
Received July 4, 2019, accepted July 26, 2019, date of publication August 21, 2019, date of current version September 6, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2936714

Decentralized Iot Edge Nanoservice Architecture
for Future Gadget-Free Computing
ERKKI HARJULA 1, PEKKA KARHULA2, JOHIRUL ISLAM1, TEEMU LEPPÄNEN 3,
AHSAN MANZOOR4, MADHUSANKA LIYANAGE 1,5, JAGMOHAN CHAUHAN6,
TANESH KUMAR 1, IJAZ AHMAD 2, AND
MIKA YLIANTTILA 1, (Senior Member, IEEE)
1Centre for Wireless Communications, University of Oulu, 90014 Oulu, Finland
2VTT Technical Research Centre of Finland Ltd., 02044 Espoo, Finland
3Centre for Ubiquitous Computing, University of Oulu, 90014 Oulu, Finland
4Rovio Entertainment Ltd., 02150 Espoo, Finland
5School of Computer Science, University College Dublin, Dublin, D04 V1W8 Ireland
6Department of Computer Science and Technology, University of Cambridge, Cambridge CB3 0FD, U.K.

Corresponding author: Erkki Harjula (erkki.harjula@oulu.fi)

This work was supported in part by the Academy of Finland, in part by the Technology Industries of Finland Centennial Foundation, and in
part by the Jane and Aatos Erkko Foundation.

ABSTRACT In the envisioned ubiquitous world, services will follow users as they move across smart
surroundings. Services are instantiated to users through the environment, appearing and disappearing as
they move, which reduces the need for personal communication devices such as smartphones or tablets.
To facilitate this development, service architectures need to support virtualized, on-demand service com-
position based on the hardware and software resources available at the current user location. The technical
context for this type of user interaction with digital services through smart surroundings is called Internet
of Everything (IoE). Today’s service architectures will be too inflexible in this highly decentralized and
dynamic environment. Hence, in this article we propose a novel service model called nanoEdge, where
nodes collaboratively provide needed functions for virtual services that need to be deployed locally due
to performance, efficiency or reliability requirements, for example. The main contributions of this article
are the nanoEdge conceptual model and its proof-of-concept (PoC) implementation to show that the
model is feasible with regard to performance and resource-efficiency. The successful demonstration of PoC
implementation exemplifies future IoE service scenarios with today’s hardware components.

INDEX TERMS Edge computing, fog computing, IoT, IoE, virtualization, microservices, nanoservices,
gadget-free computing.

I. INTRODUCTION
The digital world we currently live in is dominated by gadgets
and electronic devices. The transition from local computing
to cloud computing has made it possible to access all our
digital content and services ubiquitously with any Internet-
connected device [1], [2]. Until today, we have used different
digital gadgets we carry with us, such as smart phones, tablets
and laptops, to access our digital world. However, a major
paradigm shift concerning the relationship between us and
the digital world is just around the corner: a change from
separate person-to-person, person-to-machine and machine-
to-machine computing towards Internet of Everything (IoE)

The associate editor coordinating the review of this article and approving
it for publication was Tariq Umer.

computing, encompassing intelligent connection of people,
processes, data and things, where machines and humans com-
municate seamlessly using converged services and applica-
tions [3]–[5]. Since most of the data and services already
reside outside our devices thanks to cloud computing,
the transition to ubiquitous gadget-free world is the natural
next step. Internet of Things (IoT) [6]–[8], with its recent
advancements towards more versatile sensing including mul-
timedia sensors [9], [10], as well as emerging 5G and Edge
Computing technologies [11]–[13] have already started the
transition towards the new era of digitalization. In this new
era, it is possible to connect everyday computational objects
to the Internet with sufficient performance and providing the
needed computational resources close to the user. We are
already approaching the world where infrastructure around us

119856 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0001-5331-209X
https://orcid.org/0000-0002-3513-6106
https://orcid.org/0000-0003-4786-030X
https://orcid.org/0000-0002-5907-8414
https://orcid.org/0000-0003-1101-8698
https://orcid.org/0000-0002-8079-5514

E. Harjula et al.: Decentralized Iot Edge Nanoservice Architecture for Future Gadget-Free Computing

is connected and intelligent enough to deliver us the required
services without the need of carrying gadgets, i.e. mobile
devices.

In our recent research, we have envisioned a path towards
the paradigm shift in the relationship between people and the
digital world 1 [5], [14], [15]. In this ubiquitous approach,
the user lives ‘‘naked’’ without gadgets. Services material-
ize for the user only when they are needed and disappear
when not needed. The digital surroundings form an intelli-
gent environment around users, providing all the information,
tools, and services the users need in their everyday life. New
digital ‘‘service bubbles’’ are created on the fly for different
situations where people interact with each other or with the
surroundings, such as meetings, events, sharing a car ride,
etc. These service bubbles can follow users as they move,
or they may be put on hold and re-established later in another
time and/or location. In these scenarios, it is beneficial to
compose services in such a manner that maximizes the use
of computational hardware and software available on site.

To realize the above-mentioned vision, the underlying
service architectures need to support on-demand service
composition based on the hardware and software resources
available at the current location. In this paper, we pro-
pose a novel virtualized and decentralized nanoservice-based
model, nanoEdge, where nodes, based on their hardware
capacity and load, collaboratively provide local processing,
storage, security and privacy services without relying on cen-
tralized entities. With the concept of nanoservice, we mean
a miniature version of microservices that are widely used
in today’s distributed cloud-based service provisioning. The
key idea behind using nanoservices is that all capable nodes
in the proximity can participate in the service provisioning:
the high-capacity nodes can provide more resources and
low-capacity nodes can do with less. The solution is highly
scalable and gives tools for autonomous service composition
based on the current need.

From the performance viewpoint, locally composed ser-
vices provide inherently higher throughput and lower latency.
From the reliability viewpoint, local service composition
enables offline functionality of services, i.e. the operation of
local services can continue despite the problems with access
and core networks. From the security viewpoint, most of the
sensitive user data can be kept in local machines to reduce the
risks for security and privacy attacks.

The rest of this paper is structured as follows: Section II
goes through the state of the art and existing related work,
Section III introduces the proposed model, and Section IV
presents a PoC implementation built on it. Section V presents
the feasibility study of the proposed model and discusses the
results, and finally, Section VI concludes the article.

II. BACKGROUND AND RELATED WORK
During the recent years, we have witnessed the evolution
from local to virtualized data storage, computation, network

1The Naked Approach project: http://www.nakedapproach.fi/

management, applications and workspaces in the form of
Everything as a Service (XaaS, or EaaS) and Cloud Com-
puting (CC) [16], [17]. Virtualization refers to the replica-
tion of a device or its resources in virtual form, bringing
some clear benefits over traditional systems, such as easy
management, flexibility, universal availability and decreased
hardware requirements for end-user devices. However, due
to centralized operation, the XaaS-model has also introduced
new challenges. A widely known challenge is related to
communication latency due to high physical and logical dis-
tance between end-nodes and the server where the application
logic and data storage resides. Increased latency is partic-
ularly problematic with delay-tolerant applications such as
gaming [18]. Furthermore, since the digital world penetrates
deeper and deeper in our everyday life, a particular concern
is on the fact that cloud-based operation makes systems more
vulnerable for attacks against privacy and availability of ser-
vices2 [19]–[21]. We are living in a world where our data
and the data collected from us is ruthlessly exploited. What is
even worse, IoT - surrounding us almost everywhere - gives
cybercriminals further tools to even threaten our health or
life3 4 [22]. Therefore, end-users are becoming more and
more concerned on exposing their personal data to public
networks and data centers [19], [23], [24]. These are among
the most important driving factors towards Edge Comput-
ing [12], [25], [26], which pushes various computing and data
analysis capabilities from centralized locations to the edges of
a network.

A. EDGE AND FOG COMPUTING
Edge Computing (EC) [25], [26] brings a new computational
tier to cloud computing, between data center and end-devices.
EC enables services to exploit the proximity of devices,
e.g. by providing highly-reliable ultra-low latency and high
data rate communication and the ability to control and limit
the scope of propagation of private user data. Multi-access
Edge Computing (MEC) is a standard solution by European
Telecommunications Standards Institute (ETSI) for forth-
coming 5G networks to offload processing and data storage
frommobile (and IoT) devices to the edge of mobile networks
instead of passing all of the data and computation to data
centers or handling them locally [12], [13], [27], [28].

Fog Computing [29], [30] is a term closely related to Edge
computing. The distinction between these two terms is vague
due to various overlapping definitions found in the literature.
Our view is that whereas Edge computing mainly refers to
the computational Edge infrastructure, Fog computing has
stronger focus on providing a platform for services above

2When ’Smart Homes’ Get Hacked: I Haunted A Complete Stranger’s
House Via The Internet, http://www.forbes.com/sites/ kashmirhill/2013/07/
26/smart-homes-hack/

3Teen hacks car with $15 worth of parts: http://www.pcworld.com/
article/2886749/teen-hacks-carwith-15-worth-of-parts.html

4BMW’s Connected Drive feature vulnerable to hackers: http://
www.autoblog.com/2015/02/03/bmws-connected-drive-feature-vulnerable-
to-hackers

VOLUME 7, 2019 119857

E. Harjula et al.: Decentralized Iot Edge Nanoservice Architecture for Future Gadget-Free Computing

FIGURE 1. Generic edge computing architecture.

Edge infrastructure and local nodes (similarly to Cloud ser-
vices that are deployed on data centers). Fog computing typi-
cally covers caching, data processing and analytics occurring
near the source of the data that improve the performance at the
edges of the network, reduces the burden on data centers and
core networks and improves the resilience against network-
ing problems [23], [30]. Virtualized functions and services
located at IoT infrastructures are sometimes also referred to
as Mist computing, as shown in Figure 1.
By moving some functions from data centers to the edge,

CC systems can better serve applications requiring low
latencywhile saving computational and networking resources
at core networks and data centers. The parts of services that
require low latency or provide functions for reducing data,
such as filtering, fusion or other processing, are beneficial to
deploy at MEC. The former because the E2E latency between
the local node and MEC node is very low, and the latter
because less data needs to be delivered to data centers. As can
be seen, IoT and smart environments can greatly benefit from
MEC residing at the mobile access networks.

However, the current model where MEC hosts are
deployed at servers located within or near the access network
base stations also has its limitations [31]. In many smart
space and IoT applications, to deal with possible connectivity
problems and to limit the propagation of sensitive data outside
the domain, at least some degree of processing of the sensor
data and the decision-making/control logic is beneficial to
be managed locally on site. Therefore, in many scenarios it
is beneficial to bring EC capacity within local IoT clusters,
as illustrated in Figure 2. Since it cannot be expected that
local IoT/IoE clusters include devices with sufficient stability
and hardware capacity to accommodate full-functional MEC
host, alternative decentralized solutions fitting better to the
IoT/IoE environments need to be studied. The following
subsections will focus on technologies that can be used as
building blocks for decentralized EC solutions.

B. LIGHTWEIGHT VIRTUALIZATION
Lightweight virtualization technologies have revolution-
ized the world of software development by introducing

flexibility and innovation to this domain and recent advances
have led to the spread of such technologies in different
contexts [16], [32]–[34]. In many IoT scenarios, a high num-
ber of nodes, ranging from few units to swarms of several
thousands of nodes, may be deployed for a single service.
These swarms need to adapt to changes in the environment,
infrastructure and application deployments, and they occa-
sionally need software upgrades for improved functionality,
reliability or security [33]. The rapid development of IoT
hardware capabilities has made virtualization a viable option,
not only in data centers, but also on IoT devices, which
are characterized by fewer computational resources, such as
single-board computers working, e.g. as multimedia sensor
nodes [32].

Today, there are basically three alternative lightweight vir-
tualization technologies: hypervisor solutions such as KVM,
container engines such as Docker, and unikernels such as
MirageOS. KVM virtual machine offers hypervisor-based
virtualization, supporting, e.g. multi-tenancy. The drawback
of hypervised virtual machines is their relatively large mem-
ory footprint combined with slow boot-up time [33]. Con-
tainer solutions, Docker technology [32], [34], in particular,
are more suitable for use in IoT, thanks to their relatively
low memory requirements and faster boot-up times. Many
existing studies have successfully evaluated Dockers within
the IoT domain [32], [33]. One of the most attractive features
of containers from the viewpoint of IoT is that they can be
automatically scheduled and orchestrated on top of any phys-
ical or virtualized computing infrastructure [35]. The third
alternative, unikernels, provide the fastest boot-up time and
smallest memory overhead of the three alternatives. However,
the technology is still relatively immature [33].

C. MICROSERVICE ARCHITECTURES
In recent years, cloud services have been transforming from
monolithic architectures towards microservice architectures,
where services are composed of various microservices taking
care of some limited set of functions [36], [37]. Microser-
vices are an architectural style to build, manage, and evolve
service architectures out of small, self-contained units [38].
Businesses such as Amazon and Netflix use microservices
to build large, complex and horizontally scalable applica-
tions composed of microservices that are small, indepen-
dent and highly decoupled processes communicating with
each other using language-agnostic application programming
interfaces (API). According to [39], microservice architec-
ture provides several advantages over traditional monolithic
architectures: (1) reduced complexity by using tiny ser-
vices; (2) easier deployment and removal of system parts;
(3) improved flexibility to use different frameworks and tools;
(4) increased scalability; and (5) improved system resilience.

Docker, introduced in the previous subsection, provide
a proven lightweight, low overhead and fast technol-
ogy empowering the usage of microservice architec-
tures [34], [35]. From the viewpoint of IoT, an important
feature of Docker containers is that they can be deployed in a

119858 VOLUME 7, 2019

E. Harjula et al.: Decentralized Iot Edge Nanoservice Architecture for Future Gadget-Free Computing

FIGURE 2. Comparison of IoT architectural models.

manner where only one or few processes run inside a single
container [39].

An important aspect related to the management of vir-
tualized services is how to accommodate realizing, orches-
trating and maintaining complex and dynamic microservice
architectures. Orchestration is a technology for deploying,
managing and termination of virtualized components, such as
containers. The most commonly used container orchestration
technologies are Docker Swarm, Kubernetes and Mesos, all
providing automated support, e.g. to service discovery, load
balancing, and software upgrades on the fly [35].

Microservices, if managed to be kept small enough, pro-
vide a promising approach for using microservices within
the IoT domain to accommodate IoT functions locally.
Butzin et al. [40] have investigated this idea and ended up
to a conclusion that microservice approach and IoT share the
same architectural goal and would therefore be a promising
combination. In this paper, we introduce the term nanoservice
to refer to ultra-lightweight microservices specifically devel-
oped for IoT scenarios. Since containers can be deployed in
such a manner where only one or few processes run inside
single container, we consider it a suitable technology to
implement nanoservice-based orchestrated IoT architectures.

D. MOBILE SOFTWARE AGENTS
Software agents [41], [42] enable the implementation of sys-
tem components capable of autonomously and intelligently
acting and interacting with other system components on
behalf of their owners. Agents can be reactive, proactive and
even capable of learning, based on observing the results of

their actions. In addition, mobile software agents (in short,
mobile agents) can autonomously migrate between devices,
during their task execution. This allows re-purposing and
personalizing the behavior of system components, e.g. IoT
devices, towards smart behavior and bringing new function-
ality or content into the system. In distributed systems, mobile
agents have traditionally been used for relocating, composing
and local aggregation of services [41].

The benefit is that mobile agents, owned by the users and
with knowledge of the users’ goals and behavior, can interact
and react autonomously (in the background) to the system
state and others’ actions. Furthermore, an attractive feature
of mobile agents from the viewpoint of IoT computing is
their low overhead, enabling very small agent implementa-
tions. In [43], we have evaluated the mobile agent size and
estimated the energy consumption caused by migration of
mobile agents between wireless devices in a distributed com-
puting scenario. Both the agent size and the energy consumed
during agent migration remained very small. In the context
of IoT, mobile agents have been used to bridge, share and
personalize physical spaces between users and other system
components, e.g. [42], [44], [45]. However, holistic system
architectures utilizing agents for service provisioning in IoT
edge computing have not been considered yet.

E. ACTOR AND CONSTRAINT PROGRAMMING
Actor programming model paradigm [46], describes com-
plicated computations as a set of actors, i.e. individual
components with singular purpose, to perform each task.
Actor model-based systems are compositions of several

VOLUME 7, 2019 119859

E. Harjula et al.: Decentralized Iot Edge Nanoservice Architecture for Future Gadget-Free Computing

actors: they do not have shared state, but instead communi-
cation between actors happens through message exchange.
Thanks to this, the distributed (micro/nano-)service model
combined with edge/fog computing can take great benefit
from the Actor programming model paradigm. Haubenwaller
and Vandikas have, for instance, utilized Actor program-
ming for composing services in IoT Edge computing in [47].
The implementation is based on Akka, an open-source
actor-based message-driven runtime built on Java Virtual
Machine (JVM). They propose an approach where data is
processed by computationally capable IoT devices rather than
being sent to a central location for processing. The processing
tasks are split to smaller tasks and deployed IoT devices in an
efficient manner. Since actors are message-driven and each
of them are expected to have a single responsibility, the main
operational philosophy is close to what microservices should
be like. Therefore, Actor model is a highly applicable model
to define the high-level interaction model between microser-
vices in microservices systems.

Constraint programming Model [48], for one, focuses on
optimizing resource-efficiency of the systems under devel-
opment. In constraint programming, the computer finds the
answer satisfying constraints, when giving a problem as an
aggregate of constraints to computer. Together, actor and
constraint programming models are a promising combination
for optimizing the resource- efficiency required by IoT.

III. NANOEDGE CONCEPT
We propose a nanoservice-based conceptual service model,
nanoEdge, for future gadget-free IoE scenarios. It utilizes
local computational resources for deploying parts of cloud
services in proximity of data sources and/or service con-
sumers. The model takes Edge Computing a step forward
from a typical today’s MEC-based architecture by providing
means to deploy some parts of edge services to local nodes
with sufficient hardware capacity.

This three-tier model allows addressing problems, such as
high latencies and vulnerability to network problems arising
from long distances between computation, data sources and
service consumers, as illustrated in Figure 2. The model uti-
lizes and combines the state-of-the-art concepts and models
presented in the previous section in a novel way.

In this section, we describe the main operational principles
of the proposed nanoEdge model and illustrate these princi-
ples in action with an example scenario. Then, we explain
in more detail how services are composed, executed and
maintained in our model. In this section, we avoid making
bindings to any specific technologies on purpose, in order to
maintain generality. However, later in Section IV, we present
a PoC implementation with relevant today’s technologies in
order to analyze the feasibility of the model.

A. OVERVIEW AND BASIC CONCEPTS
The basic principle behind nanoEdge is that local ser-
vices are composed of modular, independently operating but
collaborating virtual service blocks, nanoservices, that are

dynamically deployed to local nodes based on the need and
their available capacity and load. As a concept, nanoservice
is a simple service implemented for a single purpose, such as
reading sensor data from a device and sending it to another
node, or running an analysis task and returning the value for
the requestor, i.e. a lightweight microservice [40]. In practice,
nanoservice is a small virtually deployable program with
an API for other services and nanoservices. The dynamical
deployment means that the deployment can change based
on the availability of nodes and resources, e.g. when new
computational nodes become available, when existing nodes
become unavailable, or when their loads change.

Nanoservices and services provide APIs for making them
modular and interconnectable, i.e. services can use other
services and nanoservices in their operation. Local services
are services deployed to a site and composed of nanoservices
available at the site. The site may be fixed (such as a building,
room, park, etc.), or mobile (such as a car, plane or train).
Local services may communicate with other services and be
parts of larger services, depending on their privacy settings.
Local services can be set as private or public. Private local
services are locally visible and accessible through local API,
whereas public local services are visible and accessible also
for users and services outside the site through a public API.
All non-local services are called as external services.
Services are created and administrated using an API gate-

way, which provides the needed building blocks for com-
posing services. In a nutshell, the API gateway collects
information about the computational capacity and available
sensing and actuating resources from compatible physical
nodes within proximity and passes this information to the
orchestrator, which then deploys nanoservices on suitable
physical nodes. The nanoservices are deployed to nodes from
a service registry, which contains the nanoservice images.

Figure 3 visualizes the concept. Physical nodes are illus-
trated by gray circle shapes, nanoservices by hexagons, con-
nectivities by line/lightning (depending on whether it is wired
or wireless) and public and edge networks by cloud. Services
consisting of the nanoservices are illustrated with orange
ellipses and service registry with a green ellipse.

The formal presentation of services S and nanoservices s is
presented as follows.

Let the set of available nanoservices in a site be:

s =
{
s1, s2, . . . , sn

}
. (1)

Respectively, the set of services within the site is:

S =
{
S1, S2, . . . , Sn

}
. (2)

Within this set of services, each service is defined as a
function of nanoservices and services, as follows:

Si =
{
f (sj, Sk)

}
; sj ∈ s; Si, Sk ∈ S. (3)

B. SERVICE COMPOSITION AND MANAGEMENT
In this subsection, we describe the main principles of ser-
vice composition in our nanoEdge model. API gateway and

119860 VOLUME 7, 2019

E. Harjula et al.: Decentralized Iot Edge Nanoservice Architecture for Future Gadget-Free Computing

FIGURE 3. The proposed nanoEdge concept.

Orchestrator are centric components for service composition
and management. API Gateway is a core component through
which administrators create, administrate and terminate local
services and through which other services interact with the
local services. API gateway uses Orchestrator to deploy,
redeploy end undeploy the main service and the needed
nanoservices to optimal locations. In Figure 3, API gateway is
represented by a dark-blue hexagon and Orchestrator by a red
hexagon. API gateway keeps track on all available physical
resources within proximity, and passes this information to
Orchestrator, making it able to deploy nanoservice images
from a service registry (top of Figure 3) to different nodes
based on their capabilities. Both public and local service
registries can be used (in the figure, the service registry is
located in a public cloud). The API gateway (and Orchestra-
tor) are aware, e.g. which local nodes provide sensing and
actuation capabilities, storage space, gateway functionalities,
processing power for analysis, etc. Since we try to keep the
model general, we do not define what is the exact way of
delivering this information from nodes to the API gateway.
The usual methods are broadcast advertisements, where the
nodes advertise their capabilities by sending broadcast adver-
tisements that the Orchestrator then intercepts, and polling,
where Orchestrator either broadcasts or uni-/multicasts capa-
bility request messages for which nodes then respond with
their capabilities. Furthermore, there are two options for
implementing the orchestration: integrating it with the API
gateway or implementing it as a separate component. In the
figures, we illustrate orchestration as a separate Orchestrator
component.

1) SERVICE INITIATION
As already mentioned, services are administrated through
the API gateway. Its task is to match the available hardware
capacity and features with available nanoservice images to
present the deployable nanoservices for the administrator.
The administrator can then define the service logic based on
the nanoservices (using e.g. visual service composing tools).
In addition to the service logic, the administrator also defines
the API functions through which the service can be used
by other services. At this phase, the administrator can also
choose whether the service is local or public.

To illustrate the main principle of service composition
in our model, we consider a very simple IoT service that
regulates a room temperature and shows it on a wall-mounted
LCD display. This service would be composed of a tempera-
ture sensor, radiator actuator, decision logic and UI nanoser-
vices. Let’s assume a hardware setup consisting, for instance,
of a local node 1 providing a temperature sensor with some
computational capacity and a small display with some control
buttons, a local node 2 providing a fair amount of processing
capacity and a large LCD touchscreen display, and a local
node 3 that is a specialized for controlling the heating radi-
ator. In this setup, a nanoservice for reading and sending
the temperature data for other nodes could be deployed to
node1, nanoservices containing the temperature regulation
algorithm and the UI to node 2, and heating unit controller
nanoservice could be deployed to node 3. It is important to
notice that some nanoservice types are bound to certain nodes
or physical locations (such as the radiator controller which
is the only node capable of controlling the heating radiator),

VOLUME 7, 2019 119861

E. Harjula et al.: Decentralized Iot Edge Nanoservice Architecture for Future Gadget-Free Computing

FIGURE 4. nanoEdge service lifecycle.

while some other nanoservice types may be independent of
the physical node or location (such as a nanoservice providing
a computational algorithm) that can be deployed on any of
the local nodes with sufficient computational and networking
capacity. In order to enable matching services with the avail-
able hardware, the hardware requirements of the available
nanoservices need to be provided for the API gateway when
advertising their capabilities (see previous subsection). The
service initiation process of the scenario is illustrated on the
leftmost section (phase 1) of Figure 4.

2) SERVICE RUNTIME MANAGEMENT
During service operation, its deployment can be modified,
updated, extended or reduced, based on the changes in need
and circumstances, as illustrated by the mid-section (phases
2 and 3) of Figure 4. Asmentioned in the previous subsection,
the API gateway keeps track of available hardware capabil-
ities within the service site and passes this information to
Orchestrator. When, e.g. new nodes enter the service site,
the orchestrator becomes aware of them and can deploy new
nanoservices on them if needed. Similarly, new nanoservice
images can be added in the service registry during service
operation. In the case of functionality, or security updates for
existing nanoservice images, the orchestrator takes care of
updating the deployed nanoservices based on them.

nanoEdge follows the principles of the Actor model, which
means that the services and nanoservices do not have runtime
interdependency between each other and external services,
i.e. nanoservices and services may fail without causing the
(nano)services interacting with them to fail. If a physical node
hosting a nanoservice fails or moves away, the orchestrator
checks whether the needed physical capabilities are available
on another node, and in the positive case, redeploys the
nanoservice to a new physical node with sufficient capabil-
ities. In case none of the available nodes can provide the
needed function, the orchestrator terminates the nanoservice
and notifies API gateway of the termination. The service can
then, based on its internal logic, decide how to react to the
change.

3) SERVICE TERMINATION
When a service is terminated, the orchestrator undeploys
all deployed nanoservices from physical nodes and notifies
API gateway, which then notifies other services it has been
interacting with. The service can optionally store its status
and data (either all or a subset of it) to a seed file which can
be used in possible future re-establishments of the service.
This seed file can be stored either locally or, e.g. in a public
cloud to make it universally accessible. Service termination
is illustrated in phase 4 of Figure 4.

C. SERVICE RUNTIME OPERATION
The proposed nanoEdge model follows the Actor model [46].
In practise, this means that the service components - nanoser-
vices - operate independently, i.e. they do not share their state
and therefore are not interdependent. Nanoservices inter-
act among each other in an asynchronous manner, i.e. ser-
vice requests or messages can be sent at any time between
nanoservices without regard to whether or not the recipient
nanoservice is ready. Furthermore, since nanoservices are not
interdependent, if a nanoservice fails, the rest of the system is
not affected by more than by the impact of the failing of the
task of the failing nanoservice. In error cases, the nanoservice
making a request to another nanoservice can continue execu-
tion with alternative ways to complete its own task, or if it
is impossible, report the failure to the (nano)service that has
requested the service. In other words, failure tolerance is built
in to the nanoEdge model.

IV. PROOF-OF-CONCEPT
To study the feasibility of the approach, we have defined
a use case scenario (Section IVA) and a PoC prototype
(Section IVB) that implements the scenario by employing a
selected set of functionalities of the nanoEdge concept.

A. EXAMPLE SCENARIO
In the example scenario (illustrated in Figure 5), Alice calls
up a meeting by sending invitations to Bob and Carl. Since
highly confidential topics will be discussed in the meeting,

119862 VOLUME 7, 2019

E. Harjula et al.: Decentralized Iot Edge Nanoservice Architecture for Future Gadget-Free Computing

FIGURE 5. Proof of concept scenario.

each participant needs to be identified and authenticated by
the system or the participants before entering the meeting
room. To enable effortless authentication, Alice, Bob andCarl
carry personal wireless identification tags (e.g., smart key or
ring) with them.

At first, Alice creates the meeting event with a cloud-based
service management tool. She chooses a meeting service tem-
plate and selects an available meeting room from a calendar
view. The management tool presents the list of the available
local functions (nanoservices) to Alice. Since the meeting
will be confidential, Alice chooses the option requiring user
authentication before users can enter the meeting room. Sev-
eral user authentication methods are available. Alice decides
to use Bluetooth LowEnergy (BLE)-ID basedmethod since it
does not require manual effort to be identified, and therefore,
fits well to this gadget-free scenario.

Then Alice chooses the methods to guide users to the
meeting room. She chooses to use LEDs located on the
walls/floors of lobby and corridors on the way to the meeting
room. She sets the BLE-ID presence detector in the meeting
room to detect who is present in the room. Further, Alice
also chooses her private content (emails, etc.) to be opened
on the screen when she enters the meeting room herself, and
furthermore, to move the private content to the background
while opening the meeting content on the screen when other
meeting participants start to arrive. She also defines the meet-
ing content and status to be automatically saved after the
meeting ends, in order to enable resuming themeeting content
in follow-up meetings. Once the service has been defined,
the main service is composed, the needed nanoservices are
deployed to the local nodes, and both are set to idle mode to
wait for the meeting to start.

Some minutes before the meeting starts, the service acti-
vates its nanoservices. When Alice enters the meeting room
herself, the BLE-ID based presence detector in the room
identifies Alice and the service opens her personal workspace
on the screen, including personal documents, emails, etc.,

as specified beforehand. When guests, Bob and Carl, arrive at
the building, they are identified byBLE-ID user identification
in the main lobby. The system then automatically guides
them to a correct meeting room using the visual indicators
selected by Alice, in the lobby and corridors on the way to the
meeting room.OnceBob, who arrives first, enters themeeting
room, the presence detector in the room detects him and the
content on the screen is adjusted so that Alice’s personal
documents and emails are moved to the background and
meeting materials are opened. When Carl enters the meeting
room, the meeting can start. When the meeting is over, Alice
terminates the meeting service. At this phase, the meeting
content and the service state are stored in a database and the
meeting service can be reinstantiated in the future.

This scenario exemplifies the operation of our proposed
model in the envisioned gadget-free world, where several
nanoservices located on different types of physical devices
in the building together form the meeting service. The users
do not need to carry any personal devices with them, except
the identification tags.

B. EXAMPLE SERVICE IMPLEMENTATION
Our example service consists of eight functional parts: the
API Gateway (i.e. the main service), the management tool,
the orchestrator, and five nanoservices: 1) Corridor presence
detection, 1) Authentication engine, 3) BLE scanner, 4) User
guidance, and 5) Meeting room service. The user presence
detection, identification and guidance take place at a corridor
leading to the meeting room and the meeting room service in
the meeting room. The functional parts are described below.

1) MANAGEMENT TOOL, API GATEWAY
AND ORCHESTRATOR
The meeting event is created with the service management
tool connected to the nanoEdge API gateway, which is
co-located with the Main Controller Service (MCS). When
initiating a local service, the API gateway matches the

VOLUME 7, 2019 119863

E. Harjula et al.: Decentralized Iot Edge Nanoservice Architecture for Future Gadget-Free Computing

nanoservices in the service registry with the list of nodes and
their hardware resources within the physical/logical proxim-
ity of the selected meeting room. Based on this, the man-
agement tool presents the list of the available nanoservices
to the administrator, who can then define the service utiliz-
ing the available nanoservices. Once the service has been
defined, the API gateway contacts the orchestrator, which
then automatically composes the MCS, deploys the needed
nanoservices to the local nodes, and sets all nanoservices in
idle mode to wait for activation.

2) MAIN CONTROLLER SERVICE
Main Controller Service (MCS) is the service which takes
care of the main service logic and maintains the service state.
It utilizes the nanoservices deployed in the proximity for
accomplishing different tasks to implement different func-
tions of the service. In our scenario, the service is composed
as described in Figure 6. The control sequence is described
with the red (authentication part), orange (guidance part) and
green (meeting room part) arrows.

FIGURE 6. Service interaction in the example scenario.

Once the MCS is activated, it activates the Presence Detec-
tion nanoservices (PD) deployed at the motion sensor nodes
located at the entrance of the corridor (PD1) and next to the
meeting room door (PD2). The user identification process
is started when a person enters the corridor. After receiving
a notification of movement from PD1, the MCS activates
the BLE scanner nanoservice located at the entrance of the
corridor (BS1), which starts scanning for users to authen-
ticate. When BS1 has successfully scanned the BLE-ID of
the person in the corridor, it returns it to MCS, which then
sends a query with the BLE-ID to the Authentication Engine
nanoservice (AE) to check the user’s credentials.

If credentials are ok, MCS sends a request to User Guid-
ance nanoservice (UG) to start guiding the guest to the
meeting room. When the guest arrives at the meeting room
door, the PD2 located next to the meeting room door triggers
another BLE scanner (BS2), co-located with it to check the
identity of the arriving person. Then, MCS compares the

BLE-IDs and if the arriving person’s ID matches the guided
person’s ID, the guidance is considered successful and MCS
requests UG to stop guiding (if there are no other users being
guided at the same time). If the arriving person is the first
guest or the meeting host (Alice), MCS also activates the
Meeting room service (MRS) nanoservice. In case BS1 fails
to detect the BLE-ID, or if the detection is successful but AE
does not recognize the person, the person is considered an
outsider and is therefore omitted from further actions.

When all guests have successfully been guided to the
meeting room, MCS notifies MRS about the situation and
the meeting is considered started. During the meeting, MRS
interacts with MCS as defined by the service. When the
meeting ends, the meeting host closes the service using the
UI provided by MRS. At this point, MCS saves the session
status and starts the process of terminating the service. In case
MRS has not initiated the service termination after a timeout
period following the scheduled end of the meeting, and if no
activity has been detected from MRS, MCS terminates the
service automatically. At the service termination phase, MCS
undeploys all related nanoservices, saves its state and data to
a seed file and terminates itself. The seed file can be used to
redeploy the meeting service for future meetings.

MCS can be deployed to any local node with sufficient
computational, storage and network capacity.

3) PRESENCE DETECTION
Presence Detection (PD) nanoservices are deployed on two
devices capable of sensing motion: one is located at the
entrance of the corridor (PD1) to detect incoming persons,
and another next to the meeting room door (PD2) to detect
when guided guests have arrived at the meeting room. When
activated, the task of PD is to sense user presence at the prox-
imity and notifyMCSwhen presence is detected. PD includes
an event handler and a callback function that notifies MCS
when the event handler has detected motion in the proximity.
PD can be deployed on a node with a sensor capable of
detecting presence in its proximity, such as a PIR motion
sensor, and sufficient computational capacity for running the
nanoservice.

4) BLE SCANNER
In BLE-based authentication, users carry a BLE beacon
device with a unique ID. BLE has the ability to exchange data
using advertising packets. BLEBeacons take advantage of the
GAP advertising mode to broadcast data out in periodical,
specially formatted advertising packets. Each beacon uses
a universally unique identifier (UUID) that identifies that
beacon. Once activated, the BLE scanner nanoservice (BS)
initiates the UUID-scanning and waits for five seconds for it
to complete. If a device is detected, BS responds toMCSwith
the detected UUID. If UUID is not found within five seconds,
BS sends MCS a response with the failure notification and
returns to idle mode waiting for further requests. BS can be
deployed on a node with BLE connectivity and sufficient
computational capacity to run the nanoservice.

119864 VOLUME 7, 2019

E. Harjula et al.: Decentralized Iot Edge Nanoservice Architecture for Future Gadget-Free Computing

5) AUTHENTICATION ENGINE
The Authentication engine (AE) nanoservice is used to store
information about authorized persons for checking their cre-
dentials to access the meeting room. In our scenario, after
receiving the BLE UUID from BS, MCS sends an authen-
tication request containing the BLE UUID to AE. AE then
makes a comparison between the requested UUID and the
user credential database, and responds with a message telling
about the success or failure of the authentication. AE can
be deployed to any local node with sufficient computational,
storage and network capacity. The operation of PD, BS and
AE is illustrated in phases 1-2 of Figure 5 and red arrows
in Figure 6.

6) USER GUIDANCE
The User Guidance (UG) nanoservice has been implemented
using user-specific mobile agents, atop the framework pre-
sented in [42], [45]. The mobile agent-based user guidance
is illustrated in phases 3-5 of Figure 5 and orange arrows
in Figure 6. Once MCS has triggered UG to start guidance,
it first plans a path for the guest and, with the knowledge of
system resources, creates a mobile agent migrating between
LED controller devices mounted on the walls along the path
for guiding the guest to the meeting room. This setup demon-
strates a personalized mobile software agent ‘‘following’’
a real user in a physical environment in the infrastructure
side, which dynamically and autonomously interacts with
the local resources in the proximity of a user. The guid-
ance is continued until MCS sends a request to stop guiding
(in practice, after the guided user has arrived at the meeting
room). UG nanoservice requires a controller device with
sufficient computational, storage and network capacity to
control access to the subsystem and two IoT devices equipped
with LED strips and sufficient computational, storage and
network capacity for the purpose of guiding a user to a
preferred location.

7) MEETING ROOM SERVICE
When activated, the Meeting Room Service (MRS) nanoser-
vice located at themeeting room starts waiting for themeeting
host and guests. When the meeting host (Alice) and users
enter the meeting room, MCS notifies MRS about the arrival
of them. MRS provides the UI for the service using the avail-
able hardware, such as monitors, video projectors, keyboards,
mice, etc. The shown content is based on who is present in the
meeting room, as specified in MCS subsection. During the
meeting, MRS interacts with MCS as defined by the service.
When the meeting ends, the meeting host closes the service
using the UI provided by MRS. At this point, MRS saves the
modified files, meeting minutes, etc., turns off the display
and notifies MCS, which starts the process of terminating the
service. At the service termination phase, MCS undeploys all
related nanoservices, including MRS, and saves its state and
data to a seed file and terminates itself. MRS requires a device
with sufficient computational, storage and network capacity

to provide UI functions and to communicate with MCS. The
operation of MRS is illustrated in phase 6 of Figure 5 and
green arrows in Figure 6.

C. HARDWARE AND SOFTWARE SETUP
We have implemented a real-world PoC prototype of the
nanoEdge in IoT environment, based on the nanoEdge con-
cept and the example service scenario described above.
To demonstrate the generality of the model, we have used
several state-of-the-art technologies in the implementation.
The overall operation follows the constraint and actor
programming models [46], [48].

The hardware and software setup for this prototype is
described as follows. The API Gateway, the Main Controller
Service (MCS), and the microservices were deployed into
Raspberry Pi embedded computers, three microcontrollers
and a PC computer. The main service (MCS) and most of
the nanoservices (PD, BS, UG and MRS) were developed
using Python 2. AE nanoservice was developed with Python
3 and themobile agent part of UGwere developed with C++.
The MCS and nanoservices communicate among each other
using Constrained Application Protocol (CoAP), a special-
ized lightweight web transfer protocol for constrained nodes
and networks in the Internet of Things [49]. The MCS and
each nanoservice run CoAP client and CoAP server scripts to
enable two-way communications. The hardware testbed setup
is illustrated in Figure 7 and the nanoservice deployment on
the testbed in Figure 8.

FIGURE 7. Proof-of-concept hardware.

The nanoservices are virtualized as Docker containers
using Docker technology [34], [35]. The nanoservices are
wrapped into Docker images that can be stored in a service
registry and can be deployed when needed. The images come
with all the required libraries and configurations, making it
quick to set up additional nanoservice instances based on
them. Furthermore, we have used mobile agents [42], [45] in
the guidance part to demonstrate a mobile nanoservice that
can migrate between highly capacity-constrained physical
devices. For orchestrating nanoservices, we have used Dock-
erSwarm [33]. Container orchestration has been implemented
into Oracle VirtualBox with version 5.2. Command Line

VOLUME 7, 2019 119865

E. Harjula et al.: Decentralized Iot Edge Nanoservice Architecture for Future Gadget-Free Computing

FIGURE 8. Nanoservice deployment on PoC hardware.

Interface (CLI) based Docker Swarm is integrated into the
Docker ecosystem with its own API.

Docker containers are deployed to devices from a con-
tainer image. Docker base image is the basic image on
which developers add their own layers and create the final
image containing the service or application. To build the
nanoservice images, we used the Alpine Linux base image.
Alpine is a lightweight Linux distribution, built on Musl-
libc library and Busybox Linux distribution for embedded
devices. It is smaller and more resource efficient than tradi-
tional GNU/Linux distributions. Alpine base-image enables
us to run an application requiring only minimal dependencies
required for the application. Furthermore, Docker versions
from 17.05 facilitate multi-stage-builds5 to reduce the com-
putational resource consumption even more.

The main controller service (MCS) is deployed on a
Raspberry Pi 3 Model B+. MCS contains the main service
logic and the main API for external access and maintains
the service state. MCS also runs a CoAP server and client
processes for communications with nanoservices.

The AE nanoservice is deployed into a PC computer with
Ubuntu 18.04 Linux OS. AEwas developed using Python 3 in
Flask 1.0.2 (Flask Restful 0.3.6) framework. AE works as a
server providing a REST API for incoming CoAP authenti-
cation request messages. As the authentication database we
use a MySQL 8.0.16 database. The authentication responses
are sent back using a CoAP response messages.

For PD nanoservice, we used a Passive Infrared
Radio (PIR) motion detection sensor expansion board
attached to a Raspberry Pi 3 Model B+ computer. When
motion is detected, an event handler function of the PD
nanoservice detects a voltage rise on the RPi GPIO4 pin

5Docker docs - Use multi-stage builds: https://docs.docker.com/develop/
develop-images/multistage-build/

connected to the PIR motion sensor and sends a callback
function using a CoAP request message to the MCS.

For BS nanoservice, we used a BLE expansion board
attached to a Raspberry Pi 3 Model B+. In BLE-ID authen-
tication, the incoming BLE beacons contain a universally
unique identifier (UUID) that identifies the device sending it.
In our PoC, an off-the-shelf BLE beacon has been config-
ured to broadcast the 16-byte UUID. The BS nanoservice
deployed on a Raspberry Pi device scans for the BLE beacon-
advertising packets. When detected, PD extracts the UUID
from the advertising packet returns it to the requestor (MCS
in our scenario) using a CoAP request message.

The UG nanoservice consists of the main controller device,
deployed on a Raspberry Pi 2 Model B, and LED controller
devices built on top of ATmega 2560 microcontrollers. The
UG main service hosts a CoAP server for receiving instruc-
tions from the Main Service and uses a CoAP client for
deploying mobile agents to the LED controller devices. The
operation of the LEDs depends on the task brought into the
device by the mobile agents. The communication between
the LED devices and the gateway is established using ZigBee
wireless mesh networking. The LEDs are capable of showing
RGB colors as well as simple animations.

The Meeting Room Service (MRS) nanoservice provides
the UI at the meeting room, including the needed input
devices, keyboard and mouse in our scenario, and output
devices, projector and speakers in our scenario, as well as
the needed local programs or an interface to cloud services.
In addition, MRS also runs a CoAP server and client pro-
cesses for communication with the MCS and other nanoser-
vices and a script for controlling the content viewed on a
screen based on meeting attendant presence. In our scenario,
MRS is deployed on a Raspberry Pi 3 Model B+, which
is able to act as a lightweight personal computer needed to
successfully run the meeting-related programs.

V. FEASIBILITY ANALYSIS
Since the nanoservices are deployed on local, mostly
resource-constrained, IoT devices in our model, it is impor-
tant that they fit in the available hardware and at the same
time provide sufficient performance and tolerate changes in
the environment. Although the main focus of this paper is
introducing the main concept and not a thorough evaluation
and benchmarking of the concept against traditional solu-
tions, during the prototyping work we made evaluations with
our PoC implementation regarding some centric performance
and resource consumption metrics. In this section, we present
and analyze the evaluation results.

A. RESOURCE CONSUMPTION
Low resource consumption is among the highest-priority
criteria when analyzing the feasibility of a system to be
deployed on an IoT environment. In this section, we evaluate
the base image and container sizes, as well as runtime mem-
ory consumption that together define the computational and
communication requirements for the underlying hardware.

119866 VOLUME 7, 2019

E. Harjula et al.: Decentralized Iot Edge Nanoservice Architecture for Future Gadget-Free Computing

TABLE 1. Resource consumption of nanoEdge service components using alpine base image.

Table 1 demonstrates the base image size and the size of
the nanoservice container built on it. The base image size
has an effect on network utilization and storage consumption
during the container deployment phase, whereas the container
size mainly affects the resource consumption on the device
after it has been deployed. In addition, the table includes
the container runtime size depicting the used writable layer
unique per container, i.e. the required space by the dynamic
content in addition to the container read-only parts. This is a
significant value when several containers based on the same
container image are deployed on the same device: whereas
the read-only parts of several deployed containers do not
reserve more space on a device than one deployed container,
each container, however, reserves the runtime part separately,
therefore, increasing the resource consumption. We built our
nanoservice images using traditional one-stage build and
multi-stage build to see how different build methods affect
the container size and runtime resource consumption.

As can be seen, the Alpine-based images for our nanoser-
vices are roughly in the class of some tens of Megabytes and
the respective container sizes with traditional one-stage build
between roughly 184 and 274 Megabytes. With multi-stage
builds, we were able to reduce the container size roughly
between 74 and 137 Megabytes. In addition, a separate con-
tainer - sized roughly 443 Megabytes - including the MySQL
database service was needed in the AE node.

Furthermore, based on our measurements, the size of the
mobile agent used by the UG nanoservice is only around
60 Bytes, and most of it is composed of executable code
and the path for the agent. With this approach, the payload
size is more than if traditional message patterns were used.
However, the advantages come from the added functionality,
which reduces the number of messages. With added func-
tionality, we mean that the agent has some properties that
the traditional publish-subscribe or client-server models and
protocols do not have. The key difference is the autonomous
migration from device to device. This reduces the number

of round-trip messages sent, and therefore, reduces, e.g. the
energy consumption coming from communication.

Altogether, it is clear that the proposed distributed nanoser-
vice architecture brings some extra overhead in the resource
consumption at the IoT nodes since they now run services that
have traditionally been taken care of by centralized servers.
With the evaluations presented in this subsection, however,
we have shown that the resource requirements do not grow
substantially. Generally, all nanoservices and platform com-
ponents can be deployed and run on IoT nodes with hardware
capacity on a level of a typical Raspberry Pi node with a
decent requirement level for computational, memory, stor-
age and communication resources. Furthermore, we demon-
strated that the resource requirement level of virtualization
can be taken on a whole new level with the mobile agent tech-
nology, allowing the simplest virtualized functions to migrate
to highly capacity-constrained microcontroller nodes, such as
ATmega 2560.

B. SERVICE DEPLOYMENT AND INITIATION
PERFORMANCE
In addition to resource consumption, sufficient performance
is another key feasibility criteria for a service. We selected
two basic performance metrics that have high potential to
be negatively affected by the distributed nature of a service.
These metrics are 1) service deployment time and 2) service
initiation time when initiating a service that has already been
deployed on a device.

Service deployment time is the total required time to build
and deploy a service into a physical device. The overall
service deployment times are visualized in Figure 9. The
deployment time with Alpine-based base-images with tradi-
tional build was 121s for the MCS, 82s for the PD, 78s for
the BS, 165s for the AE, 67s for the UG and 88s for the MRS
nanoservice. When using a multi-stage build, the deployment
times drop to 52, 54, 56, 65, 59 and 53 seconds, respec-
tively. Regarding the service initiation time, the overall time

VOLUME 7, 2019 119867

E. Harjula et al.: Decentralized Iot Edge Nanoservice Architecture for Future Gadget-Free Computing

FIGURE 9. Nanoservice deployment time.

FIGURE 10. Nanoservice initiation time.

with traditional build was 5s for the MCS, 6s for the PD,
5s for the BS, 84s for the AE, 4s for the UG and 6s for the
MRS nanoservice. With multi-stage-based container images,
the service deployment was very fast, 3s for the MCS, 3s for
the PD, 4s for the BS, 68s for the AE, 2s for the UG and 3s
for the MRS nanoservice. The overall service initiation times
are visualized in Figure 10.

Overall, the time to deploy the service takes roughly
1-3 minutes per nanoservice with traditional Alpine build.
With multi-stage build the time drops to roughly in class
of one minute for each nanoservice. This reduces consid-
erably the overall service deployment time, which mainly
depends on the slowest deployment when the deployment
is done concurrently for different devices. In our case, this
means the multi-stage build reduces the overall deployment
time from 165s to 65s. For most nanoservices and the
main service, the time to initiate a deployed service was
4-6 seconds with traditionally built images and 2-4 seconds
with images built using multi-stage build. AE nanoservice
was an exception: the service initiation time was 84s with
traditionally built images and 68 seconds with images built

using multi-stage build. The initiation was slower due to the
time needed for MySQL module initiation.

Altogether, the achieved overall service deployment time
of roughly one minute and initiation time of 2-4 seconds
with multi-stage-built container images (except the AE
nanoservice containing the MySQL module, that took a
bit over a minute) can be considered feasible in our sce-
nario. In practice, the measurement results mean bringing
up the service for the first time takes around two minutes
(deployment+initiation). The service initiation time of just
a few seconds allows scenarios where already deployed
nanoservices (except AE nanoservice in our case that takes
over a minute to initiate) can be activated during runtime
based on the need. This helps, e.g. saving energy of devices
hosting non-active nanoservices, since, thanks to short initi-
ation time, they can be kept in idle mode when there is no
immediate need.

C. RUNTIME PERFORMANCE AND FUNCTIONALITY
We have already shown in our previous study [33] that the
runtime performance is in general not significantly affected
by containerization. However, we wanted to see whether the
example scenario is feasible with our highly decentralized
setup consisting of several wirelessly communicating IoT
devices. This particularly concerns the user authentication
and guidance performance, which should be fast enough to
allow seamless guidance to the meeting room in such a man-
ner that the guided person does not need to stop for waiting
for guidance at any point.

In our scenario, the authentication is accomplished in
two separate processes that includes BLE scanning and user
authentication. Therefore, to evaluate the runtime perfor-
mance, we measured the total time the system uses for 1) user
presence detection, 2) user authentication, and 3) the latencies
related to user guidance. For presence detection, wemeasured
the time between a user entering the area under surveil-
lance and the time when the MCS received a notification
of user presence. Each measurement was performed three
times and the average was taken. The observed times for user
presence detection varied from 1 to 3 seconds, the average
was roughly 2 seconds. To evaluate the BLE-ID authenti-
cation performance, we measured the maximum response
time of the service to discover and authenticate the user
under average network conditions. Each experiment was per-
formed three times and the average was taken. The total
duration for BLE beacon discovery, retrieval of the data and
authentication took 3 seconds on average, the results varying
between 2–4 seconds. We achieved 100 % success rate when
the authenticated person carried the BLE beacon and had a
previously created user profile. In total, the time to detect the
presence and authenticate a user took 7 seconds at maximum.

According to measurements, the creation of a mobile agent
and route planning is very quick in our scenario, in the
order of tens of milliseconds. Also, the latency of the agent
migration from device to device is almost instantaneous to
the human eye. For the demo, the migration latency has been

119868 VOLUME 7, 2019

E. Harjula et al.: Decentralized Iot Edge Nanoservice Architecture for Future Gadget-Free Computing

artificially increased in order to allow some time for the LED
animations to run before the agent jumps to the next device.
The total traverse time depends on the time the agent spends
in the device multiplied by the number of devices in the path.
Currently, the delay has been set to 2.5 seconds per device,
and with two devices, the total traverse time is 5 seconds.

Although it is obvious that the distributed virtualized archi-
tecture causes some degree of extra overhead in the com-
munication and computation, our observations show that the
distributed architecture does not seem to cause such a signifi-
cant penalty for the functionality and performance that would
be detrimental to the user experience. With the average 1 m/s
walking speed, the maximum authentication time (7s) would
mean that after detection, the user would walk 7meters before
the guidance would start.

D. DISCUSSION AND FUTURE WORK
According to the evaluations, we can clearly state that the
proposed local edge computing model based on virtualized
distributed nanoservices is feasible with regard to resource
consumption and performance. We were able to demonstrate
that local services can be deployed and run in a distributed
manner on a set of single-board-computers (SBC), such as
Raspberry Pi, with feasible performance using Docker-based
nanoservices, and that simple functions can be deployed
to even more resource-constrained microcontroller devices,
such as ATMega 2560, using mobile agent technology.

The significance of the proposed model becomes clear
when taking a glance at the potential of using local computa-
tional resources in service provisioning. The typical devices
found at our everyday surroundings with computational and
networking capacity comparable with Raspberry Pi devices
used in our PoC and therefore potential devices for host-
ing nanoservices include e.g. smart TVs, broadband routers,
home/building automation central units, car computers, and
surveillance cameras, just tomention a few.We should neither
forget the more traditional computing devices, such as PC
computers, tablets, laptops and smartphones providing very
high computational and networking capacity that may be
available for nanoservice deployment. Furthermore, typical
devices found at our everyday surroundings containing a
microcontroller with a computational capacity comparable
to the ATMega 2560 used in our PoC include devices such
as fridges, freezers, ovens, air ventilation and conditioning
devices, heating controllers, different sensors, as well as
smart locks, lights, switches, and power plugs. A growing
number of these devices can communicate using low-power
wireless radios such as BLE, ZigBee or other similar tech-
nologies, making them also potential host nodes for functions
encapsulated in mobile agents.

As discussed in Section II, many concepts and implemen-
tations exist in the context of edge-centric networking in
IoT application area. The closest work with regard to the
similarity of the concept is proposed by Haubenwaller and
Vandikas [47]. The work focuses as well on an approach
where IoT processing tasks are split into smaller tasks and

deployed on local IoT devices. However, their evaluation
focuses completely on performance, ignoring the resource-
efficiency. Direct performance comparison is also hard to
make since their evaluation scenario is built on a different
platform (Akka) and a different use case scenario. Further-
more, in contrast to our model, their deployment is static
and cannot be changed during runtime. A comparative study
with related work is, however, an interesting avenue for future
work as new publications with similar concepts emerge.

The envisioned three-tier cloud computing architecture
includes cloud servers at the core of the Internet, the MEC
hosts at access networks, and the nanoservices at local
networks. In this architecture, different services and their
parts can be deployed in an optimal way based on the ser-
vice requirements and available computational and network
capacity provided by the underlying architecture. Since we
see local nanoservice systems as an inherent building block
of this three-tier architecture, we see it is important to direct
the work towards integration with the other tiers.

Since the current PoC implementation contains only the
minimal functionality needed to evaluate the feasibility of
the proposed nanoEdge concept, the future work includes
developing several additional functions. To allow external
and inter-service access, a well-defined nanoEdge API needs
to be developed. Related to this, we see a clear need for
providing certain service components on higher layers of
the three-tier model. For example, deploying the MySQL
database at MEC in our example scenario would remove the
need for a PC computer that was used for running the authen-
tication engine (AE) nanoservice, including the database.

To optimize the service deployment, our nanoEdge concept
defines that the API gateway keeps track on all available
physical resources within proximity, and passes this informa-
tion to the orchestrator, making it able to deploy nanoservice
images from a service registry to different nodes based on
their capabilities. However, this resource-matching function-
ality was not implemented in the PoC and therefore remains
as future work.

For simplicity, our PoC example scenario was imple-
mented with one nanoservice per node policy. However,
the proposed nanoEdge model promotes deploying several
nanoservices to a single node if the device provides enough
hardware resources for it. Therefore, as future work, it would
be useful to measure how deployment of several containers
on a same device would affect the computational resource
requirements, service deployment and initiation time, and
runtime performance.

As important future work, we also see utilizing intelli-
gent AI/ML algorithms to optimize the service orchestra-
tion considering all layers of the three-tier cloud computing
architecture. Edge computing on local and access network
levels bring two new computational tiers to cloud comput-
ing, between the datacenter and end-devices. By e.g. mov-
ing some functions from datacenters to MEC or local
edge hosts, cloud systems would better serve applications
requiring low latency and high reliability while saving

VOLUME 7, 2019 119869

E. Harjula et al.: Decentralized Iot Edge Nanoservice Architecture for Future Gadget-Free Computing

computational and networking resources at core networks and
datacenters.

Finally, an important avenue for further research is to study
how to establish trust between nanoservice providers and
users with e.g. distributed trust systems such as Blockchain.
This is important to prevent e.g. distribution of maliciously
operating nanoservice images in global service registries.

VI. CONCLUSION
In this article we propose a novel service model, called
nanoEdge, where nodes collaboratively provide for the ser-
vices the needed management, processing, storage, inter-
faces, and security functions, without relying too much
on centralized servers. The main contributions of this arti-
cle are the introduction of the novel nanoEdge concep-
tual model, its proof-of-concept (PoC) implementation, and
a feasibility evaluation. With the evaluation, we demon-
strate that a virtualized local service can be deployed and
run in a distributed manner with decent performance using
Docker-based nanoservices deployed to SBC devices and that
the simplest virtual functions can be deployed to even more
resource-constrained microcontroller devices using mobile
agent technology.

We see the proposed model as a significant part of future
IoE scenarios where users interact with local and global
digital services mostly through smart surroundings. To sup-
port this development, service architectures need to provide
virtualized, on-demand, service composition based on the
hardware and software resources near the user. With the
help of suitable service architectures, such as our nanoEdge,
the realization of this ubiquitous vision may be even closer
than we imagine. Our everyday surroundings already now
include a plethora of devices with hardware and networking
capacity comparable with the devices used in our PoC and
therefore potential devices for hosting nanoservices.

The future work includes updating the PoC with features
that are currentlymissing, such as anAPI for inter-service and
external access and a resource-matching algorithm with the
cloud-based nanoservice registry for universal service opti-
mization. Further measurements are also needed, e.g. to study
how several containers deployed on the same device would
affect the computational resource requirements and runtime
performance. The proposed model also enables develop-
ing intelligent AI/ML algorithms to optimize the service
orchestration considering the features and capacity of all
three layers of the three-tier cloud computing architecture.
Finally, an important avenue for further research is to study
how to establish trust between different stakeholders using
distributed trust systems such as Blockchain.

ACKNOWLEDGMENT
The authors would like to thank Mr. Jude Okwuibe for his
assistance in writing the article. This work has been per-
formed under the framework of MEC-AI, Industrial Edge,
WiFiUS Massive IoT and 6Genesis Flagship projects.

REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,

G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, ‘‘A view of
cloud computing,’’ Commun. ACM, vol. 53, no. 4, pp. 50–58, Apr. 2010.
doi: 10.1145/1721654.1721672.

[2] J. Zhou, T. Leppänen, E. Harjula, M. Ylianttila, T. Ojala, C. Yu, H. Jin,
and L. T. Yang, ‘‘Cloudthings: A common architecture for integrating
the Internet of Things with cloud computing,’’ in Proc. IEEE 17th Int.
Conf. Comput. Supported Cooperat. Work Design (CSCWD), Whistler,
BC, Canada, Jun. 2013, pp. 651–657.

[3] M. H. Miraz, M. Ali, P. S. Excell, and R. Picking, ‘‘A review on
Internet of Things (IoT), Internet of everything (IoE) and Internet of nano
Things (IoNT),’’ in Proc. Internet Technol. Appl. (ITA), Wrexham, U.K.,
Sep. 2015, pp. 219–224.

[4] K. Crisler, M. Anneroth, A. Aftelak, and P. Pulil, ‘‘The human perspective
of the wireless world,’’ Comput. Commun., vol. 26, no. 1, pp. 11–18,
Jan. 2003. doi: 10.1016/S1403-3664(02)00114-7.

[5] I. Ahmad, T. Kumar, M. Liyanage, M. Ylianttila, T. Koskela, T. Braysy,
A. Anttonen, V. Pentikinen, J.-P. Soininen, and J. Huusko, ‘‘Towards
gadget-free Internet services: A roadmap of the naked world,’’ Telem-
atics Inform., vol. 35, no. 1, pp. 82–92, Apr. 2018. doi: 10.1016/
j.tele.2017.09.020.

[6] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, ‘‘Internet of
Things (IoT): A vision, architectural elements, and future directions,’’
Future Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, Sep. 2013.
doi: 10.1016/j.future.2013.01.010.

[7] L. Atzori, A. Iera, and G. Morabito, ‘‘The Internet of Things: A survey,’’
Comput. Netw., vol. 54, no. 15, pp. 2787–2805, Oct. 2010. doi: 10.1016/
j.comnet.2010.05.010.

[8] J. A. Stankovich, ‘‘Research directions for the Internet of Things,’’ IEEE
Internet Things J., vol. 1, no. 1, pp. 3–9, Feb. 2014. doi: 10.1109/
JIOT.2014.2312291.

[9] P. Porambage, C. Schmitt, P. Kumar, A. Gurtov, and M. Ylianttila,
‘‘PauthKey: A pervasive authentication Protocol and key establishment
scheme for wireless sensor networks in distributed IoT applications,’’ Int.
J. Distrib. Sensor Netw., vol. 10, no. 7, Jul. 2014, Art. no. 357430. doi: 10.
1155/2014/357430.

[10] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, ‘‘Wireless
sensor networks: A survey,’’ Comput. Netw., vol. 38, no. 4, pp. 393–422,
Mar. 2002. doi: 10.1016/S1389-1286(01)00302-4.

[11] M. R. Palattella, M. Dohler, A. Grieco, G. Rizzo, J. Torsner, T. Engel,
and L. Ladid, ‘‘Internet of Things in the 5G era: Enablers, architecture,
and business models,’’ IEEE J. Sel. Areas Commun., vol. 34, no. 3,
pp. 510–527, Mar. 2016. doi: 10.1109/JSAC.2016.2525418.

[12] Y. Chao Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young,
‘‘Mobile edge computing a key technology towards 5G,’’ ETSI, Sophia
Antipolis, France, ETSI White Paper 11, Sep. 2015. [Online]. Available:
https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp11_mec_a_
key _technology_towards_5g.pdf

[13] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, ‘‘Collaborative mobile
edge computing in 5G networks: New paradigms, scenarios, and chal-
lenges,’’ IEEE Commun. Mag., vol. 55, no. 4, pp. 54–61, Apr. 2017.
doi: 10.1109/MCOM.2017.1600863.

[14] J. Aikio, V. Pentikäinen, J. Häikiö, J. Häkkilä, and A. Colley. (2016).
On the Road to Digital Paradise: The Naked Approach. [Online].
Available: https://nakedapproach.demoshelsinki.fi/wp-content/uploads/
sites/3/2016/08/NA-concept-book.pdf

[15] T. Kumar, P. Porambage, I. Ahmad, M. Liyanage, E. Harjula, and
M. Ylianttila, ‘‘Securing gadget-free digital services,’’ Computer, vol. 51,
no. 11, pp. 66–77, Nov. 2018. doi: 10.1109/MC.2018.2876017.

[16] I. Khan, F. Belqasmi, R. Glitho, N. Crespi, M. Morrow, and P. Polakos,
‘‘Wireless sensor network virtualization: A survey,’’ IEEE Commun. Sur-
veys Tuts., vol. 18, no. 1, pp. 553–576, 1st Quart., 2015. doi: 10.1109/
COMST.2015.2412971.

[17] P. Lubomski, A. Kalinowski, and H. Krawczyk, ‘‘Multi-level virtualization
and its impact on system performance in cloud computing,’’ in Proc.
Int. Conf. Comput. Netw., P. Gaj, A. Kwiecień, and P. Stera, Eds. Cham,
Switzerland: Springer, 2016, pp. 247–259.

[18] S. Choy, B. Wong, G. Simon, and C. Rosenberg, ‘‘The brewing storm
in cloud gaming: A measurement study on cloud to end-user latency,’’
in Proc. 11th Annu. Workshop Netw. Syst. Support Games (NetGames),
Venice, Italy, Nov. 2012, Art. no. 2.

119870 VOLUME 7, 2019

http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1016/S1403-3664(02)00114-7
http://dx.doi.org/10.1016/j.tele.2017.09.020
http://dx.doi.org/10.1016/j.tele.2017.09.020
http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1109/JIOT.2014.2312291
http://dx.doi.org/10.1109/JIOT.2014.2312291
http://dx.doi.org/10.1155/2014/357430
http://dx.doi.org/10.1155/2014/357430
http://dx.doi.org/10.1016/S1389-1286(01)00302-4
http://dx.doi.org/10.1109/JSAC.2016.2525418
http://dx.doi.org/10.1109/MCOM.2017.1600863
http://dx.doi.org/10.1109/MC.2018.2876017
http://dx.doi.org/10.1109/COMST.2015.2412971
http://dx.doi.org/10.1109/COMST.2015.2412971

E. Harjula et al.: Decentralized Iot Edge Nanoservice Architecture for Future Gadget-Free Computing

[19] M. Liyanage, I. Ahmad, A. B. Abro, A. Gurtov, and M. Ylianttila,
A Comprehensive Guide to 5G Security. Hoboken, NJ, USA: Wiley, 2018.

[20] A.-R. Sadeghi, C. Wachsmann, and M. Waidner, ‘‘Security and pri-
vacy challenges in industrial Internet of Things,’’ in Proc. 52nd
ACM/EDAC/IEEE Design Autom. Conf. (DAC), San Francisco, CA, USA,
Jun. 2015, pp. 1–6.

[21] P. Kasinathan, C. Pastrone, M. A. Spirito, and M. Vinkovits, ‘‘Denial-of-
service detection in 6LoWPAN based Internet of Things,’’ in Proc. IEEE
9th Int. Conf. Wireless Mobile Comput., Netw. Commun. (WiMob), Lyon,
France, Oct. 2013, pp. 600–607.

[22] K. Kang, Z.-B. Pang, and C. Wang, ‘‘Security and privacy mech-
anism for health Internet of Things,’’ J. China Universities Posts
Telecommun., vol. 20, no. 2, pp. 64–68, Dec. 2013. doi: 10.1016/
S1005-8885(13)60219-8.

[23] M. Liyanage, J. Salo, A. Braeken, T. Kumar, S. Seneviratne, and
M. Ylianttila, ‘‘5G Privacy: Scenarios and solutions,’’ in Proc. IEEE 5G
World Forum (5GWF), Santa Clara, CA, USA, Jul. 2018, pp. 197–203.

[24] V. Ramani, T. Kumar, A. Bracken,M. Liyanage, andM.Ylianttila, ‘‘Secure
and efficient data accessibility in blockchain based healthcare systems,’’
in Proc. IEEE Global Commun. Conf. (GLOBECOM), Abu Dhabi, UAE,
Dec. 2018, pp. 206–212.

[25] P. G. Lopez, A.Montresor, D. Epema, A. Datta, T. Higashino, A. Iamnitchi,
M. Barcellos, P. Felber, and E. Riviere, ‘‘Edge-centric computing: Vision
and challenges,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 5,
pp. 37–42, Oct. 2015. doi: 10.1145/2831347.2831354.

[26] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, ‘‘Edge computing: Vision and
challenges,’’ IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016.
doi: 10.1109/JIOT.2016.2579198.

[27] A. Reznik, R. Arora, M. Cannon, L. Cominardi, W. Featherstone,
R. Frazao, F. Giust, S. Kekki, A. Li, D. Sabella, C. Turyagyenda,
and Z. Zheng, ‘‘Developing software for multi-access edge computing,’’
ETSI, Sophia Antipolis, France, ETSI White Paper 20, Sep. 2017.
[Online]. Available: https://www.etsi.org/images/files/ETSIWhitePapers/
etsi_wp20_MEC_SoftwareDevelopment_FINAL.pdf

[28] P. Mach and Z. Becvar, ‘‘Mobile edge computing: A survey on architecture
and computation offloading,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 3,
pp. 1628–1656, 3rd Quart., 2017. doi: 10.1109/COMST.2017.2682318.

[29] F. Bonomi, R.Milito, J. Zhu, and S. Addepalli, ‘‘Fog computing and its role
in the Internet of Things,’’ in Proc. 1st Workshop Mobile Cloud Comput.
(MCC), Helsinki, Finland, Aug. 2012, pp. 13–16.

[30] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, ‘‘Fog computing: A plat-
form for Internet of Things and analytics,’’ in Big Data and Internet of
Things: A Roadmap for Smart Environments, N. Bessis, and C. Dobre, Eds.
Berlin, Germany: Springer, 2014, pp. 169–186.

[31] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb,
‘‘Survey on multi-access edge computing for Internet of Things real-
ization,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp. 2961–2991,
1st Quart., 2018. doi: 10.1109/COMST.2018.2849509.

[32] R. Morabito, ‘‘Virtualization on Internet of Things edge devices with
container technologies: A performance evaluation,’’ IEEE Access, vol. 5,
pp. 8835–8850, 2017. doi: 10.1109/ACCESS.2017.2704444.

[33] E. Harjula, T. Mekonnen, M. Komu, P. Porambage, T. Kauppinen, and
J. Kjällman, and M. Ylianttila, ‘‘Energy efficiency in wireless multimedia
sensor networking: Architecture, management and security,’’ in Green-
ing Video Distribution Networks, A. Popescu, Ed. Cham, Switzerland:
Springer, 2018, pp. 133–157.

[34] D. A. Celesti, D. Mulfari, M. Fazio, M. Villari, and A. Puliafito, ‘‘Explor-
ing container virtualization in IoT clouds,’’ in Proc. 2nd Smart Comput.
(SMARTCOMP), Saint Louis, MO, USA, May 2016, pp. 1–6.

[35] C. M. Aderaldo, N. C. Mendonça, C. Pahl, and P. Jamshidi, ‘‘Benchmark
requirements for microservices architecture research,’’ in Proc. 1st Int.
Workshop Establishing Community-Wide Infrastruct. Archit.-Based Softw.
Eng. (ECASE), Buenos Aires, Argentina, May 2017, pp. 8–13.

[36] C. Esposito, A. Castiglione, and K.-R. Choo, ‘‘Challenges in delivering
software in the cloud asmicroservices,’’ IEEECloud Comput., vol. 3, no. 5,
pp. 10–14, Sep./Oct. 2016. doi: 10.1109/MCC.2016.105.

[37] M. Villamizar, O. Garcés, H. Castro,M. Verano, L. Salamanca, R. Casallas,
and S. Gil, ‘‘Evaluating the monolithic and the microservice architecture
pattern to deploy Web applications in the cloud,’’ in Proc. 10th Comput.
Colombian Conf. (CCC), Bogotá, Colombia, Sep. 2015, pp. 583–590.

[38] C. Pahl and P. Jamshidi, ‘‘Microservices: A systematic mapping study,’’
inProc. 6th Int. Conf. Cloud Comput. Services Sci., Rome, Italy, Apr. 2015,
pp. 1–10.

[39] M. Amaral, J. Polo, D. Carrera, I. Mohomed, M. Unuvar, and M. Steinder,
‘‘Performance evaluation of microservices architectures using contain-
ers,’’ in Proc. 14th Int. Symp. Netw. Comput. Appl. (NCA), Cambridge,
MA, USA, Sep. 2015, pp. 27–34.

[40] B. Butzin, F. Golatowski, and D. Timmermann, ‘‘Microservices approach
for the Internet of Things,’’ inProc. 21st Int. Conf. Emerg. Technol. Factory
Autom. (ETFA), Berlin, Germany, Sep. 2016, pp. 1–6.

[41] P. Angin and B. Bhargava, ‘‘An agent-based optimization framework for
mobile-cloud computing,’’ J. Wireless Mobile Netw., Ubiquitous Comput.,
Dependable Appl., vol. 4, no. 2, pp. 1–17, Jun. 2013. doi: 10.22667/
JOWUA.2013.06.31.001.

[42] T. Leppänen, J. Riekki, M. Liu, E. Harjula, and T. Ojala, ‘‘Mobile
agents-based smart objects for the Internet of Things,’’ in Internet Things
Based Smart Objects, G. Fortino and P. Trunfio Eds. Cham, Switzerland:
Springer, 2014, pp. 29–48.

[43] E. Harjula, T. Leppänen, T. Ojala, and M. Ylianttila, ‘‘ADHT: Agent-
based DHT architecture for constrained devices,’’ in Proc. IEEE
Global Commun. Conf. (GLOBECOM), Austin, TX, USA, Dec. 2014,
pp. 2763–2769.

[44] T. Leppänen, A. Heikkinen, A. Karhu, E. Harjula, J. Riekki, and T. Koskela,
‘‘Augmented reality Web applications with mobile agents in the Internet of
Things,’’ inProc. 8th Int. Conf. Next Gener. Mobile Apps, Services Technol.
(NGMAST), Oxford, U.K., Sep. 2014, pp. 54–59.

[45] T. Leppänen, I. S. Milara, J. Yang, J. Kataja, and J. Riekki, ‘‘Enabling user-
centered interactions in the Internet of Things,’’ in Proc. IEEE Int. Conf.
Syst., Man, Cybern. (SMC), Budapest, Hungary, Oct. 2016, pp. 1537–1543.

[46] C. Hewitt, P. Bishop, and R. Steiger, ‘‘A universal modular ACTOR
formalism for artificial intelligence,’’ in Proc. 3rd Int. Joint Conf. Artif.
Intell. (IJCAI), Stanford, CA, USA, Aug. 1973, pp. 235–245.

[47] A. M. Haubenwaller and K. Vandikas, ‘‘Computations on the edge in the
Internet of Things,’’ Procedia Comput. Sci., vol. 52, pp. 29–34, Jan. 2015.
doi: 10.1016/j.procs.2015.05.011.

[48] F. Rossi, P. Van Beek, and T. Walsh, Handbook of Constraint Program-
ming. Amsterdam, The Netherlands: Elsevier, 2006.

[49] Z. Shelby, K. Hartke, and C. Bormann, The Constrained Application
Protocol (CoAP), document IETF RFC7252, 2014. [Online]. Available:
https://tools.ietf.org/html/rfc7252

ERKKI HARJULA received the M.Sc. degree in
computer engineering and the D.Sc. degree in
communications engineering from the University
of Oulu, Finland, in 2007 and 2016, respectively,
where he is currently a Postdoctoral Researcher
and a ProjectManager with the Centre forWireless
Communications Research Group. He was with
the Center for Internet Excellence, University of
Oulu, from 2013 to 2015, and the MediaTeam
Research Group, University of Oulu, from 2000

to 2014. He has also visited Columbia University, NewYork, NY, USA, from
2008 to 2009, as a Researcher. He is a coauthor of over 50 international peer-
reviewed scientific articles on the mobile and IoT systems, edge computing,
distributed systems, and energy efficiency.

PEKKA KARHULA received the M.Sc. degree
in information technology from the University of
Jyväskylä, Finland, in 2016. He is currently pursu-
ing the Ph.D. degree with the University of Oulu.
He is also a Research Scientist with VTT Tech-
nical Research Centre of Finland Ltd., where his
current research topics include 5G and beyond
communications. He was a Visiting Scholar with
Columbia University, New York, NY, USA, for
nine months, in 2018 and 2019. His research inter-

ests include the IoT, wearables, code mobility, and edge computing.

VOLUME 7, 2019 119871

http://dx.doi.org/10.1016/S1005-8885(13)60219-8
http://dx.doi.org/10.1016/S1005-8885(13)60219-8
http://dx.doi.org/10.1145/2831347.2831354
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.1109/COMST.2018.2849509
http://dx.doi.org/10.1109/ACCESS.2017.2704444
http://dx.doi.org/10.1109/MCC.2016.105
http://dx.doi.org/10.22667/JOWUA.2013.06.31.001
http://dx.doi.org/10.22667/JOWUA.2013.06.31.001
http://dx.doi.org/10.1016/j.procs.2015.05.011

E. Harjula et al.: Decentralized Iot Edge Nanoservice Architecture for Future Gadget-Free Computing

JOHIRUL ISLAM received the B.Sc. degree in
information and communication technology from
Mawlana Bhashani Science and Technology Uni-
versity, Bangladesh, in 2014, and the M.Sc. degree
in wireless communication engineering from the
University of Oulu, Finland, in 2019. He is cur-
rently a Research Assistant with the Center for
Wireless Communication Research Group, Uni-
versity of Oulu. His research interests include the
IoT, cloud and edge computing, and virtualization
technologies for intelligent environment.

TEEMU LEPPÄNEN received the D.Sc. degree
from the University of Oulu, Finland, in 2018,
where he is currently a Research Scientist with the
Center for Ubiquitous Computing. His research
interests include the IoT edge computing real-
world infrastructures with a focus on distributed
AI methods that target energy efficiency and
human–machine interactions. He visited the Insti-
tute of Industrial Science, The University of
Tokyo, Japan, from 2012 to 2013. He has authored

over 40 peer-reviewed articles in scientific journals, research books, and
international conferences, where he has received three best paper awards.

AHSAN MANZOOR received the B.Sc. degree in
computer software engineering from the Ghulam
Ishaq Khan Institute, Pakistan, in 2014, and the
M.Sc. degree from theUniversity of Oulu, Finland,
in 2017, where he is currently pursuing the Ph.D.
degree. He was a Research Assistant with the Cen-
tre for Wireless Communications, University of
Oulu. He is also a Blockchain Research Developer
with Rovio Entertainment, Espoo, Finland. His
research interests include Blockchain, the Internet
of Things, and ubiquitous computing.

MADHUSANKA LIYANAGE received the D.Sc.
degree in communication engineering from the
University of Oulu, Oulu, Finland. From 2011
to 2012, he was a Research Scientist with the
I3S Laboratory, and Inria, Sophia Antipolis,
France. He was a Visiting Research Fellow with
the Computer Science and Engineering Depart-
ment, The University of Oxford, Data61, CSIRO,
Sydney Australia, Infolabs21, Lancaster Univer-
sity, U.K., and the Computer Science and Engi-

neeringDepartment, TheUniversity of NewSouthWales, from 2016 to 2018.
He is currently a Marie Curie Fellow with the School of Computer Science,
University College Dublin, Ireland. He is also an Adjunct Professor with
the University of Oulu. He is a coauthor of over 50 publications, including
two edited books with Wiley. His research interests include SDN, the IoT,
Blockchain, mobile, and virtual network security. He is also a member
of ICT.

JAGMOHAN CHAUHAN received the Ph.D.
degree in electrical engineering and telecommu-
nications from The University of New South
Wales (UNSW). He is currently a Postdoctoral
Researcher with the Mobile Systems Group,
University of Cambridge. His research interests
include mobile sensing, mobile health, and applied
machine learning.

TANESH KUMAR received the B.E. degree in
computer engineering from the National Uni-
versity of Sciences and Technology (E&ME),
Pakistan, in 2012, and the M.Sc. degree in
computer science from South Asian University,
New Delhi, India, in 2014. He is currently pursu-
ing the Ph.D. degree with the Centre for Wireless
Communications Research Group, University of
Oulu, Finland, where he is also a Research Sci-
entist. He has coauthored over 40 peer-reviewed

scientific articles. His current research interests include security and privacy
in the IoT/smart environments, edge computing, and blockchain.

IJAZ AHMAD received the B.Sc. degree in
computer systems engineering from the Univer-
sity of Engineering and Technology, Peshawar,
Pakistan, and the M.Sc. and D.Sc. degrees in
wireless communications engineering from the
University of Oulu, Finland, in 2012 and 2018,
respectively. He was a Researcher and a Post-
doctoral Researcher with the Center for Wireless
Communications, Oulu, Finland. He is currently
a Research Scientist with the VTT Technical

Research Centre of Finland. He has contributed over 40 publications, includ-
ing high impact factor journal articles, conference papers, and book chapters.
His research interests include SDN, SDN-based mobile networks, wireless
networks, network security, and network load balancing.

MIKA YLIANTTILA (SM’08) received the Ph.D.
degree in communications engineering from the
University of Oulu, in 2005. He was the Director
of the Center for Internet Excellence, from 2012
to 2015, the Vice Director of the MediaTeam Oulu
Research Group, from 2009 to 2011, and a Profes-
sor (pro tem) of computer science and engineer-
ing and the Director of the Information Networks
Study Program, from 2005 to 2010. He is currently
a full-time Associate Professor (tenure track) with

the Centre for Wireless Communications (CWC), Faculty of Information
Technology and Electrical Engineering (ITEE), University of Oulu, Finland.
He is leading a research team and is the Director of Communications Engi-
neering Doctoral Degree Program. He has coauthored more than 150 interna-
tional peer-reviewed articles. His research interests include edge computing,
network security, network virtualization, and software-defined networking.
He is also an Editor of Wireless Networks journal.

119872 VOLUME 7, 2019

