers improve the orig-
inal work by adding context [15], [16], learning continuous
filters and spatially regularizing the learned filters [17].

Beside the CF trackers, the tracking algorithms based on
deep learning have also been developed at present. First,
generic features of the object are learned on ImageNet
object detection dataset, then fine-tuning the parameters
domain-specific layers to be object-specific in an online way.
MDNet [18] shows the best tracking performance on the
VOT2015 challenge. Another approach consists of training a
fully convolutional network and uses a feature map selection
method to choose discriminative features between shallow
and deep layers [19]. However, their computational complex-
ity prohibits these deep learning trackers from being deployed
in real application. To reduce the computational load,
Siamese network based trackers [20]-[23], [40]-[42] and
Generative Adversarial Networks (GAN) methods [43]-[45]
are proposed to predict motion between consecutive frames.
During the tracking, only a forward-pass is executed due
to their simple network architecture and lack of offline
fine-tuning mechanism. Their speed is up to 100fps on a GPU
while results achieve competitive accuracy.

However, in many works, the CF and deep learning
are simply combined and separately trained. Deep learning
based trackers are often offline trained in an image clas-
sification dataset, and then online fine-tuning the param-
eters of deep learning network during the tracking. Thus,
these trackers are less discriminative in various objects track-
ing domain. CF might result in tracking failure when the
object suffers from heavy appearance variations. The com-
plementary of deep learning and CF requires to be further
researched.

The major contributions of this paper are of threefold:

(1) We propose a weighted multiple instances based deep
correlation filter for visual tracking. We exploit superpixel as
mid-level cue to extract the object feature for the appearance
representation. The object’s drifting can be reduced based on
the learned object appearance model.

(2) Our object tracking method takes the sample impor-
tance into account for deep residual network and correlation
filter procedure. The learned appearance model is used to
evaluate the importance of instances. Then we utilize these
weighted instances to update the parameters of network and
filters.

(3) Our tracking method achieves a comparable per-
formance to state-of-the-art on OTB2015 benchmark. The
experimental results demonstrate that the proposed visual
object tracking algorithm performs favorably against other
conventional deep learning trackers.

This paper is structured as follows. Section II reviews
related work on object tracking. In Section III, we briefly
introduce the correlation filter tracker. In Section VI,
we introduce our tracking scheme and its advantages over
state-of-the-art algorithms in details. Section V gives the
experimental results. Section VI concludes the paper.
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Il. RELATED WORKS

There are extensive surveys of visual object tracking in the
literature [24]. In this section, we mainly focus on visual
object tracking methods that are based on deep learning and
correlation filters.

A. CORRELATION FILTERS BASED TRACKERS

Correlation filters for visual tracking have achieved the supe-
rior performance due to the computational efficiency in the
Fourier domain. Correlation filters based tracking methods
regress all the circular-shifted versions of the input features
to a Gaussian function. The MOSSE tracker [10] encodes
object appearance changes by optimizing the output sum
of squared error. Later, several works have been devel-
oped to improve tracking performance, such as kernelized
correlation filters [14], context learning [25], scale estima-
tion [12], subspace learning [26], re-detection [27], spatial
regularization [28], short-term and long-term memory [29].
Danelljan et al. [30] propose an effective correlation filter
visual tracker that can cope with the scale changes of the
object. Choi et al. [31] propose a tracker with an attention
mechanism using previous object appearance and dynamics.

B. DEEP LEARNING BASED TRACKERS

Deep learning technique has brought remarkable perfor-
mance improvements in many computer vision areas, such
as object detection, tracking, body analysis, classification
and semantic segmentation. They can build accurate visual
object tracking algorithms without online adaptation due to
powerful deep learning features.

Recurrent networks have been applied to visual tracking
task [32]-[35] by considering temporal information.
Wang et al. [19] simultaneously utilize shallow and deep
convolutional features to consider contextual information of
the object. Nam and Han [18] propose a training method
by adding a classification layer to a convolutional net-
work structure. Lei et al. [36] employ a similarity func-
tion trained by Siamese network to predict the position of
the object. Tao et al. [37] develop a novel deep learning
network which can be trained by a reinforcement learn-
ing scheme with weakly labeled benchmark. However,
deep learning based trackers require frequent fine-tuning of
the networks to capture the object appearance variations,
which is slow and prohibits real-time tracking application.
In [47], VITAL tracker is used to address the augmentation
of positive samples and the issue of class imbalance via
adversarial learning. Li er al. [48] propose the Siamese
region proposal network (Siamese-RPN) which is end-to-
end trained off-line with large-scale image pairs. In [49],
the spatial distribution of feature is considered in structural
support vector machine for visual tracking. Song et al. [50]
apply residual learning to take appearance changes into
account to reduce model degradation during the tracking.
Cheng et al. [51] propose an Auto-Encoder pair model for
visual tracking.
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FIGURE 1. The workflow of the proposed object tracking algorithm.

C. COMBINING TWO FRAMEWORKS FOR TRACKING
Recently, deep learning technique has begun to play a key
role in correlation filters [23]. MDNet, with deep feature
extraction and a deep discriminative classifier, achieved sig-
nificantly tracking performance. Yun et al. [38] improve the
regularized correlation filter by using deep convolutional fea-
tures. Zhang et al. [39] estimate the object state by combining
different response maps which are obtained from convolu-
tional features. However, there are too many channels in raw
deep convolutional features to be handled in real-time, even
though each correlation filter works fast. The deep feature
redundancy is not fully suppressed.

Ill. CORRELATION FILTER FOR VISUAL TRACKING

DCF tracker learns a discriminative learner and predicts
the object position by searching the maximum score in the
response map.

w = argmin = [y — wxx|? + 2 [|w|? (1
w

where x and y denote the input sample and its Gaussian func-
tion label, respectively. A is the regularization parameter. w is
a correlation filter learned from the minimum optimization
problem of Eq.(1). The convolution operation between input
x and correlation filter w can be formulated into a dot product
in the Fourier domain.

The kernelized correlation filter is a well-known object
tracking algorithm. Before detailing the proposed track-
ing algorithm, we briefly introduce the functionality of
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conventional correlation filters using a single-channel feature
map. Correlation filters based trackers can be quickly trained
and lead to a high tracking accuracy under low computational
load based on the property of the circulant matrix in the
Fourier domain.

Given the vectorized training feature map zeR""*! and
vectorized object response map y obtained from a 2-D Gaus-
sian with size w x h and variance ay2, the vectorized correla-
tion filter w can be estimated by:

w=rF! (&) @
20z +A
where A is a predefined regularization factor; F~! represents
an inverse Fourier transform function; y and Z denote the
Fourier-transformed vector of y and z, respectively; © denotes
an element-wise multiplication; Z* is the conjugated vector
of Z. -
For a test feature mapz’ € R""*! the response map r can
be obtained by:

r=F"'(Woi") (3)

Finally, the object position with the maximum peak posi-
tion is obtained from a 2-D response map R"*" which is
rebuilt from r.

IV. THE PROPOSED TRACKING ALGORITHM

A. FORMULATION

The main flow of the proposed object tracking algorithm
is shown in Fig.1. First, we utilize superpixel as mid-level
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features for modeling the initial object appearance. The confi-
dence of the object and background are computed by the sum
of pixels responses within the corresponding instance. When
a new frame of a video arrives, object candidates around the
position of last frame are randomly drawn. Then the feature
of each state is extracted using superpixel and deep residual
network, respectively. Second, we consider the contribution
for each instance and the contribution for each instance is
obtained based on the initial object template. The importance
of instances is used for training of deep learning model and
correlation filter. During the tracking, the superpixel is used
to capture the tracked object appearance changes. The state
with the maximum confidence is regarded as tracking result.
Third, it is necessary to update the appearance model in a
fixed length frame interval to reduce the object drift. Finally,
extensive experiments demonstrate that the proposed track-
ing algorithm outperforms the state-of-the-art visual object
tracking algorithms.

B. MID-LEVEL BASED STRUCTURAL APPEARANCE
REPRESENTATION
In this paper, we use superpixels as the mid-level cue to mine
the structural information of the object. To model the object
appearance, we first track the object in the first ten frames
of a video with simple tracker [3], and then segment the
surrounding region of the tracking result of the last frame into
N superpixels. We find that the size of the candidate region
does not have a direct impact on the number of superpixels.
But computational complexity will grow as the candidate
region of object increases. To reduce the computational time,
superpixel segmentation is applied to the surrounding region
of the object for effective object tracking. Each superpixel s;
(i=1,...,N)isrepresented by a feature vector f; which is a
Haar-like feature. The locations of some small rectangles are
randomly generated in each superpixel, and these rectangles
consist of a set of feature templates which are used to widely
capture specific object appearance variations. The number of
rectangles in each superpixel ranges from 2 to 4. We randomly
generate the weights and the heights. We define that the
pixels in the same rectangle have the same weight, and these
initial weight is randomly generated from the range (0, 1].
Each Haar-like feature is computed by the sum of weighted
pixels. Then, we exploit the mean shift clustering method
that can automatically cluster r classes based on the size
of mid-level feature vectors of the object region. Superpixel
members of the i-th cluster cover the regions of object to
indicate how probable its superpixel members belong to the
foreground or background. Therefore, a confidence measure
for the i-th cluster is defined as:
+ _
@n?:%, i=1,...,r )

where ST represents overlapping between the size of cluster
area and the object area, and S~ is the size of the cluster
region outside the object region. Con? denotes an initial
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appearance model which is used as a prior knowledge of the
object from the first ten frames.

During the tracking, the object state and its surrounding
region based on object position of last frame are segmented
into M mid-level features. We evaluate the confidence score
of the k-th mid-level feature region as follows.

Com = exp(n x ||fe = feill2) x Con), k=1,....M (5

where 7 denotes a normalization term (2 in this paper); fk
and Cony, represent the mid-level feature vector of the k-th
area and the corresponding confidence score, respectively;
Je.i denotes the feature center of the i-th superpixel area that
f belongs to. We will utilize the confidence score of the
superpixel to determine the quality of tracking results.

C. WEIGHTED MIL CORRELATION FILTER TRACKING

The deep feature vector of the object is extracted by the
VGG-Net. It takes an object region X as the input. Then
each pixel on the search region of the input is assigned a
score based on the mid-level feature response. In this paper,
we integrate all the sample contributions into the training
process using weighted sum of instance probability. The
contribution of each candidate instance can be obtained by
accumulating the scores of all the pixels of superpixel area
within the corresponding search region of the object.

wi= > wij) (6)

(NN

where v; (i, j) is the response score at location (i, j) within the
[-th candidate instance Sj.

Then, we train the correlation filter with these importances
of samples in the first frame and consider it as the object
template.

During the training, n positive samples and m negative
samples are obtained at the first frame. Positive samples are
drawn around the object state (Iy) of first frame as positive
bag X, which satisfies [Ipos- I1]] < a(a = 5). Negative
bag in an annular region specified by o < ||l — 1| < B,
where o and 8 = 2« are inner and outer radii, respectively.

The positive samples probability is defined as follows.

n—1
Py =1X") = wip(y = 1]x) @)
j=0
where w; denotes the importance corresponding to the j-th
candidate in X™T; the candidates with the higher scores con-
tribute more to the positive bag probability than those with
the lower response scores. y is a binary label; p(y = 1|x;) is
the posterior probability of candidate x; to be positive. Sample
x; can be represented by concatenating mid-level feature and
deep feature f(x;). The posterior probability of x; to be positive
is obtained as follows.

pECx)ly = Dp(y = 1)))
PO =l =0 ( " (p(f(x,-ny = 0)p(y = 0) ®

where o is a sigmoid function.
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All of the candidate samples contribute equally to the
negative bag, which are far away from the tracked object
region. The posterior probability of negative bag X~ can be
written as:

n+m—1
py=0X")= Y (I-py=1x) ©)
Jj=n
Similar to MIL [11], correlation filter Hg () is considered as
a weak classifier and defined as

pEGxp)ly = Dp(y = 1))
pExp)ly = 0)p(y = 0)

We assure that the features in f(x;) = [fi(x)), ..., fx()IT
are independently distributed. Further, Eq.(10) can be repre-
sented as

Hg (xj) = XK:In <M> = ih () (1D
E = L oy =0)) — &M

The conditional distributions are considered as a Gaussian
function, which can be modeled as p(fi(x)ly = 1) ~
N(uy, o1) and p(fi (x)|y = 0) ~ N(uo, 09).

In addition, the parameters (11, o1) of model are updated
by using the following Eq.(12) and Eq.(13).

Hy () = In ( (10)

up = yur+U—yu 12)

1
ot =yor+(—y) |~ 3 (Gl —m? (3
Jlyi=1

where n denotes the number of positive candidate instances;
y is a learning rate parameter, which is set to 0.8 in this work.

Finally, the objective function not only minimizes the
regression loss, but also imposes a constraint for an effec-
tive deep network learning by maximizing the positive and
negative samples in log-likelihood function L(H).

1 n—1

L(H) =) | yslog}_wip(y = 11x)))

s=0 j=0
n+m—1

+(1 —yolog( Y (1—ply=1lx)) (14)
j=n

The Eq.(14) is solved using Stochastic Gradient Descent
(SGD) method, which has been widely utilized in deep neural
network training process. The correlation filter is used dis-
criminate the object location.

D. UPDATE SCHEME

We define the length of the retained sequence as L which is
set to 20. The object appearance template is updated in every
U frames. IV-E and Fig. 2 show that the updating interval
U is set to 10 to reach a compromise between computational
complexity and the tracking accuracy. Then, we put the object
tracked result of every frame into the end of L sequence.
At the same time, the k-th informationin L (k < L,k = 4)1is
deleted.
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FIGURE 2. The influence of tracking errors and update frame interval.

TABLE 1. Average per-frame runs time on OTB2015 benchmark.

Update Interval U Average Run Time/Frame

Uu=0 0.19s
U=30 0.26s
U=10 0.28s
U=1 0.46s

Frequently object template updating mechanism may eas-
ily introduce the noisy into the updating process. Therefore,
the first frame information of the object needs to be retained
to reduce the object drifting problem.

E. TRACKING

The object state from the first frame is initialized manually
with a bounding box. A cropped rectangle region is utilized as
training data to initialize the object template and fine-tuning
parameters of network by using the object information of the
first frame. During the tracking, a search region of the object
at ¢-th frame is cropped based on the last location. The deep
feature is extracted by VGG-Net and passed through the
correlation filter framework to obtain the response map.
The object position is determined in the 7-th frame based on
the location of the maximum response value. In the training
stage, the object tracking results are regarded as the training
samples which are utilized for updating the deep networks
parameters with the loss function using SGD.

V. EXPERIMENTS

A. EXPERIMENTAL SETTING

The proposed object tracking algorithm is carried out on
MATLAB platform with Intel Core 2 Duo 2.93GHz CPU and
2.96GB RAM. To facilitate a fair performance comparison
for the proposed object tracking algorithm, we evaluate our
tracking algorithm on a large benchmark OTB100 dataset
that contains 100 challenging videos. OTB100 is manually
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tagged with 11 attributes, which represents the challenging
scenario in visual tracking. Most of the computation com-
plexity of the proposed tracker is spent on mid-level feature
generation. We employ the SLIC (Simple Linear Iterative
Clustering) algorithm [13] to segment the search region into
superpixel.

Our method is compared against 29 state-of-the-art
object tracking algorithms. To facilitate a fair compari-
son, these object tracking algorithms are broadly catego-
rized into three classes: (1) correlation filter trackers with
hand-crafted features, including DSST [12], SAMF [13],
KCF [14] and SRDCEF [28]; (2) correlation filter trackers with
deep learning, including CFNet [23], HCF [40] and Deep-
SRDCF [46]; (3) some representative trackers, including
LCT [27], HCF [40], VITAL [47], CREST [50], AEPCF [51]
and MCPF [54]. All source codes are provided by the authors’
websites for fair comparison. In this paper, three metrics
are used to evaluate all the tracking methods. First, dis-
tance precision error gives the percentage of frames whose
estimated object position is within the predefined threshold
of the ground truth. Second, center location error indicates
the average Euclidean distance between the estimated center
position and the ground truth. Third, overlap success rate is
defined as the percentage of frames where the bounding box
of the tracked object overlap surpasses a given threshold.

The CNN network is trained online using SGD. The
tracked object appearance template is initialized in the first
frame. During the tracking, the object appearance template is
online updated by a standard SGD scheme. The regularization
parameter X is set to 0.005. All the parameters are fixed
throughout all video sequences.

B. OVERALL PERFORMANCE

1) OTB2015 BENCHMARK [53]

The videos in OTB2015 benchmark are annotated with
11 attributes to describe the different challenges in the
tracking, e.g., [llumination variation, occlusion, background
clutter, motion blur, out-of-plane rotation, low resolution,
deformation, scale variation, out-of-view, fast motion and
in-plane rotation. These attributes are useful for analyzing the
performance of tracker.

The quantitative comparisons, distance precision
at 20 pixels, overlap success rate at 0.6 and tracking speed,
are reported in Table 2. From Table 2, we can see that the
proposed tracker performs favorably against state-of-the-art
trackers in three metrics. Among the trackers, the MEEM
tracker achieves the best performance with an average DP
of 74.4% and OS of 64.9%. However, the proposed tracking
algorithm can work well with DP of 85.4% and OS of 76.9%.
The KCF, CSK and STC trackers achieve higher frame rate
than our tracker that performs well at 28 frames per second.

The one-pass evaluation (OPE) protocol [10] is used to
report the success and precision plots based on bounding
box overlap metrics and the position error with respect
to the ground truth. For success plots, the area under the
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TABLE 2. Comparisons with state-of-the-art tracker on the

0TB100 benchmark. Our tracker performs favorably against
state-of-the-art trackers in distance precision (DP) at a threshold

of 20 pixels, overlap success (0S) rate at an overlap threshold 0.6 and
center location error (CLE). The first and second highest values are
highlighted by red bold and blue bold fonts.

Trackers DP(%) OS(%) CLE(pixel) Speed(FPS)
LCT 76.7 61.8 25.8 274
HCF 81.2 714 20.9 4.5
KCF 73.2 59.3 35.5 39.1
MIL 47.5 37.3 62.3 28.1

Struck 65.6 55.9 50.6 10.0
CT 40.6 34.1 78.9 38.8
ASLA 53.2 51.1 73.1 7.5
SCM 64.9 61.6 54.1 0.4
MEEM 74.4 64.9 41.6 19.4
TGPR 70.5 62.8 51.3 0.7
TLD 60.8 52.1 48.1 21.7
CFNet 74.8 56.8 58.9 15.2
VITAL 83.6 62.2 36.4 28.9
CREST 82.4 59.3 27.3 34.6
Ours 85.6 64.2 76.8 44.2

curve (AUC) is computed. For precision plots, the distance
precision at a threshold of 20 pixels (DP) is given. In addition,
each method is able to process the frames per second (FPS)
is discussed.

Fig. 3 shows the precision and success plots over all the
100 videos, reporting AUC scores in the legend. MCPF and
SRDCEF, both based on correlation filters, achieve AUC scores
of 61.7% and 62.1% respectively. Our tracker significantly
outperforms VITAL with a relative gain of 2%. In addition,
it is noticeable that the proposed tracking algorithm respec-
tively runs 1.3 times and 1.6 times faster than the CREST and
LCT. Overall, the experimental results on OTB100 demon-
strate that the proposed tracking algorithm achieves compet-
itive performance against the most relevant trackers in this
benchmark.

2) VOT2018 BENCHMARK [52]
VOT2018 dataset is the one of the most recent public datasets
for evaluating the performance of single object trackers
in challenging scenarios. We evaluate our tracker on this
dataset in comparison with 18 state-of-the-art methods. The
VOT2018 benchmark consists of 60 videos with different
challenging factors. Different from the evaluation criteria of
OTB2015 benchmark, we exploit four primary measures to
analyze the compared trackers performance: robustness (R),
accuracy (A), Expected Average Overlap (EAO) and speed
(in EFO units). The robustness measures how many times
the tracker loses the object during the tracking. A tracking
fails when the overlap ratio drops to zero. When such failure
occurs, the tracker is reinitialized to continue tracking. The
accuracy is the average overlap rate between the predicted
object position and ground truth bounding boxes during
the tracking process. The detailed experiments are reported
in Table 5.

From Table 5, we observe that the weighted multiple
instances based deep correlation filter tracker achieves the
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TABLE 3. Attribute distributions for OTB100 benchmark.

Precision

Success Rate

OTB100 v OPR Y% OoCC DEF MB FM IPR ov BC LR
v 38 24 24 20 15 12 12 17 5 17 2
OPR 24 63 45 38 29 16 24 42 11 19 7
Y% 24 45 64 33 29 21 28 35 11 17 9
OocCC 20 38 33 49 25 14 19 25 12 14 5
DEF 15 29 29 25 44 10 15 17 5 12 3
MB 12 16 21 14 10 29 24 16 8 8 1
FM 12 24 28 19 15 24 39 22 11 10 2
IPR 17 42 35 25 17 16 22 51 8 14 6
ov 5 11 11 12 5 8 11 8 14 6 2
BC 17 19 17 14 12 8 10 14 6 31 1
LR 2 7 9 5 3 1 2 6 2 1 9
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VITAL[0.836]
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FIGURE 3. Distance precision and overlap success plots in the

OTB100 benchmark sequences using one-pass evaluation (OPE). The
legend contains the area-under-the-curve score for each tracker.

top-ranked performance on ECO and A. Our tracker provides
an EAO score of 0.331 and maintains a competitive accuracy.
In the comparison, KCF achieves the best speed. Among the
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top three deep feature based trackers, SiamFC obtains the
best speed with an EFO of 0.235. Compared with VITAL,
the proposed tracker obtains a performance gain of 0.6%.
For the speed, the Frames-Per-Second (FPS) on VOT2018 is
reported from the last row in Table 5. The reported speed is
evaluated on a machine with an NVIDIA Titan Xp GPU, other
results are provided by the VOT2018 official results.

C. QUALITATIVE EVALUATION

In the section, we give more detailed analysis of the
strength and weakness of the trackers. Video sequences
in OTB100 benchmark are categorized into 11 attributes,
including illumination variation (IV), scale variation (SV),
background clutter (BC), fast motion (FM), deforma-
tion (DEF), occlusion (OCC), out-of-plane rotation (OPR),
in-plane rotation (IPR), motion blur (MB), out-of-view (OV)
and low resolution (LR). Each attribute contains a specific
challenging factor. Due to space limitation, five main
challenging attributes in the paper are selected for the detailed
analysis.

We compare our tracker with other five state-of-the-art
trackers on ten challenging sequences. KCF tracking algo-
rithm is based on a correlation filter framework learned from
conventional HOG features. It performs well in handing sig-
nificant background clutter and occlusion due to the robust
HOG features representation. However, it drifts when the
object undergoes heavy occlusion and doesn’t redetect the
object in the case of tracking failure (Tiger2 and Jumping).
KCEF tracker cannot cope with the background clutter. The
struck tracker doesn’t work well in rotation, background
clutter and heavy occlusion. This is because that they are
less discriminative in handling appearance change with one
single classifier. TLD tracker is able to capture the lost object
in the case of tracking failure. However, it ignores the tem-
poral motion cues and does not capture the change of the
object appearance (Tiger2, SUVs, and Singer2). TLD tracker
updates its detector frame-by-frame introducing the noise
into the object template. The proposed tracking algorithm
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FIGURE 4. Screenshots of tracking results on 8 challenging benchmark sequences. For the sake of clarity, we only show the results of six trackers.

works well in estimating both the object positions and scales
on the challenging sequences.

During the tracking, the tracked object often suffers from
the occlusion and motion blur. In this case, it is difficult to
distinguish the object from the background. However, occlu-
sion is one of the major factors resulting in tracking failure.
In Bolt sequence, the tracked object causes the in-plane rota-
tion and partial occlusion. The qualitative evaluation results
in several representative frames are reported in Fig. 4(a).
The proposed tracking algorithm respectively outperforms
the second best performance in this case in terms of success
rate and precision. Unfortunately, MIL cannot recover the lost
object due to drastic object appearance variations. TLD can’t
adapt the variations of the object size, leading to tracking fail-
ures when the object scale changes significantly. While other
trackers CFNet, SRDCF, DSST, SAMP and DeepSRDCF
drift to the background. Our tracker can achieve a satisfied
result.

Fig. 4(b) and Fig. 4(g) show the evaluation results in
several representative frames where no-rigid deformation
occurred. Singerl sequence contains scale variations, camera
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FIGURE 5. A comparison of EAO and the speed of state-of-the-art
trackers on VOT2018 benchmark. We visualize the EAO with respect to the
frames-per-second (FPS). The FPS axis is in the log scale.

motion as well as illumination variations, which result in
most of the object tracking algorithms drift. In shaking
sequence, DSST and SRDCF can track the object well
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TABLE 4. Success rate scores with different attributes on OTB2015 benchmark. The bold fonts of results denote the best performance.

Tracker ocCC LSV M LI TC SO DEF
Ours 0.74 0.65 0.65 0.66 0.64 0.61 0.58
VITAL 0.53 0.61 0.55 0.48 0.55 0.47 0.40
CREST 0.62 0.58 0.51 0.55 0.44 0.46 0.49
MDNet 0.62 0.58 0.57 0.51 0.61 0.50 0.47
SiamFC 0.54 0.49 0.52 0.46 0.60 0.44 0.41
SIT 0.39 0.43 0.35 0.35 0.41 0.39 0.34
MUSter 0.46 0.53 0.45 0.47 0.50 0.46 0.46
DSST 0.51 0.60 0.50 0.53 0.57 0.54 0.53
CFNet 0.50 0.47 0.41 0.44 0.48 0.53 0.55
KCF 0.34 0.40 0.36 0.36 0.34 0.29 0.37
HCF 0.54 0.47 0.51 0.50 0.43 0.40 0.38

TABLE 5. State-of-the-art in terms of expected average overlap (EAO), robustness, accuracy and speed on VOT2018 dataset. We compare with the
state-of-the-art trackers, and only the top 10 are shown in the legend for clarity.

DSST | MDNet | KCF | SRDCF | TCNN | MCPF | SiamFC | ECO | VITAL CREST Our
EAO 0.291 | 0.383 0.295 | 0.308 0.325 0.323 0.235 0.374 | 0.325 0.326 0.331
Robustness 0.90 1.12 135 0.74 0.96 0.85 0.24 0.72 0.276 0.337 0.56
Accuracy 0.44 0.55 0.54 0.42 0.54 0.56 0.53 0.54 0.566 0.569 0.571
FPS 12 0.4 138 1.37 1.05 29 15 6 40 33 12.06

except for some minor errors in some frames; while other
conventional tracking algorithms lose the object. This is
because that the light and the pose of the object are drasti-
cally varied due to the head shaking. Deer sequence show
that the object suffers from appearance variations drasti-
cally. The proposed tracking algorithm succeeds in tracking
the object and obtains reliable results in such challenging
scenarios.

In addition, other attributes such as LR and OV, usually
bears the ambiguous object appearance changes, leading
to inferior tracking performance and visual object tracking
failures.

In Table 4, our tracking method substantially outperforms
all baselines in all attributes, demonstrating the effective-
ness of our method in Table 4. The results demonstrate
the importance of weighted multiple instances learning in
visual tracking, especially in BC and OCC. In such scenarios,
the proposed tracking algorithm can provide more reliable
information.

VI. CONCLUSION

In this paper, a weighted multiple instances based deep corre-
lation filter is developed. In the first frame, the initial object
appearance is modeled with superpixel feature. During the
tracking, residual network is used to extract the feature of
the object, which improves tracking efficiency and captures
the object appearance variations. Then, the sample impor-
tance is introduced into residual deep learning to train the
parameters of network and correlation filter. Furthermore,
we update the parameters of deep learning network and corre-
lation filter in a fixed interval frames to alleviate drift to some
extent. The experiments demonstrate that the proposed track-
ing algorithm significantly improves tracking performance
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over the state-of-the-art methods on OTB2015 benchmark
and VOT2018 dataset.
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