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ABSTRACT Facial Micro-Expressions (MEs) are spontaneous, involuntary facial movements when a person
experiences an emotion but deliberately or unconsciously attempts to conceal his or her genuine emotions.
Recently, ME recognition has attracted increasing attention due to its potential applications such as clinical
diagnosis, business negotiation, interrogations, and security. However, it is expensive to build large scale
ME datasets, mainly due to the difficulty of inducing spontaneous MEs. This limits the application of deep
learning techniques which require lots of training data. In this paper, we propose a simple, efficient yet
robust descriptor called Extended Local Binary Patterns on Three Orthogonal Planes (ELBPTOP) for ME
recognition. ELBPTOP consists of three complementary binary descriptors: LBPTOP and two novel ones
Radial Difference LBPTOP (RDLBPTOP) and Angular Difference LBPTOP (ADLBPTOP), which explore
the local second order information along the radial and angular directions contained in ME video sequences.
ELBPTORP is a novel ME descriptor inspired by unique and subtle facial movements. It is computationally
efficient and only marginally increases the cost of computing LBPTOP, yet is extremely effective for ME
recognition. In addition, by firstly introducing Whitened Principal Component Analysis (WPCA) to ME
recognition, we can further obtain more compact and discriminative feature representations, then achieve
significantly computational savings. Extensive experimental evaluation on three popular spontaneous ME
datasets SMIC, CASME II and SAMM show that our proposed ELBPTOP approach significantly outper-
forms the previous state-of-the-art on all three single evaluated datasets and achieves promising results on
cross-database recognition. Our code will be made available.

INDEX TERMS Micro-expression recognition, local binary pattern, feature extraction.

I. INTRODUCTION

Facial Micro-Expressions (MEs) are spontaneous, involun-
tary facial movements when a person experiences an emo-
tion but deliberately or unconsciously attempts to conceal
his or her genuine emotions [1]-[3]. MEs are more likely
to occur in high-risk environments because there are more
risks to show true emotions [4]. Recently, automatic facial
ME analysis has attracted increasing attention of affec-
tive computing researchers and psychologists because of its
potential applications such as clinical diagnosis, business
negotiation, interrogations, and security [5], [6]. The study
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of facial MEs is a well established field in psychology, how-
ever, it is a relatively new area from the computer vision
perspective with many unsolved and challenging problems
[7], [8]. There are three main challenges in automatic ME
analysis.

A. MEs HAVE A VERY SHORT DURATION, LOCAL

AND SUBTLE FACIAL MOVEMENTS

Compared to ordinary facial expressions, the duration of
a ME is usually very short, typically being no more than
500 ms [9]. Besides short duration, MEs also have other
unique characteristics such as local and subtle facial move-
ments [10]. Because of these unique characteristics, it is very
difficult for human beings to recognize MEs.
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B. LACK OF LARGE SCALE SPONTANEOUS ME DATASETS
Datasets have played a key role in visual recognition prob-
lems, especially in the era of deep learning which requires
large scale datasets for training [11]. ME analysis is not an
exception. However, another challenging issue faced by auto-
matic facial ME analysis is the lack of benchmark datasets
(especially large scale ME datasets) due to the difficulties in
inducing spontaneous MEs and labeling them [1], [7]. To
the best of our knowledge [12] , there are eight ME datasets:
USF-HD [13], Polikovsky’s database [14], YorkDDT [15],
SMIC [1], CASME [16], CASME II [2], CAS(ME)? [17],
and SAMM [3]. The first two are posed and not publicly-
available. Posed MEs are different from naturally occurring
spontaneous MEs significantly. Thus recent works focus on
spontaneous ME datasets. All of the datasets are small.
Besides, the emotion categories of the collected samples in
these datasets are unevenly distributed, because some emo-
tions are easier to elicit hence they have more samples.

C. LACK OF EFFICIENT AND DISCRIMINATIVE

FEATURE REPRESENTATIONS

Above challenges make ME analysis much harder and more
demanding than ordinary facial tasks. Therefore, the extrac-
tion of efficient and discriminative feature representations
becomes especially important for automatic ME analysis.

In automatic ME analysis, there are mainly two tasks:
ME spotting and ME recognition. The former refers to the
problem of automatically and accurately locating the tem-
poral interval of a micro-movement in a video sequence,
where extended versions of SMIC [1], CAS(ME)2 [17], and
SAMM [3] are widely used; while the latter is to classify the
ME in the video into one of the predefined emotion categories
(such as Happiness, Sadness, Surprise, Disgust, etc), where
SMIC [1], CASMEII [2], and SAMM [3] are widely adopted.
ME recognition is the focus of this paper.

Like ordinary facial expression recognition, ME recog-
nition consists of three steps: preprocessing, feature repre-
sentation and classification [7]. As we discussed previously,
the development of powerful feature representations plays a
very important role in ME recognition, and thus has been
one main focus of research [18]. Representative feature rep-
resentation approaches for ME recognition are mainly based
on Local Binary Patterns (LBP) [18], [19], Local Phase
Quantization (LPQ) [20], Histogram of Oriented Gradients
(HOG) [21] and Optical Flow (OF) [22].

Despite these efforts, there is still significant room for
improvement towards achieving good performance. The
small scale of existing ME datasets and the imbalanced distri-
bution of samples are the primary obstacles to applying exist-
ing data hungry deep convolutional neural networks which
have brought significant breakthroughs in various visual
recognition problems in computer vision due to their ability to
learn powerful feature representations directly from raw data.
Therefore, state-of-the-art methods for ME recognition are
still dominated by traditional handcrafted features like Local
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Binary Patterns on Three Orthogonal Planes (LBPTOP) [23],
3D Gradient Oriented Histogram (HOG 3D) [14] and His-
tograms of Oriented Optical Flow (HOOF) [24].

Due to its prominent advantages such as theoretical sim-
plicity, computational efficiency, and robustness to mono-
tonic grey scale changes, the texture descriptor LBP [25]
has emerged as one of the most prominent features for face
recognition [26]. Its 3D extension LBPTOP [23] is widely
used for facial expression and ME recognition [27]. Many
variants of LBP have been proposed to improve robustness,
and discriminative power, as summarized in recent surveys
[28], [29]. However, most LBP variants [30], [31] have
not been explored for ME recognition. In other words,
in contrast to LBP-based face recognition, LBPTOP type
ME recognition is surprisingly underexplored. Moreover,
current state-of-the-art ME features like LBPTOP and its
variants LBPSIP [32], LBPMOP [33], STLBP-IP [34], and
STRBP [35] suffer from some drawbacks, such as limited
representation power of using only one type of binary feature,
limited robustness, and increased computational complexity.

In this paper, in order to build more discriminative features
that can inherit the advantages of LBP type features without
suffering the shortcoming of using filters as complemental
features [25] (i.e., the expensive computation cost), we pro-
pose a novel binary feature descriptor named Extended Local
Binary Patterns on Three Orthogonal Planes (ELBPTOP) for
ME recognition. ELBPTOP is a descriptor that, we argue,
nicely balances the three concerns: high distinctiveness, good
robustness and low computational cost. In addition, LBPTOP
can be considered as a special case of the proposed ELBPTOP
descriptor. Our contributions of this paper are summarized as
follows.

« Inspired by the unique texture information of human
faces and the subtle intensity variations of local subtle
facial movements, the novel ELBPTOP encodes not
only the first order information, i.e. the pixel differ-
ence information between a central pixel and its neigh-
bours (called Center Pixel Difference Vector, CPDV),
but also encodes the second order discriminative infor-
mation in two directions: the radial direction (Radial
Pixel Difference Vector, RPDV) and the angular direc-
tion (Angular Pixel Difference Vector, APDV). They
are named ADLBPTOP and RDLBPTOP respectively.
The proposed ELBPTOP is more effective to capture
local, subtle intensity changes and thus delivers stronger
discriminative power.

o To achieve our goal of being computationally effi-
cient while preserving distinctiveness, we then apply
Whitened Principal Component Analysis (WPCA) to
get a more compact, robust, and discriminative global
descriptor. We are aware of the fact that WPCA has
proven to be effective in face recognition. However,
we argue that we are the first to apply WPCA to the
problem of ME recognition, which has its own unique
challenges compared to the extensively studied face
recognition problem.
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« We provide extensive experimental evaluation on three
popular spontaneous ME datasets CASME 11, SMIC,
and SAMM to test the effectiveness of the pro-
posed approach, and find that our proposed ELBPTOP
approach significantly outperforms previous state-of-
the-art on all three evaluated datasets. Our proposed
ELBPTOP achieves 73.94% on CASMEII, which is
6.6% higher than state-of-the-art on this dataset. More
impressively, ELBPTOP increases recognition accuracy
from 44.7% to 63.44% on the SAMM dataset.

Although our method is simple and handcrafted, the very
strong quality results obtained on three popular ME datasets
in addition with the low computational complexity prove the
efficiency of our approach for ME recognition.

The remainder of the paper is organized as follows.
Section II reviews related work in micro-expression recog-
nition and gives a brief outline of LBP and LBPTOP. The
main model and more details are represented in Section III,
including the proposed ADLBPTOP and the RDLBPTOP
descriptors and our ME recognition scheme. Experimental
results are presented in Section IV, leading to conclusions
in Section V.

Il. RELATED WORKS

Feature representation approaches of ME recognition can
be divided into two distinct categories: geometric-based
and appearance-based [36] methods. Specifically, geometric-
based features describe the face geometry such as the shapes
and locations of facial landmarks, so they need precise land-
marking and alignment procedures. By contrast, appearance-
based features describe the intensity and textural information
such as wrinkles and shading changes, and they are more
robust to illumination changes and alignment error. Thus,
appearance-based feature representation methods, including
LBPTOP [23], HOG 3D [14], HOOF [24] and deep learning,
have been more popular in ME recognition [7].

LBPTOP variants: Since the pioneering work by Pfis-
ter et al. [6], LBPTOP has emerged as the most popular
approach for spontaneous ME analysis, and quite a few
variants have been proposed. LBP Six Interception Points
(LBPSIP) [32] is based on three intersecting lines cross-
ing over the center point. LBP Mean Orthogonal Planes
(LBPMOP) [33] first computes an average plane for three
orthogonal planes, and then computes the LBP on the
three orthogonal average planes. By reducing redundant
information, LBPSIP and LBPMOP achieved better per-
formance. Reference [37] explores two effective binary
face descriptors: Hot Wheel Patterns [37] and Dual-Cross
Patterns [38] and makes use of abundant labelled micro-
expressions. Besides computing the sign of pixel differ-
ences, Spatio-Temporal Completed Local Quantized Patterns
(STCLQP) [39] also exploits the complementary compo-
nents of magnitudes and orientations. Decorrelated Local
Spatiotemporal Directional Features (DLSTD) [40] uses
Robust Principal Component Analysis (RPCA) [41] to extract
subtle emotion information and division of 16 Regions of
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Interest (ROISs) to utilize the Action Unit (AU) information.
Spatio-Temporal Local Radon Binary Pattern (STRBP) [35]
uses Radon Transform to obtain robust shape features, while
Spatiotemporal Local Binary Pattern with Integral Projection
(STLBP-IP) [34] turns to integral projections to preserve
shape attributes.

HOOF variants: Histograms of Oriented Optical Flow
(HOOF) [24] is one of the baseline methods that makes use
of optical flow in ME recognition. Facial Dynamics Map
(FDM) [42] describes local facial dynamics by extracting
principal OF direction of each cuboid. Similarly, [43] designs
Main Directional Mean Optical Flow (MDMO) features that
utilize the AU information from partitioning facial area into
36 ROIs. Different from these methods, Consistent Optical
Flow Maps [44] estimates consistent OF to characterize facial
movements, which are calculated from 25 ROIs and the
OF of each ROI could be in multiple directions. Recently,
Bi-Weighted Oriented Optical Flow (BI-WOOF) [45] makes
use of only the apex frame and the onset frame. The majority
of OF-based methods need to partition the face area pre-
cisely to make use of AU information. This improves the
performance but increases the complexity of preprocessing.
Reference [46] calculates the LBPTOP and HOOF fusion
features for automatic Necessary Morphological Patches
(NMPs) extraction which combines the AU-based method
and the feature selection method.

HOG 3D variants: HOG 3D [14] is firstly used to recog-
nize posed MEs and then as a baseline on spontaneous MEs.
Its variants, the Histogram of Image Gradient Orientation
(HIGO) [47] ignores the magnitude weighting, hence can
suppress the influence of illumination. This makes HIGO
become one of the most accurate descriptors at present.
However, it is worth noting that HOG is an edge-based gradi-
ent descriptor. It is sensitive to noise when not being filtered,
and the use of low pass filters could lead to the loss of sub-
tle motion change information in ME recognition. Besides,
the computation process is time-consuming and cumbersome,
resulting in slow speed.

Deep learning methods: Reference [48] adopts a shal-
low network with Convolutional Neural Networks (CNN)
and Long Short-Term Memory (LSTM). Other neural net-
works are explored in Dual Temporal Scale Convolutional
Neural Network (DTSCNN) [49], 3D Flow Convolutional
Neural Network (3DFCNN) [50], 3D Spatiotemporal Con-
volutional Neural Networks (3DCNN) [51] and Micro-
Expression Recognition algorithm using Recurrent CNNs
(MER-RCNN) [52]. These methods achieve some improve-
ments in ME recognition, but they are still significantly below
state-of-the-art handcrafted features, mainly due to lack of
large scale ME data.

Cross-database ME recognition (CDMER) is a new topic
in micro-expression analysis. CDMER considers the large
difference of feature distributions existing between the
training and testing ME samples in a real scenario to
exploit more generalizing approach on different datasets col-
lected by different cameras or under different environments.
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Besides, a combination of different datasets increased the
number of subjects and samples, which is beneficial to
the data-driven methods and deep-learning methods. The
fundamental works of 1st Micro-Expression Grand Chal-
lenge (MEGC2018) [53], 2nd Micro-Expression Grand Chal-
lenge (MEGC2019) [54], and [55] facilitate the development
of CDMER. Macro to Micro Transfer Learning [56] uti-
lizes transfer learning to implement CNN from big macro-
expression datasets to small ME datasets, ranking top
in MEGC2018. Besides transfer learning, [57] adopt two
domain adaptation techniques including adversarial train-
ing and expression magnification obtain the best results on
the full composite database in MEGC2019. Other methods
[58]-[63] also show promising performance in cross-
database challenges.

A. LBP AND LBPTOP

LBP was firstly proposed in [19], and a completed version
was developed in [18]. Later on, it was introduced to face
recognition in [26] and its 3D extended version LBPTOP
was proposed in [23] with application to facial expression
analysis.

(a) LBP

r.p,l
- {LXZO
rpo _ 106<0

b =s(x,,,~x)

61]61]71
. Binary: 11110001
Example: [s0]77]79 _— Decimal: 241
8417882
(b) LBPTOP

LBP on
Three
Orthogonal
Planes

FIGURE 1. (a) LBP pattern: The sample neighborhood is the center pixel
xc with p equally spaced pixels on a circle of radius r. Then the binary

code is calculated by comparing the differences between the center pixel
and its neighbors. An example is in the figure. (b) The process of LBPTOP.

LBP characterizes the special structure of p pixels, that
are evenly distributed in angle on a circle of radius r cen-
tered at pixel x.. In specific, as shown in Figure 1(a), for a
central pixel x, and its p neighboring equally spaced pixels
{xr,p,n}z;é on the circle of radius r, the LBP pattern is com-
puted via:

= I, x>0
LBP, ,(x.) = s(x —x)2" s(x)=1" - 1
rp(xe) ;0 Crpn = %6)2", 5(x) {O’ iz @
where s(-) is the sign function. The gray values of points
that do not fall exactly in the center of pixels are estimated
by interpolation. The decimal value of LBP pattern is given
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by the binary sequence of the circular neighborhood, such
as 241 = (11110001), in Figure 1(a). LBP is gray scale
invariant and is able to encode important local patterns like
lines, edges, and blobs because it measures the differences
between the center pixel and its neighbors.

Given an N*M texture image, a LBP pattern LBP, ,(x.)
can be the computed at each pixel c, such that a textured
image can be characterized by the distribution of LBP values,
representing the whole image by a LBP histogram vector.
By altering r and p, one can compute LBP features for
any quantization of the angular space and for any spatial
resolution.

LBPTOP [23] is the 3D extension of LBP by extracting
LBP patterns separately from three orthogonal planes: the
spatial plane (XY) similar to the regular LBP, the vertical
spatiotemporal plane (YT) and the horizontal spatiotemporal
plane (XT), as illustrated in Figure 1(b).

Clearly, LBPTOP encodes temporal changes, and compo-
nential information. A video can be represented by concate-
nating LBP on TOP. Despite a little more complex than the
static LBP, LBPTOP can achieve real time processing speed
depending on the size of the local sampling neighborhood.
The dimensionality of LBPTOP is higher than LBP. Since
LBPTOP, which extracts features from TOP, becomes pop-
ular when extending 2D spatial appearance descriptors to the
spatiotemporal domain.

IlIl. PROPOSED APPROACH
In this section, we first introduce the proposed novel binary

descriptor ELBPTOP and then present how to use it for ME
recognition.

A. ELBPTOP
LBPTOP has emerged as one of the dominant descriptors for
ME recognition. Despite this fact, it has several limitations.

o Currently, LBPTOP [23] usually only exploit the uni-
form patterns for ME representation. This results in
information loss since the proportion of uniform patterns
may be too small to capture the variations.

« It encodes the difference between each pixel and its
neighboring pixels only. It is common to combine com-
plementary features like Gabor filters to improve dis-
criminative power. However, this brings a significant
computational burden.

« A large sampling size is helpful since it encodes more
local information and provides better representation
power. However, increasing the number of sampling
points of LBPTOP increases its feature dimensionality
significantly.

The above analysis leads us to propose novel binary type
descriptors, which should not be competitive with LBPTOP,
but complement and extend a set of binary feature candidates.

We propose to explore the second order discrimina-
tive information in two directions of a local patch: the
radial differences (RDLBPTOP) and the angular differ-
ences (ADLBPTOP), as complement to the differences
between a pixel and its neighbors (LBPTOP). The proposed
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FIGURE 2. (a) A local circularly symmetric neighbor sampling of ELBP.
Two circles of p = 8 neighbor points are around the central pixel xc. The
radius of the inner circle is r — §, and the radius of the outer circle is r.
(b) An illustration of the process to calculate ELBP pattern.

RDLBPTOP and ADLBPTOP preserve the advantages of
LBP, such as a computational efficiency and gray scale
invariance.

1) RADIAL DIFFERENCE LOCAL BINARY PATTERN (RDLBP)
As illustrated in Section II, LBP is computed by thresholding
the neighboring pixel values on a ring against its center pixel
value. It only encodes the relationship between the neigh-
boring pixels on the same ring (i.e. a single scale) and the
center one, failing to capture the second order information of
neighboring pixels between different rings (different scales).
For every pixel in the image, we look at two rings of radii r
and r — § centered on the pixel x, and p pixels distributed
evenly on each ring, as shown in Figure 2. To produce
the RDLBP codes, we first compute the radial differences
{xrp.n — Xr—s,p,n}n between pixels on the two rings and then
threshold them against 0. The formal definition of the RDLBP
code is as follows:
p—1
RDLBP; p 5(xc) = Y _ sGrpn — Xr—s pn)2", )
n=0

where r and r — § denote the outer ring and the inner ring
respectively. As can be seen from Figure 3, the LBP values
of two different pixels can be same in some cases, but for
RDLBP, they are totally different. This is because RDLBP
encodes radial pixel difference information.

2) ANGULAR DIFFERENCE LOCAL BINARY PATTERN (ADLBP)
LBP also fails to encode the second order information
between pixels on the ring. Therefore, ADLBP is composed
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FIGURE 3. The two given patterns in the left would be considered
equivalent by LBP. However, the patterns are, in some ways, quite
different from one to others. Fortunately, this underlying change
properties can be revealed via angular and radial differences.

of neighboring pixel comparisons in angular (like clockwise)
direction for all pixels except the center pixel.
Formally, it can be calculated as follows:

p—1
ADLBP, j(x0) = Y G pnt1 — Xrpn)2". 3)

n=0
Similarly, Figure 3 shows that ADLBP encodes angular
difference information, which is different from the original
LBP descriptor . It is very compact and provides useful infor-
mation. We can see that both RDLBP and ADLBP are gray
scale invariant and computationally efficient. They can also
benefit from rotation invariant extension, uniform extension

and 3D extension of LBP.

3) EXTENDED LBP (ELBP)
We use ELBP to represent the combination of all three binary
descriptors: LBP, RDLBP, and ADLBP. The three operators
LBP, RDLBP and ADLBP can be combined in two ways,
jointly or independently. Because the joint way (3D joint
histogram) leads to huge dimension, we use the latter way.
For ME recognition, as shown in Figure 1(b), we extend
ELBP to ELBPTOP. Most LBPTOP based ME descriptors
use uniform LBP patterns and group the nonuniform patterns
into one bin. However, this leads to lots of information loss
because uniform LBPs may not be the majority of LBPs,
as illustrated in Figure 4. This is more obvious in the case
of ADLBP, where the nonuniform patterns are the dominant
patterns. Therefore, in this paper, we use all 2” patterns, rather
than uniform patterns only.

B. ELBPTOP FOR ME RECOGNITION

In this section, the ME representation is addressed using
our proposed ELBPTOP approach to explicitly handle the
encountered challenges.

To enhance the discrimination power, we propose to
fuse the information extracted by three binary descriptors
LBPTOP, RDLBPTOP and ADLBPTOP. The ME feature
representation algorithm is illustrated in Figure 6(a). For each
binary descriptor LBPTOP (or RDLBPTOP or ADLBPTOP),
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FIGURE 4. Proportions of the uniform! LBPs for the ELBP descriptors (LBP, ADLBP, and RDLBP) on
three planes (XY,XT,YT) from the CASME Il dataset. The first 9 bins of each histogram are the uniform
patterns, and others are the nonuniform patterns. We could observe that the uniform patterns may not
account for the major proportion of overall patterns. This is especially obvious in the case of ADLBP.

Testing

is m x g x [ x 2P. For instance, if we divide the video
sequence into 8 x 8 x 2 blocks, and we choose p = 8§,

Training

Happiness

the histogram dimension of a single descriptor would be
8 x 8 x 2 x 2 =32768.

Surprise An efficient and effective feature representation scheme is

O equally important for ME recognition as an efficient and good
local descriptor. For each binary code (LBPTOP, RDLBP-

DI“:g“l“ TOP or ADLBPTOP), the dimension of the feature repre-

sentation for each ME video sequence is m x g x [ x 2P,
which is in fact very high. This would cause a computational
burden for later classification stage. Therefore, to improve
efficiency and preserve distinctiveness, Whitened Principal
Component Analysis (WPCA) [64], [65] is firstly introduced
for dimensionality reduction before feature fusion.

The idea behind WPCA is that discriminative information
is equally distributed along all principle components. The
whitening transformation is applied to normalize the con-
tribution of each principal component. Specifically, given a
feature representation A, standard PCA is used to get the pro-
jected feature kye; = Wpeah at first, where W, is the projec-

Repression |

O

Others

O

FIGURE 5. lllustration of the ME classification problem. Samples frames
are from CASME Il [2].

the ME video sequences are represented as the concatenated
spatiotemporal histograms of the binary codes. In specific,

a video sequence is divided into m x g x [ blocks, then for
every single binary descriptor, the dimension of the histogram

IFor clear illustration, we transform the “full” pattern into ‘‘rotation
invariant (ri)” pattern [18]. Accordingly, the “uniform (u2)” pattern is
transformed into “rotation invariant uniform (riu2)” pattern. Meanwhile,
the proportion of the “u2” pattern in the “full” pattern is equal to the
proportion of the “riu2” pattern in the *“ri”’ pattern. The transformation has
no effect on our conclusion.
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tion matrix of with k orthonormal columns. Then, the sorted
eigenvectors corresponding to the descending sorted first £
principal components are transformed to normalized eigen-
vectors hy,pc, Whose variances equal to 1.

In summary, figure 6(a) illustrates the overview of the
proposed feature extraction framework. At first, the video
sequences are spatially divided into multiple nonoverlapping
subblocks, from each of which three sub-region histograms
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FIGURE 6. Overview of the proposed ME recognition framework.

are extracted via the three proposed binary codes. Each
subblock histogram is normalized to sum one. Then, his-
tograms of different subblocks are concatenated and pro-
jected by WPCA for dimensionality reduction. Finally, three
feature representation vectors with low dimensionality from
LBPTOP, RDLBPTOP and ADLBPTOP, are concatenated
as a single vector hg, which is used for final ME feature
representation.

C. THE ME RECOGNITION PIPELINE

The ME recognition problem is illustrated in Figure 6(b).
The proposed overall pipeline for ME classification is shown
in Figure 5. Following [47], raw ME video sequences are
generally processed by the following steps: face alignment,
motion magnification, temporal interpolation, feature extrac-
tion and classification.

Our main contribution in this work is the feature repre-
sentation step, which is presented in detail in the previous
sections. A very brief introduction of the other involved
steps are given below. Readers are requested to referred to
[31, [6], [47] for more information.

Face Alignment: For CASME 1I [2], SMIC [1] datasets,
we use the given cropped images so that face alignment is not
required. For SAMM [3] dataset, Active Shape Model [66]
is used to detect 77 facial landmarks and then all the
facial images are normalized using affine transformation and
cropped into the same size according to the eye center points
and the outermost points.

Motion Magnification: Since local intensity changes and
facial movement changes in ME are subtle, effective ME
characteristics are difficult to capture. To tackle these issues,
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following [47], [67] we use Eulerian Video Magnification
(EVM) [68] to magnify the subtle motions in videos. The goal
is to consider the time series of intensity values at any spatial
location (pixel) and amplify variation in a given temporal
frequency band of interest. The filtered spatial bands are then
amplified by a given factor «, added back to the original
signal, and collapsed to generate the output video.

Temporal Interpolation: To address the issue that ME
clips are short and have varied duration, we use the Temporal
Interpolation Model (TIM) [69] and the code provided by [6].
The model first seeks a low-dimensional manifold where
visual features extracted from the frames of a video can be
projected onto a continuous deterministic curve embedded
in a path graph. Moreover, it can map arbitrary points on
the curve back into the image space, making it suitable for
temporal interpolation.

Classification: For classification, we use Linear Support
Vector Machine (LSVM) [70] as the classifier. Leave-one-
subject-out cross-validation (LOSOCV) method is adopted
to determine the penalty parameter ¢ in SVM. For each test
subject, LOSOCYV is applied to the training samples, where
in each fold the samples belonging to one subject are served
as validation set and the rest of samples compose the new
training set to select the best ¢ and the selected c is used for
testing.

IV. EXPERIMENTS
A. DATASETS

Three most popular spontaneous datasets, including
CASME 1II [2], SMIC [1] and SAMM [3], are used to eval-
uate the performance of the proposed method. The dataset
statistics are summarized in Table 1.
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TABLE 1. A summary of the different features of the SMIC, CASME Il and
SAMM datasets.

Feature SMIC-HS [1] [ CASMEII[2] [ SAMM [3] |
No. of Samples 164 247 159
No. of Subjects 16 26 29
Resolution 640 x 480 640 x 480 2040 x 1088
Facial Area 160 x 130 340 x 280 400 x 400
FPS 100 200 200
FACS Coded NO Yes Yes
Classes 3 5 7

SMIC [1]: SMIC consists of 164 sample video clips
of 16 subjects belonging to 3 different classes, e.g., Positive
(51 samples), Negative (70 samples) and Surprise (43 sam-
ples). The SMIC data has three versions: a high-speed camera
(HS) version at 100 fps, a normal visual camera (VIS) version
at 25 fps and a near-infrared camera (NIR) version at 25 fps.
The HS camera was used to record all data, while VIS and
NIR cameras were only used for the recording of the last
eight subjects’ data. The emotion classes are only based
on participants’ self-reports. In this paper, we use the HS
samples for experiments, and the resolution of average face
size is 160 x 130.

CASME 1I [2]: CASME 1I contains 247 ME video clips
from 26 subjects. All samples are recorded by a high speed
camera at 200 fps. The resolution of samples is 640 x
480 pixels and the cropped area has 340 x 280 pixels. These
samples are categorized into five ME classes: Happiness
(32 samples), Surprise (25 samples), Disgust (64 samples),
Repression (27 samples) and Others (99 samples). Differ-
ent from SMIC, CASME 1I has AU labels following Facial
Action Coding System (FACS). These classes are used in the
whole parameter evaluation and they are used for comparison
in Table 7. To remove the bias of human reporting, [71] reor-
ganized the classes based on AU instead of original estimated
emotion classes. Performance on the reorganized objective
classes are also reported in Table 8.

SAMM [3]: SAMM database contains 159 ME video
clips from 29 subjects. All samples are recorded by a high
speed camera at 200 fps. The resolution of samples is
2040 x 1088 pixels and the cropped facial area has about
400 x 400 pixels. These samples are categorized into
seven AU based objective classes. Classes I-VI are linked
with Happiness (24 samples), Surprise (13 samples), Anger
(20 samples), Disgust (8 samples), Sadness (3 samples), and
Fear (7 samples). Class VII (84 samples) relates to contempt
and other AUs that have no emotional link in FACS [72].
We carry on experiment on SAMM with classes I-V and the
results are shown in Table 8.

B. IMPLEMENTATION DETAILS

We conduct two set of experiments: (1) Single database
experiment involving SMIC and CASME 1I with their orig-
inal estimated emotion classes, and CASME II and SAMM
with the reorganized objective classes I-V. (2) Cross-database
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experiments involving SMIC, CASME 1I , and SAMM fol-
lowing the Guidelines of the 1st MEGC [53] and the 2nd
MEGC [54].

Most of the methods adopt leave-one-subject-out (LOSO)
strategy for evaluation. For each fold, all samples from one
subject are used as a testing set and the rest for training. A few
works [40], [46] use leave-one-sample/video-out (LOVO)
protocol, in which one sample is used as a testing set and the
rest for training. Some works use their own protocols, such as
random sampling of test partition [37], [51] , five-fold [52]
and others [49]. Leave one subject out (LOSO) strategy is
used for evaluation in all the experiments. Mean accuracy,
Fl-score, Weighted Fl-score, and Unweighted Average
Recall (UAR) are used to measure the performance. Mean
accuracy is obtained by averaging accuracies of subjects.
F1-score is defined as F = % Zle % where p; and r; are
the precision and recall of the ith ME class, respectively, and
¢ is the number of classes. Weighted F1-scores are weighted
by the number of samples in the corresponding classes before
averaging. UAR is the “balanced” accuracy (averaging the
accuracy of each class without consideration of the number
of samples per class).

Parameters: For block division parameters (m x g x [),
8 x 8 x 2 1is for CASME II and SMIC, and 5 x 5 x 2 is for
SAMM. For EVM [67], we choose the second-order bandpass
filter with cutoff frequencies w1 = 0.4, wp = 0.05 and spatial
frequency cutoff A, = 16. Magnification value « is set to
20 for CASME II and SAMM, while ¢ = 8 is chosen for
SMIC. TIM [69] is used to interpolate all ME sequences into
the same length 10 according to [47]. Values of the number
of neighboring pixels p, outer ring radius r and inner ring
radius » — § can be found in tables. The WPCA dimension is
v — 1, where v is the number of video clips of each dataset,
e.g., 163 for SMIC and 246 for CASME II.

TABLE 2. ME recognition accuracy (%) of single descriptors on SMIC
using two different encoding schemes: full patterns and uniform patterns.
p. r and r — § indicates the number of neighboring points, the outer ring
and the inner ring respectively. All experiments are conducted without
WPCA and EVM.

full patterns uniform patterns

‘ Method | Acc. (%) / Fl-score | (r,p,d) | Acc.(%)/Fl-score [ (r,p,d) |
LBPTOP 52.07 /0.48 3.8) 49.85 /0.45 3.8)
ADLBPTOP 53.11 /0.51 (3,8) 49.89 /047 (3,8)
RDLBPTOP 53.26 /0.50 3.8,2) 46.80 /0.46 3.8,2)

C. PARAMETER EVALUATION

The effect of encoding scheme: Table 2 compares the per-
formance of two encoding schemes, full patterns (all 2
patterns) and uniform patterns, on SMIC. Results on single
binary descriptor without WPCA are reported. From table 2,
we can see those histogram representations generated by the
full patterns significantly outperform the uniform patterns,
on all binary descriptors by a large margin (2.22% to 6.46% in
accuracy, and 0.03 to 0.04 in F1-score), clearly demonstrating
the insufficiency of the uniform patterns for representing ME
videos. As aresult, we conduct rest experiments using the full
patterns encoding scheme.
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TABLE 3. ME recognition accuracy (%) of different binary descriptors on
SMIC with or without WPCA. (m x q x /) is set to 8 x 8 x 2. Experiments
are conducted without EVM.

TABLE 5. ME recognition accuracy using different numbers of neighbors
p as well as with or without EVM. The parameters of (m x q x /) and the
WPCA dimensions k are the same as Table 4.

Method | original (h) ] WPCA (%) _ \ SMIC [ CASME II
etho [ Acc. (%) /Fl-score | (r,p,6) | Dim. | Acc. (%) /Fl-score | (r,p,9) | Dim. | Method | Acc. (%) /Fl-score | (r,p,6) | Acc. (%) /Fl-score | (r,p,0)
LBPTOP 51.00 /047 (28) 98304 | 5229 /049 28 | 163 ADLBPTOP 6227 1053 ) 56.45 /039 33
ADLBPTOP 55.11 /0.53 2.8) 98304 58.45 /0.54 2,8) 163
63.73 70.61 (1.8) 69.12 /0.64 G
RDLBPTOP 52.61 /0.49 (2,8,1) | 98304 52.61 /0.49 (2,8,1) 163 ADLBPTOP+EVM 54.61 /0.56 @4 70.20 / 0.69 2.4
LBPTOP 5450 /0.53 ) 5297 10.37 2.8
60.83 /0.60 €5 67.08 /058 @38
. LBPTOP+EVM
The effect of WPCA: Table 3 illustrates the effect of — g:;j ; ng (f;‘l)) Z:fz ; g‘:i f{:‘;
WPCA dimensionality reduction on SMIC. Clearly, the accu-
61.04 /058 @83) 67.62 /0.66 (382
. . . . RDLBPTOP+EVM
racy and F1-score of all descriptors is consistently improved 62.57 /0.56 (44.3) 69.24 /0.64 GAD

by WPCA. Besides, due to much lower feature dimensional-
ity (163 compared with 98304), WPCA could lead to great
computational saving. Therefore, further experiments are
conducted using WPCA.

TABLE 4. ME recognition accuracy (%) of the single binary descriptors on
SMIC and CASME Il under various parameter settings. (m x q x /) is set to
8 x 8 x 2. The WPCA dimension k for SMIC is 163, and 246 for CASME II.
Experiments are conducted without EVM.

ADLBPTOP,, | LBPTOP,,, [ RDLBPTOP,,; |
| Acc. /Fl-score | (r,p) | Acc. /Fl-score [ (r,p) | Acc. /Fl-score | (r,p,9) |
6227 1058 | (1,8) | 52.19 /053 | (1.8) | 52.55 /053 | (1.8.0)
58.45 /0.54 2,8) 52.29 /0.49 (2,8) 52.61 /049 (2,8,1)
53.01/051 | (3.8) | 52.07 /048 | (3.8) | 50.67 /046 | (3.8,1)
SMIC 53.11 /051 3.8) 52.07 /1048 (3.8) 53.26 /0.50 (3.8,2)
4795 /049 | (4.8) | 54.50 /053 | (4.8) | 5597 /050 | (4.8,1)
4795 /049 | (4.8) | 5450 /053 | (4.8) | 52.89 /048 | (4.82)
47.95 /0.49 (4,8) 54.50 /0.53 (4,8) 55.45 /0.50 (4,8,3)
48357034 | (1.8) | 50.157038 | (1,8) | 49.14 /035 | (1.8.0)
56.45 /039 | (2.8) | 5279 /037 | (28 | 50.89 /038 | (2.8,1)
4436 /035 | (3.8) | 5092 /036 | 3,8) | 4949 /035 | (3.8,1)
4436 /035 | (3.8) | 5092 /036 | (3.8) | 5510 /037 | (3.8.2)
47.23 /035 4.8) 49.49 /0.29 (4.8) 40.64 /0.31 (4.8,1)
47.23 1035 4.8) 49.49 /0.29 (4.8) 43.19 /0.28 (4.8,2)
47237035 | (4.8) | 4949 /029 | (4.8) | 4560 /032 | (4.83)

dataset

CASME II

Evaluation of single binary descriptor: To explore
the characteristics of different binary descriptors, we con-
duct experiments under various (r, p, §) settings. As shown
in Table 4, the radius r has great impacts on the performance
of the three descriptors. The best accuracy often exceeds
the second best by a large gap. Therefore, the choice of the
best radius 7 is of great importance. It’s the same for F1-score.
In some cases, the highest accuracy and Fl-score do not
appear on the same parameters. In the following experiments,
we choose the parameter setting with the highest accuracy.
Similarly, § is very important for the performance of RDLBP.
Comparing the best results of ADLBPTOP, LBPTOP and
RDLBPTOP, we can find that the proposed ADLBPTOP
and RDLBPTOP outperform LBPTOP on both SMIC and
CASME Il in accuracy, which shows the importance of radial
and angular difference information. Especially, ADLBPTOP
performs much better than LBPTOP in accuracy and F1-score
(3.66% and 8.27% higher in accuracy, 0.01 and 0.05 higher
in F1-score on two datasets respectively).

Evaluation of EVM and parameter p: Evaluation of
the number of neighboring pixels p and the effect of EVM
are summarized in Table 5. Note that all the results are
reported with their best radii. We can see that EVM can gen-
erally increase the recognition accuracy and F1-score, some-
times significantly (such as for ADLBPTOP and LBPTOP).

VOLUME 7, 2019

Table 5 also indicates that for each single ELBPTOP descrip-
tor, the performance achieved by p = 4 is better than that by
p = 8, with ADLBPTOP on SMIC being an exception.

TABLE 6. ME recognition accuracy (%) of three binary descriptors on
different combinations of planes. The parameters (m x q x I) and k are
the same as Table 4. Experiments are conducted with EVM.

Method \ SMIC [ CASME II \
| Acc. (%) /Fl-score | (r,p,d) | Acc. (%) /Fl-score | (r,p,9) |
TOP 63.73 /0.63 (1,8) 69.12 /0.64 3.8
XYOT 55.91 /0.57 (1,8) 64.12 /0.60 3.8)
ADLBP | XOT 55.92 /0.58 (1,8) 61.47 /0.58 3.8)
YOT 60.22 /0.58 (1,8) 62.87 /10.57 3.8)
XY 55.69 /0.51 (1,8) 56.46 /0.41 3.8)
TOP 60.83 /0.59 (3.8) 67.08 /0.61 (4.8)
XYOT 60.47 /0.60 3.8) 65.04 /0.60 4.8)
LBP XOT 57.24 10.58 3.8 61.38 /0.56 4.8)
YOT 55.47 10.57 3.8 67.65 /0.59 4.8)
XY 45.97 10.45 3.8) 60.26 /0.43 4.,8)
TOP 61.04 /0.58 (4,8,3) 67.62 /0.65 (3,8,2)
XYOT 57.84 /0.59 (4,8,3) 68.85 /0.66 (3,8,2)
RDLBP | XOT 56.06 /0.56 (4.8,3) 62.91 /0.60 (3.8,2)
YOT 58.76 /10.55 (4,8,3) 66.56 /0.63 (3.8,2)
XY 48.85 /10.47 (4,8,3) 57.14 /043 (3.8,2)

Evaluation of orthogonal planes: Table 6 illustrates the
performance of three binary features (LBP, ADLBP, RDLBP)
on five combinations of planes. TOP, XYOT, XOT, YOT and
XY are abbreviations for XY+XT+YT, XT+YT, XT, YT
and original spatial plane XY respectively. It can be observed
that TOP and XYOT generally yields the best performance,
which indicates that the dynamic information along the time
dimension represents the most important information for ME
recognition. In contrast, the results on XY plane are almost
the worst. This is possibly because the XY plane contains
much redundant information about the facial appearance.
Maybe not all areas in the facial area contain useful discrim-
inative information for ME recognition.

Feature Fusion: In order to find a good fusion of LBP*,
RDLBP*, and ADLBP* (here, * represents one of TOP,
XYOT, XOT, YOT and XY), we test all 215 (6% — 1) possible
feature fusion schemes on SMIC and CASME 1I. All results
are shown in Figure 7 in descending order. We can see that
the highest accuracy is achieved by combining the three type
of binary codes. The best results on SMIC-HS is 69.06%,
given by ADLBPTOP, g3 + LBPTOP3 4 + RDLBPXOT4 43,
and on CASME 1I is 73.94%, given by ADLBPTOP, 4 +
LBPTOP3 4 + RDLBPXOT3 4,1.
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FIGURE 7. ME recognition accuracy(%) of different feature fusion schemes on SMIC and CASME II. In the boxes, we show the
accuracy of the best fused descriptor and three single binary descriptors.

TABLE 7. Comparison between ELBPTOP and previous state-of-the-art
methods on CASME Il (with original classes) and SMIC.

Method \ CASME II [ SMIC \
| Acc. (%) | Fl-score [ Acc. (%) | Fl-score |
LBPTOP [1] - - 4878 -
LBPMOP [33] 44.13 - 50.61 -
FDM [42] 45933 041! 54.883 0.54!
LBPSIP [32] 46.56 - 4451 -
3DFCNN [50] 59.11 - 55.49 -
STCLQP [39] 58.392 0.58 64.02? 0.64
STLBP-IP [34] 59.51 - 57.93 -
CNN+LSTM [48] 60.98 - - -
BiWOOF + Phase [73] 62.55° 0.65 68.293 0.67
Hierahical STLBP-IP [74] 63.83% 0.61 60.783 0.61
STRBP [35] 64.37 - 60.98 -
Discriminative STLBP-IP [75] | 64.78 - 63.41 -
OF Maps [44] 65.35 - - -
HIGOTOP [47] 67.31 - 68.29 -
ELBPTOP 73.94 0.69 69.06 0.62
2pxr

! The Fl-score here is different, which is defined as F' = i
where p and r are the average precision and recall of all tﬁe ME class.
2 Mean recognition rate, which is obtained by averaging accuracies of classes.
3 Overall recognition rate, which is the number of correctly classified
samples over the total samples.

As it can be seen from Figure 7, that the fused
feature increases the accuracy by 3.90%, 5.33% and
6.49% respectively compared with using LBPTOP, ADLBP-
TOP or RDLBPTOP alone on SMIC. Similarly, the accuracy
is improved by 2.39%,3.74% and 4.70% on the three binary
codes respectively on CASME II. The strong performance
improvement shows that the fused approach indeed captures
complementary information.

D. COMPARATIVE EVALUATION

1) SINGLE DATABASE RESULTS

We compare the best results achieved by our ELBPTOP
with the baseline method and recent and relevant works on
CASME II and SMIC with their original estimated emotion
classes in Table 7 , and on CASME II and SAMM with the
reorganized objective classes in Table 8. Since the perfor-
mance with different protocols is quite different, we only
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TABLE 8. Comparison between ELBPTOP and previous state-of-the-art
methods on SAMM and CASME II (with reorganized classes).

Method SAMM CASME II
Acc. (%) | Fl-score | Acc. (%) | Fl-score
LBPTOP [71] 44.70 0.35 67.80 0.51
HOOF [71] 42.17 0.33 69.64 0.56
HOG 3D [71] 34.16 0.22 69.53 0.51
ELBPTOP 63.44 0.48 79.55 0.66

TABLE 9. The results of composite database evaluation according to
MEGC 2018.

‘ Method | Fl-score [ Weighted Fl-score |
HOG 3D [76] 0.27 0.44
ELRCN [58] 0.39 0.52
LBPTOP [76] 0.40 0.52
HOOF [76] 0.40 0.53
Transfer learning [56] 0.64 0.73
ELBPTOP 0.64 0.71

compare the methods using the same LOSO strategy. For the
same method, results with LOSO are usually lower than those
with other protocols (LOVO, k-fold, and so on).

From Tables 7 and 8, we can observe that our pro-
posed approach consistently gives the best results on all
three datasets, significantly outperforming the state-of-the-
art. As illustrated in Table 7, it is clear that our proposed
method produces the highest accuracy (73.94%) and the high-
est Fl-score (0.69), which is 6.63% higher in accuracy and
0.04 higher in Fl-score than the second best on CASME 11
(with original classes). In Table 8, our method also surpasses
all other methods on CASME II (with reorganized classes)
significantly, improving a margin of 9.91% in accuracy and
0.10 in Fl-score. The effectiveness of our method is further
demonstrated by the large improvement on SAMM, with
an increase from 44.70% to 63.44% (a margin of 18.74%).
The strong performance on all ME datasets clearly
proves that our proposed ELBPTOP is effective for ME
recognition.
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TABLE 10. The results of composite database evaluation according to MEGC 2019.

Method Full SMIC CASME 11 SAMM
Fl-score [ UAR | Fl-score | UAR | Fl-score | UAR | Fl-score | UAR
LBPTOP [23] 0.59 0.58 0.20 0.53 0.70 0.74 0.40 0.41
Bi-WOOF [45] 0.63 0.62 0.57 0.58 0.78 0.80 0.52 0.51
CapsuleNet [63] 0.65 0.65 0.58 0.59 0.71 0.70 0.62 0.60
OFF-ApexNet [59] 0.72 0.71 0.68 0.67 0.88 0.87 0.54 0.54
Dual-Inception Network [61] 0.73 0.73 0.66 0.67 0.86 0.86 0.59 0.57
STSTNet [60] 0.74 0.76 0.68 0.70 0.84 0.87 0.66 0.68
EMR with Adversarial Training [57] 0.79 0.78 0.75 0.75 0.83 0.82 0.78 0.72
ELBPTOP 0.71 0.69 0.65 0.66 0.89 0.88 0.49 0.49

2) CROSS DATABASE RESULTS

To test the generalization of our method, we also conduct
cross database experiments introduced in MEGC2018' and
MEGC20192 Composite Database Evaluation (CDE) are
used to test the performance. Following MEGC2018, all
samples from CASME II and SAMM with their reorganized
objective classes I-V are combined into a single composite
database. There are total of 47 subjects (26 from CASME II
and 29 from SAMM) and 253 samples (185 from CASME
IT and 68 from SAMM). The results are shown in Table 9.
It can be seen from the table that our method achieves the
best F1-score and the second weighted F1-score, confirming
the generalization of our method.

Following MEGC2019, all samples from CASME II and
SAMM and SMIC are combined into a single compos-
ite database, and the original emotion classes are grouped
into three main classes: negative, positive and surprise.
There are total of 68 subjects and 442 samples. Results
in Table 10. show that our method is extremely powerful
on the CASME 1I, achieving the highest UAR and F1-score.
But there is still a need for further exploration on SMIC and
SAMM. We infer that the following factors affect the per-
formance on these two datasets: (1) Different pre-processing
methods and cropping areas on SAMM. (2) Big differences
in age and ethnicity in SAMM. (3) The lower frame rate and
lower resolution on SMIC. These factors make the optimal
parameters on each data set inconsistent, which in turn affects
performance.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a simple, efficient and robust
descriptor ELBPTOP for ME recognition. ELBPTOP con-
sists of three complementary binary descriptors: LBPTOP
and two novel ones RDLBPTOP and ADLBPTOP, which
explore the local second order information along radial
and angular directions contained in ME video sequences.
For dimension reduction, WPCA is used to obtain efficient
and discriminative features. Extensive experiments on three
benchmark spontaneous ME datasets, SMIC, CASME II
and SAMM have shown that our proposed approach sur-
passes state-of-the-art by a large margin in single database
recognition, and also achieve more promising results on

1 http://www2.docm.mmu.ac.uk/STAFF/m.yap/FG2018Workshop.htm
2 https://facial-micro-expressiongc.github.io/MEGC2019/
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cross-database recognition.

It is worth noting that there are some difficulties for micro-
expression analysis: (1) Lack of standard evaluation pro-
tocol. Different evaluation protocols, performance metrics,
number of samples, and emotion classes are chosen by differ-
ent researchers. It raises the barriers of entry to this topic and
increases difficulties for a fair comparison. (2) Lack of large
scale spontaneous ME datasets. Small sample size and uneven
distribution are still the key to restriction the acquisition
of effective features and application to real life. Especially,
there are single emotion class in some subject, making it
more difficult to obtain features that are distinguishable from
expressions rather than distinguishing from subjects.

Hand-crafted features confirm that effective discriminant
characteristics can be learned. And in the current micro-
expression field, many of the deep learning methods are based
on hand-crafted features. But some hyper parameters need
to be artificially selected, which restricts the performance in
cross database problem to some extent. In our future work,
we plan to design data-driven methods to learn binary codes
directly from data for ME recognition. In addition, in many
works, the AU information is very useful but we have not used
it in this paper. We will design a better area division algorithm
to utilize the AU information.
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