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ABSTRACT Traditional neural networks usually concentrate on temporal data in system simulation, and lack
of capabilities to reason inner logic relations between different dimensions of data collected from embedded
sensors. This paper proposes a graph neural network-based modeling approach for IoT equipment (called
GNNM-IoT), which considers both temporal and inner logic relations of data, in which vertices denote
sensor data and edges denote relationships between vertices. The GNNM-IoT model’s relationships between
sensors with neural networks to produce nonlinear complex relationships. We have evaluated the GNNM-IoT
using air-conditioner data from a world leading IoT company, which demonstrates that it is effective and

outperforms ARIMA and LSTM methods.

INDEX TERMS Graph neural networks, deep learning, simulation, time series prediction, IoT.

I. INTRODUCTION

Modern Internet of Things (IoT) equipment can be complex.
Various sensors are usually embedded in the IoT equipment.
For example, a central air conditioner is deployed with a
number of pressure, temperature, voltage, and other sensors.
However, for many IoT applications, effective data are not
usually available, e.g., the fault data on central air condition-
ing equipment, and this hinders equipment fault diagnosis and
prediction.

The above issues motivate studies on approaches for sim-
ulating the equipment operation. Wu et al. applied neural
networks into optimizing simulation model performance [1].
Kim et al. presented a supervised learning method to learn
relationships between pilot assignment and user’s location
patterns [2]. Taki et al [3] used artificial neural networks
to estimate greenhouse parameters. These classical neu-
ral networks simply use the approximation capability for
a complex function from a neural network, without much
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consideration of inner logic relations between IoT sensor
data [4].

In recent years, deep learning has been applied in different
fields including system simulation. Yeo and Melnyk [5] pro-
posed a deep learning algorithm for data-driven simulation
of noisy dynamical system to predict probability distribution
and simulate a stochastic process. Wang et al. [6] designed
a stacked auto-encoder to properly extract nonlinear and
non-stationary features in smart grids. The performance of
deep learning can be improved by expert knowledge, as exem-
plified by the well-known attention mechanism [7]. These
existing deep learning based approaches still did not model
inner logic relations of IoT sensors.

In summary, all these reviewed efforts are focusing on
abstracting features layer by layer in a neural network, with-
out much consideration of associations between features. As a
result, as the relations of units in the same layer are barely
disposed in these neural networks.

From another aspect, IoT equipment can be described with
an undirected graph, in which a vertex denotes sensor data
while an edge denotes relations between data. The graph
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neural networks (GNNs) [8], inherited from the graph,
are good tools for graph based tasks. The representational
power of GNNs has been studied theoretically [9], which
improves the reasoning on logic relations between different
objects [10]. Schlichtkrul et al. [11] introduced an unsuper-
vised model, named neural relational inference (NRI) model
for inferring the interactions of particles. These works moti-
vate us to use GNNs for modeling and simulating the IoT
equipment operation, in terms of predicting equipment states
based on the internal relationships between different embed-
ded sensors effectively.

This paper proposes a graph neural network approach
for modeling IoT systems (GNNM-IoT), which introduces
the encoder-decoder pattern, where the encoder learns the
potential relationships between sensor data, and the decoder
predicts the system states. The accuracy of the learned
relationships is assessed by the predicted data quality. The
evaluation shows that the GNNM-IoT is effective. It has
better performance than the Long-Short Term Memory
(LSTM) [12] and Auto-Regressive Integrated Moving Aver-
age (ARIMA) [13] on the air conditioner time series data.

The contributions of this paper include:

o Modeling relationships between embedded sensors in
IoT equipment using graph neural networks. The rela-
tionships between the sensors are denoted by the graph
edges, which are modeled by multi-layer full-connection
neural networks.

« Reconstructing the input data based on the Variational
Autoencoder [14]. An encoder is designed to learn the
relations between the vertices. Then a decoder is used
to reconstruct the input data based on the vertices at
first moment and the relational functions. Meanwhile,
we introduce the Gumbel-sampling to boost the perfor-
mance of GNNM-IoT.

o Introducing the residual structure [15] to learn the dif-
ferences of sensor states at different moments, which is
beneficial for the graph neural network to concentrate on
state changes. This can further improve the accuracy of
GNNM-IoT.

The remainder of this paper is organized as follows:
Section 2 reviews the work. Section 3 presents the design
of the GNNM-IoT model, especially its network structure
and data processing. Section 4 evaluates the GNNM-IoT
model with practical data from air-conditioner for its perfor-
mance and compares it with the LSTM and ARIMA models.
Section 5 concludes the paper and discusses future work
to do.

Il. RELATED WORK

A lot of efforts have been dedicated on using association
rule [16], [17] to discover association relationships between
data. However, these solutions only identify there exists a
certain relationship without mining how these relationships
guide the running of a system, and have very weak capabil-
ities of predicting system operational conditions. There are
works on using deep learning approaches to predict system
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statuses, such as LSTM based IoT status prediction [18] or
DBN (Deep Belief Network) based approach [19]. However,
these works fail to address the inner logic relations of data,
which limits the complete simulation of IoT equipment.

System simulation consists of processes of system
modeling, simulation modeling and simulation experi-
ments [20]-[23]. There are three methodologies for sys-
tem simulation, including statistical methods [24], physical
modeling [25], and soft-computing based approaches [26].
They require a pre-knowledge of the dynamical system [27].
Jaeger & Haas [28] proposed an echo state network (ESN),
which randomly generated and predicted states and was used
in some dynamic systems [29], [30]. However, it is often the
case that we do not quite know the principles behind some
physical processes, or the system might be too complex to
use a classical simulation model [31].

Deep learning has the power of fitting both linear and
nonlinear functions [32]-[34], and it has been used for mod-
eling complex structure [35], and for data-driven reconstruc-
tion of dynamic systems [36]-[38]. Jin et al. [39] proposed
a Deep Reconstruction Model (DRM) that combined the
deep learning and Elman neural network for manifesting the
memory effect of nonlinear systems. Wu and Rahman [40]
studied the optimized machine learning framework for mod-
eling the water distribution network management by DBNs.
Taki et al. [3] applied artificial intelligence (MLP, RBF
and SVM models with k-fold cross-validation) to con-
trol climate conditions as well as energy consumption for
greenhouse simulation. Wang et al. [41] introduced a Stack
Auto-Encoder (SAE) to narrow down the width of state
variables for wind power forecasting. Yeo and Melnyk [5]
presented a RNN-based model without any assumption to
directly predict probability density for simulation of noisy
nonlinear dynamic systems.

The previous studies have confirmed the effectiveness of
neural networks for modeling nonlinear problems. However,
we still face some challenges in reasoning potential relation-
ships between data [42]. To address this, we apply GNNs to
improve the current neural networks’ reasoning capabilities.

Ill. GNNM-loT MODEL DESIGN

Our goal is to model the relationships between sensor data
and simulate the running of the IoT equipment. The first
question is how to design the model. Our solution is to use an
encoder to learn the relationships between data. Undirected
graph could be one of the best tools for representing these
relationships. Therefore, we introduce graph neural networks
to learn the relationships between data to build a relational
model. The second question is how to evaluate the learn-
ing. Since we only have observational data, the relation-
ships between the data are hidden behind the observation.
Therefore, the accuracy of the learned relationships should be
evaluated by predicting the states of [oT equipment. We con-
nect a decoder to the encoder as a prediction model, which
is also realized as GNNs. In this way, the observed data
can be directly used to evaluate the relationships learned by
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the encoder. The more accurate the prediction is, the more
accurate the learned relationships are.

The existing neural networks (e.g. LSTM and DBN),
as black box solutions, lack of a structure to represent rela-
tions between data features, and just simply believe that a
neural network was able to learn everything by itself. Our pro-
posed GNNM-IoT uses GNNss to restrict the encoder network
structure, and guide neural networks to reach the minimum
loss value by the GNN network structure. This design leads
to a better performance than the existing neural networks.

Figure 1 presents the GNNM-IoT model with an
Encoder-Decoder pattern, which inputs the preprocessed data
into a Multi-Layer Perception (MLP)-Encoder. The potential
relationships learned by the MLP-Encoder and the sampling
data from Gumbel-Sampling are input to the MLP-Decoder.
Then the MLP-Decoder reconstructs the output data. The
GNNM-IoT training depends on the design of a loss function,
which is used to calculate deviation between the truth and the
output data. The calculation is based on MSE (mean squared
error) and KL (Kullback-Leibler) divergence.

Sensors
Input data

MLP-Encoder Gumbel-Sampling

Edge distributions— Sampling data

MLP-Decoder
Output data

FIGURE 1. GNNM-IoT model overview.

A. SENSORS

Sensors are widely used in IoT equipment. The sensed data
are related to the historical state of the IoT equipment. Mean-
while, these data are also related to the system parameters
configuration. These data will be measured by the entropy
function as defined in (1), where c is the threshold. If H(x)
is lower than c, the corresponding x will not be used as the
input data.

H(x) = =) p(x) log(p(x)) ¢))
xeX

Hix) > ¢ (2
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B. MLP-ENCODER

We assume that sensors have relationships with each
other. Therefore, an IoT system can be represented by
a fully connected graph G = (N, E) as shown in Fig. 2.
N = {ny, np, n3, ...n,} denotes n sensors, which represents
the states of the corresponding equipment components. The
MLP-Encoder is designed with objectives to learn the rela-
tional functions of directions in the graph.

FIGURE 2. Graph G representing sensors and their relationships.

The GNNM-IoT MLP-Encoder uses message passing [43]
method, which consists of two phases, message passing and
readout defined as Equation (3) and (4). This method updates
graph from state S;_ to state S;. Each node n; is assigned to a
multi-layer fully-connected neural network. Each node #n; in
Si—1 is connected to other nodes in S;, as shown in Fig. 3.

FIGURE 3. Layer assignment of the graph.

FIGURE 4. Node - neural network block - node.

®

Figure 4 presents a neural network block for represent-
ing complex relationships between nodes, where n; denotes
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"t node in the previous layer, n; denotes j node in the next
layer, e;; denotes the edge between n; and n;.

Therefore, given a graph G = (N,E), N denotes a
set of nodes, n € N, E represents a set of e, e € E,
N ={ni,na,n3,...n,}, E={e;,i,j=1,2,...n}. We use
the message passing [43] to transmit the information from a
node to an edge (using Equation (3)), then the information is
input to the node in the next layer (using Equation (4)).

n—e: hfij) = fL(H, hl. s X)) 3
e — n: W =£U x5 Q)
ieN;

where hl denotes the embedding of n;, [ represent the cur-
rent layer h i) stands for the embedding of e;;, f denotes a
function. Here the potential relationships are learned by three
mappings: the first mapping from 7 to e, the second mapping
form e to n, and the third mapping from » to e.

C. GUMBEL-SAMPLING

A normal distribution is applied to the Variational
auto-encoder (VAE) [14] to limit the distribution of the mean
vector and the variance vector. Similar to VAE, the GNNM-
IoT introduces the Gumbel re-parameter trick [44] to opti-
mize model performance, so that the potential relationships
are Gumbel distributions defined as Equation (5). Thus,
the purpose of the MLP-Encoder is to learn the parameters
of a Gumbel distribution, then to conduct sampling from the
Gumbel distribution. For example, we can get the normal
Gumbel distribution sampling data by sampling the discrete
stochastic variable x; in the probability vector = with m
dimensions of Gumbel noise.

_ _ e’ _ XK
p(x) 3¢ , 2 5 )

G; is the stochastic variable of the Gumbel distributions
that are independently identically distributed. G; can be gen-
erated from uniform distribution by the Gumbel distribution
inverse: G; = — log(—log(U;)), U; ~ U(0, 1).

As shown in Fig. 5, re-parameterization moves the sam-
pling steps away from the computation graph for gradient
backpropagation. Here, f, z, x, ¢ are the deterministic nodes,
and ¢ is the stochastic node. If z includes ¢, it is impossible for
zto back propagate the gradient. So ¢ is moved out of z, which
is regarded as an input without the weight variable. Then
z becomes a deterministic node. The stochastic distribution
represented by € can be added to the forward propagation but
¢ is not changed by backpropagation. ¢ obeys the Gumbel
distribution in this paper.

D. MLP-DECODER

The GNNM-IoT MLP-Decoder predicts system states based
on the previous system states and the relational functions
learned by the MLP-Encoder using Equations (6) and (7).
In the actual environment, if the time interval is short,
a single-step prediction would be useless for users. Therefore,
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Backpropagation
—

Forward

FIGURE 5. Re-parameterization.

amulti-step prediction is applied to accumulate the prediction
error for backpropagation and to update the parameters in the
GNNM-IoT model in training phase.

n—e: ﬁii,j) = ZZij,kfgk([xits x;]) (6)
k
e —> n: ,bLJH—l = X} +f~"(Z Ijlél',j)) (7)
i#))

where z denotes the latent ground truth graph, z;; x denotes
k™ element in the vector Zij» x denotes the state of x; in time
t, fe denotes the mapping functlon between the nodes’ state
in time ¢ and the edge h( ij) f, transfers the edges h(l into

the nodes ! +1 x] is to make the MLP-Decoder learn the
differences between the previous and the next system states.

e 12

e 21

e 22

FIGURE 6. Single-step prediction.

Fig. 6 presents the single-step prediction, [e11, e12, €21, €22]
are the relational functions learned by the MLP-Encoder. The
initial state of each sensor is ng. The target of MLP-Decoder
is to predict the next state n; using a single-step prediction.
A long time prediction is completed by stacking multiple
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TN
N

t edges t+1 edges

FIGURE 7. Multi-step prediction.

single-step predictions, so that the previous prediction result
is the input for next step prediction, as shown in Fig. 7.

The multi-step prediction can predict the system state
series. When the MLP-Decoder predicts the system states to
follow based on the first moment system states in every sam-
ple, the multi-step prediction accumulates prediction errors,
which is the basement of loss function. Then the error is
used to update weights in the GNNM-IoT model by gradient
backpropagation.

E. LOSS FUNCTION

The GNNM-IoT model defines the loss function as Equa-
tion (8) based on KL divergence of the relational functions
and the MSE between the prediction and ground truth, where
¢ denotes the proportion of KL divergence, e denotes the
relations learning by the encoder, x denotes the input data,
and y denotes the prediction result.

Loss = cKL(e) + (1 — o)||x — y||2 ®)

IV. EVALUATION

The GNNM-IoT implements the MLP-Encoder and
MLP-Decoder with fully-connected networks and applies
the Adam algorithm [45] as the optimization algorithm. The
experiment uses Ubuntu 16.04 and PyTorch 0.3 [46] as the
software platform and a GTX1070 GPU for training neural
networks.

A. AIR-CONDITIONER SIMULATION

We are working with a world leading IoT company to conduct
the analysis and prediction of their central air conditioning
systems using our developed GNNM-IoT model.

The experiment first removes those data whose entropy
is lower than the given threshold. The input data are then
cleaned, filled and normalized by data preprocessing. The
experiment chooses 55 data dimensions from the original
182 dimensions.

The experiment describes data matrix as (£,55), in which
t denotes the time length. Due to the features of GNN
and the sampling frequency of sensors (twice a minute),
there is a requirement for data prediction of half an hour
in advance. Therefore, we transfer the data matrix into the
matrix (m,55,60), in which m is the number of samples. Then
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2 edges t+3

the data are given to the GNNM-IoT, ARIMA and LSTM for
training and predicting future states.

Figure 8 illustrates the results with the comparison between
the LSTM and GNNM-IoT loss curves. This shows that
the LSTM loss reaches the lowest value of 0.04787 after
70000 iterations, whereas the GNNM-IoT loss reaches the
lowest value of 0.00605 after 500 iterations. The accuracy
of the GNNM-IoT is seven times higher than that of LSTM,
whereas the iterations by the GNNM-IoT are only 1/400 by
the LSTM. In addition, the GNNM-IoT convergent speed is
faster than that of LSTM. And the GNNM-IoT loss curve
has two obvious jumps during the iterations. Then we use
the MSE loss as the standard to estimate the accuracy of
the model because the MSE loss is computed based on the
similarity between the prediction data and the ground truth
data.

TABLE 1. Predictive accuracy statistics of the LSTM and the GNNM-loT
measured with MSE.

Algorithm Train Validation
LSTM 0.0478699133 0.0952380896
GNNM-IoT 0.0060533981 0.0006080393

Table 1 shows the prediction accuracy of the LSTM and
GNNM-IoT measured with MSE based on the historical data.
Comparing with the LSTM, the GNNM-IoT MSE is only
12% of the LSTM MSE loss during the training phase. The
GNNM-IoT MSE is far less than that of LSTM during the
validation phase.

We predict a longer time series and add the ARIMA as
the third model for a comparison. The results are shown
in Fig. 9 and 10.

The yellow, green and purple curves denote the prediction
data in Figure 9. The blue curve denotes the ground truth
data. The LSTM and the GNNM-IoT use the same data
and training mode. In Figure 9, The 60 points represent a
30 minutes period, as the sampling frequency of the sensors is
twice a minute. We use single-step prediction to reconstruct
the input data. When the models predict 30 minutes’ data,
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FIGURE 8. LSTM loss curve (left) and GNNM-IoT loss curve (right). (a) LSTM MSE loss. (b) GNNM-loT MSE loss.

dimension 1
— truth
001 ——- ARIMA
LSTM
GNNM-loT
—0.2 1
—-0.4 4
o
o
=
©
>
—0.6 1
—0.8 1
—1.0
0 10 20 30 40 50 60
time points(2 points/ minute)
(a)
dimension 7
0.55 4 — truth A
-—- ARIMA AN
. ,
0.50 LSTM . A N Y
GNNM-loT IRV SRV AY v
I\ ey VR
1 1
0451 VAV
1 " ST 1
s R A YV
o 0401 N ', Vi y
: A ARV (Y
© 1
>03s54 [/ v 1R
|\ v -’IM H A |
| L U Y i
0.30 1 \
1
0.25 4
0.20 4
0 10 20 30 40 50 60
time points(2 points/ minute)
(©)

FIGURE 9. 30 minutes prediction using ARIMA, LSTM and GNNM-IoT. (a) dimension1. (b) dimension3. (c) dimension7. (d) dimension9.

the second point is predicted based on the first prediction
point, until it reaches the final point. The results in Fig. 9
shows that the GNNM-IoT has the best performance in
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terms of prediction accuracy. We can see that from the start
of 20 points, the GNNM-IoT keeps the trends of data whereas
the ARIMA and LSTM cannot.
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FIGURE 10. Multi-dimension prediction. (a) LSTM. (b) GNNM-IoT.

The red curve denotes the prediction data in Fig. 10. The
blue curve denotes the ground truth data. We can see that
the GNNM-IoT can fit every dimensions’ data well, which
means that the GNNM-IoT has a satisfactory prediction per-
formance. The LSTM demonstrates bad performance for the
dimensions with fluctuation, but performs well for the dimen-
sions with a smooth curve.

The experiments above have shown that the GNNM-IoT
has obvious advantages in predicting future system states
compared with other methods. The GNNM-IoT model
described above is implemented by a one-step prediction.
However, it also can be implemented by a multi-step predic-
tion. For this reason, the following experiments are conducted
to assess the multi-step prediction with the same data and
the same GNNM-IoT model but with different prediction
steps, namely 5 steps (points), 10 steps (points) and 15 steps
(points). All predictions are for 60 points (30 minutes) repeat-
ing the experiment 12, 6 or 4 times respectively. It can predict
the long term trend of system states based on the decoder,
while the prediction module in the decoder is the same MLP
used for mapping the base states and the future states.

In the following experiment, the base predictions are
5 steps, 10 steps and 15 steps, respectively. This means that
5 steps need to be repeated 12 times, 10 steps be repeated
6 times and 15 steps be repeated 4 times to predict 60 points.
Then we make comparisons between 5 steps, 10 steps and
15 steps for choosing the best prediction steps. The loss
descent curves are shown in Fig. 11, 12 and 13, where the
results demonstrate the model performance with different
prediction steps. We calculate the MSE of different prediction
steps, which means that the MSE of 5 steps prediction has an
average error of 5 points, and the same applies to the 10 and
15 steps experiments.

We can see that the training loss curves of 5 steps (Fig. 11)
and 10 steps (Fig. 12) are convergent, while the training
of 15 steps (Fig. 13) prediction is divergent with concussion.
Figure 11 and 12 show that there exist two sudden drops,
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FIGURE 11. MSE loss descent curve of 5 steps.
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oA

FIGURE 12. MSE loss descent curve of 10 steps.

which means that these models have a rapid descent during
training. In addition, the total iterations are fewer than other
methods but the time consumption is longer than other meth-
ods in a single iteration.

The validation loss descent curves of different steps are
shown in Fig. 14, 15 and 16. We can see that the MSE
curves of the validation data set are slightly instable in the
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FIGURE 13. MSE loss descent curve of 15 steps.
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FIGURE 14. validation loss descent curve of 5 steps.

validation of 10 steps

0174 —— 10 steps

0.13

T T T T T T
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iterations

FIGURE 15. validation loss descent curve of 10 steps.

training stage. The fluctuations of validation loss descent
curves tend to become less and convergent in the late period.
However, the validation curve of 15 steps model consis-
tently fluctuates and does not converge. That means that
the long-term prediction performance is not good of the
15 steps prediction. The reason is that for the current model
setting, the MLP, mapping the function relationships, doesn’t
effectively learn the long-term intrinsic mapping. As a result,
the model performance based on 15 steps is poor, which
eventually leads to the situation where the curve does not
converge.

Figure 17 shows the comparison using GNNM-IoT with
1 step, 5 steps, 10 steps and 15 steps and four dimensions
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FIGURE 16. validation loss descent curve of 15 steps.

data (1, 3, 7, and 9). We can see that the overall prediction
with 1 step is more accurate and can effectively reflect the
state trends. The prediction with 5 steps, 10 steps and 15 steps
cannot learn trends well. Figure 17 shows that the real data
has a sudden rise in the late stage, while the results with 5,
10, and 15 steps are transited to a high point smoothly with
no sudden changes and details of data changes are lost.

Table 2 further verifies the above analysis with the MSE
data, where the prediction of 1 step has a better performance
than those predictions of 5, 10 and 15 steps.

TABLE 2. MSE in 30 minutes prediction with 1 step, 5 steps, 10 steps
and 15 steps.

dimension 1 step 5 steps 10 steps 15 steps
dimensionl | 0.0177443 | 0.0150794 | 0.012957 0.0209351
dimension3 | 0.0006556 | 0.0099382 | 0.0007769 | 0.00082072
dimension7 | 0.0028725 | 0.0134935 | 0.0033587 | 0.00278901
dimension9 | 0.0112787 | 0.0163024 | 0.0200642 | 0.0149668

B. DISCUSSION
The fluctuation of real data is fast. From the predictions
results with 1, 5, 10, and 15 steps, we can find that the
1 step based model has the best results and can reflect data
changes. Multi-step predictions do not perform well in our
experimental conditions. Therefore, the prediction step is
usually decided based on data characteristics. If data changes
quickly, then the prediction step needs to be chosen smaller.

The above evaluations show that GNNM-IoT has a good
performance compared with that of the ARIMA and LSTM.
This states that GNNM-IoT is good at modeling inner logic
relations between system components. The ARIMA model
only obtains the data features but the principle of a system.
In addition, the long-term prediction performance (longer
than 30 minutes) may be bad due to the designed decoder
with a single step prediction in this experiment.

Our goal is to model the relationships between data. The
encoder is used to learn these relationships, which is the core
of GNNM-IoT. The decoder is used to evaluate the accuracy
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FIGURE 17. 30 minutes prediction using GNNM-IoT with 1 step, 5 steps, 10 steps and 15 steps. (a) dimension1. (b) dimension3.

(c) dimension7. (d) dimension9.

of the learned relationships by the encoder, which can be
understood as predicting the data of the next moment by
using the data relationships of the previous moment. And
how to assess the correctness or accuracy of the relationships?
Since all we have are the observational data, the relationships
between the data are unknown, so the accuracy of the learned
relationships are verified in a predictive way. If the prediction
is accurate, then the learned relationships are correct. These
evaluations show that GNNM-IoT is effective to model the
inner relationships.

V. CONCLUSION AND FUTURE WORK

System simulation of industrial IoT equipment needs to con-
sider temporal information, but more importantly it needs to
provide the ability of reasoning inner logic relations between
dimensions of data. This paper proposes a Graph Neural
Network based modeling approach for IoT equipment, called
GNNM-IoT, which models relationships between sensors for
obtaining relationships by neural networks. We have evalu-
ated the performance of GNNM-IoT with air-conditioner data
from a world leading IoT company, and compared with that of
ARIMA and LSTM. It shows that our GNNM-IoT produces
a higher performance than the other two approaches.

32762

In the experiment involving the GNNM-IoT model,
we find that it consumes quite some computing resources
when it builds the data relations. With the sensor number
increases, resources consumption becomes higher. The future
work is to prune the relations based on expert knowledge to
further reduce data dimensions in order to boost the process-
ing speed. The second direction is to abstract an advanced
vertex from the vertexes with close relationships by intro-
ducing a pooling module, in order to further reduce resource
consumption.
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