
Received February 3, 2018, accepted March 13, 2018, date of publication March 23, 2018, date of current version April 23, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2818887

Rotation Invariant Local Binary
Convolution Neural Networks
XIN ZHANG 1, YUXIANG XIE1, JIE CHEN2, (Member, IEEE), LINGDA WU3,
QIXIANG YE4, (Senior Member, IEEE), AND LI LIU1,2
1College of Information System and Management, National University of Defense Technology, Changsha 410073, China
2Center for Machine Vision and Signal Analysis, University of Oulu, 90014 Oulu, Finland
3Space Engineering University, Beijing 101416, China
4University of Chinese Academy of Sciences, Beijing 100049, China

Corresponding author: Yuxiang Xie (yxxie@nudt.edu.cn)

This work supported in part by the National Natural Science Foundation of China under Grant 61571453 and Grant 61202336, in part by
the Natural Science Foundation of Hunan Province under Grant 14JJ3010, and in part by the Hunan Provincial Natural Science Fund for
Distinguished Young Scholars under Grant 2017JJ1007.

ABSTRACT Convolutional neural networks (CNNs) have achieved unprecedented successes in computer
vision fields, but they remain challenged by the problem about how to effectively process the orientation
transformation of objects with fewer parameters. In this paper, we propose a new convolutional module,
local binary orientation module (LBoM), which takes advantages of both local binary convolutional and
active rotating filters to effectively deal with the rotation variations with fewer parameters. LBoM can be
naturally inserted to popular CNN models and upgrade them to be rotation invariant local binary CNNs
(RI-LBCNNs). RI-LBCNNs can be learned with off-the-shelf optimization approaches in an end-to-
end manner and fulfill image classification tasks. Extensive experiments on four benchmarks show that
RI-LBCNNs can perform image classification with fewer network parameters and significantly outperform
the baseline LBCNN when processing images with large rotation variations.

INDEX TERMS Deep learning, rotation invariance, convolutional neural network, local binary filter.

I. INTRODUCTION
Recently, deep Convolutional Neural Networks (CNNs)
achieve impressive results for image classification [1]–[7]
and object detection [8]–[13]. There have emerged some
well-known architectures, such as AlexNet [1], ZFNet [14],
NIN [3], VGGNet [4], GoogLeNet [7] and ResNet [6], which
push this bloom into new peaks increasingly. Plenty of exper-
iments have validated that architectures based on CNNs with
sufficient data provided, can achieve top tier performance on
public benchmarks [1], [4]–[13], [15].

In general, this is true for CNNs with wealthy memory
and sufficient disk storage. However, for some front-end
devices (e.g., cell phones, unmanned aerial vehicles (UAVs),
GoPro) with limited resources (i.e., memory and storage),
CNNs with heavily learnable parameters are unsuitable. The
networks need to make a compromise between efficiency and
accuracy. In order to solve this problem, plenty of researches
based on the compressed network are proposed. For example,
Wu et al. [16] quantized the weights of both convolutional
layers and fully-connected layers to compress the storage and
computation cost of network. Juefei-Xu et al. [17] replaced

the traditional convolutional layers with Local Binary Con-
volutional (LBConv) to make a compression for learnable
parameters.

On the other hand, there has been longstanding interests in
developing robust features invariance to rotation [18]–[24].
A challenge in real-world scenarios is that the object(s) in
an image might show arbitrary orientations instead of being
canonical orientation. For a deep CNN, the absence of rota-
tion invariance property will result in the degradation of
the classification performance confronting images with these
rotated objects. The pre-defined max-pooling mechanism
endows conventional CNNs [1], [4], [6], [7] the capacity
of processing small transitions, including scale change and
small rotation of the input image, but they still have limited
capacities to classify the images with large pose variance,
as showed in Fig. 1.

Orientation information encoding is an important proce-
dure in the image classification pipeline [18], [22], [23].
In addition, rotation-invariant feature extraction is usually
a complex process [18], being computationally demanding.
To this end, we present a new architecture of CNN named

18420
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-4679-4809


X. Zhang et al.: RI-LBCNNs

FIGURE 1. Illustration of some images with rotated objects. The dash line
indicates the canonical orientation of an object, while the solid line is the
true orientation. Deep CNNs need to classify images with objects in
arbitrary orientations.

Rotation Invariant Local Binary Convolutional Neural Net-
work (RI-LBCNN) to reduce learnable parameters and to
endow CNNs the capability of orientation invariance, while
achieving on-par performance with the state-of-the-art CNN
architectures. Specifically, we introduce the Local Binary
orientation Module (LBoM). Using this module, an Rota-
tion Invariant Local Binary Convolutional Neural Network
is proposed by inserting this module into a traditional CNN.
An LBoM is composed of two components, i.e., a three-layer
steerable module (two layers for the first component and one
for the second one.), which takes advantages of both Local
Binary Convolutional [17] and Active Rotating Filters [23].
Through replacing the convolutional layers in CNNs with
LBoMs, RI-LBCNN can also be easily implemented. In addi-
tion, LBoM can be implanted to other advanced CNNs [4],
[6], [7], learned in an end-to-end manner without additional
modification to the learning process. In summary, the con-
tributions of this paper are as follows: 1) We introduce the
LBoM and propose RI-LBCNN based on LBoM, which
endows CNNs with rotation invariance property and reduces
the number of learnable parameters; 2) Popular CNN archi-
tectures (including VGGNet [4], ResNet [6] and WideRes-
Net [5]) based on LBoM significantly outperform the state-
of-the-art binary CNNs, for image classification with large
rotation variances.

The short version of this work was published [25].
This extended version has significant improvement in the
following aspects: 1) The ablation experiments are provided
to explore the details of LBoM; 2) The experiments onOutex1

texture dataset are provided to verify the generalization

1http://www.outex.oulu.fi/

capability of the proposed RI-LBCNN; 3) Taking advan-
tage of the promising experiments on several benchmarks
based on RI-LBCNN, more detailed insights and analyses are
provided; 4) We also examine the performance of different
sparsity for RI-LBCNN.

The rest of this paper is organized as follows. Section II
reviews the related literatures for rotation-invariant features
and deep compression networks. Sections III describes the
proposed LBoM and RI-LBCNN. In Section IV, we evaluate
the performance of the proposed RI-LBCNN with exten-
sive experiments on four popular datasets, and present the
comparison with the state-of-the-art approaches. Section V
discusses computation complexity and rotation invariance of
the proposed LBoM. In Section VI, we conclude the paper
and indicate the future work.

II. RELATED WORKS
In this section, we discuss the related works, covering
hand-crafted rotation invariant features and modeling trans-
formations based on CNNs. Meanwhile, we give a brief
introduction to the evolution of compression techniques on
neural networks.

A. ROTATION-INVARIANT FEATURES
1) HANDCRAFTED FEATURES
Challenging variations in real world consist of rotation,
affine, scale, illumination, cluttering etc. Meanwhile, a sim-
ple way to tackle rotation variance in most computer vision
researches is to use well-designed handcrafted features. The
pre-defined features such as Scale Invariant Feature Trans-
form (SIFT) [18], Rotation Invariant Local Binary Pattern
(RI-LBP) [19], and Rotation Invariant Histogram of Gradi-
ents (RI-HoG) [20] are rotation invariant. With the dominant
gradient orientation being aligned, SIFT achieved rotation
invariance as well as the robustness to perspective transfor-
mations. Another representative domain-specific descriptor
is scale and rotation invariant LBP [19]. Through assigning
a minimum value to the cyclical original LBP, the rotation
invariance is achieved. In addition, Fourier analysis in polar
and spherical coordinates is employed to achieve rotation-
invariant Histogram of Gradients [20].

These features perform well in many computer vision
applications, but they have some limitations: 1) The designing
of these hand-crafted features is time expensive and heavily
depends on the experience; 2) Most of these well-designed
features are domain-specific and can only tackle with specific
transformation variances; 3) These mechanisms do not work
well for arbitrary positions or dense feature computations.

2) DEEP NEURAL NETWORKS FEATURES
Generally, CNNs [1] consist of alternatively stacked convo-
lutional layers and pooling layers, followed by several fully
connected layers. These architectures have shown impres-
sive performance on various fields, but they lack of abili-
ties to be rotation invariance. To tackle global and arbitrary

VOLUME 6, 2018 18421



X. Zhang et al.: RI-LBCNNs

rotation variance, data augmentation is usually used to
achieve local/global invariance [26]. It improves the network
performance through enlarging the volume of datasets with
some pre-defined rules. TI-Pooling [22] uses images rotated
in different angles as input to the parallel network architec-
ture, which is followed by a pooling strategy at the first fully
connected layer to learn the rotation-invariant feature.

Spatial Transform Network (STN) [21] shows some new
hints to look for the robust representation of the input image.
It learns the transformation matrix of the input image through
an additional neural network framework. STN can be inserted
into any existing CNN architectures to encapsulate with spa-
tial invariance, but the problem on how to estimate the global
transformation parameters precisely remains unsolved.

Zhou et al. [23] proposed to use the prior knowledge of
rotation to the basic element in CNNs, i.e., the convolution
operator. They introduced Actively Rotating Filters (ARFs)
to generate feature maps which encode the location and
orientation information [23]. Oriented Response Networks
(ORNs) can be naturally fusedwith any popular deep learning
architecture, as well as latest techniques (BatchNorm [27],
ReLU [1]). Nevertheless, the number of learnable parameters
in ORNs remains large despite the parameters reduction in the
convolution layers. Focused on the multi-oriented pedestrian
detection, Weng et al. [28] proposed a Global Polar Pooling
(GP-Pooling) operator to capture rotational shifts in convo-
lution features, which is further used to rectify the detection
results. Marcos et al. [24] applied each convolution filter at
different orientations and extracted a vector field from fea-
ture maps. Using the vector fields as the inputs, a rotation-
invariant/equivariant architecture RotEqNet is achieved.

B. NETWORK COMPRESSION
CNNs are typically over-parametered, which thus are suf-
fered from redundant parameters in their modules [29]. This
leads to large model size in terms of both memory usage and
disk space. The researches on compressing network aim to get
efficient training and representation. Recent works on com-
pressing and accelerating CNNs can be classified into four
categories: (1) parameter pruning and sharing; (2) low-rank
factorization; (3) transferred/compact convolution filters;
(4) knowledge distillation [30].

The parameter pruning and sharing based methods explore
the redundancy of CNNs and try to remove the redundant
parameters. Through investigating vector quantization using
information theoretical learning, Gong et al. [31] quantized
the weights of dense connected layers. They achieved 16-24×
compression of the network within 1% loss of classification
accuracy on 1000-class classification task in the ImageNet
challenge. Similarly, Wu et al. [16] took one step further and
proposed to quantize both the filter kernels in convolution
layers and the weights in fully-connected layers to compress
the network storage and computation costs. Chen et al. [32]
used a low-cost hash function to randomly group connection
weights into hash buckets, and through weight-sharing in the
same hash bucket. In this way, they compressed the number of

weights by a factor 8×. Network pruning have been validated
to be a good solution both to reduce network complexity and
to prohibit over-fitting.

The low-rank based approaches use matrix/tensor decom-
position to estimate the informative parameters of CNNs.
By finding an appropriate low-rank approximation of param-
eters, Denton et al. [33] exploited the linear structure of CNN
and kept the accuracy degradation within 1% compared to the
original model. Tai et al. proposed a new algorithm for com-
puting the low-rank tensor decomposition [34]. Meanwhile,
a new method for training low-rank constrained CNNs from
scratch was proposed. It was shown to be an effective way to
deal with the exploding or vanishing gradients.

The transferred/compact convolution filters based tech-
nologies is to design alternative parameter-saving convolu-
tion filters or to compact the parameters of CNNs to reduce
both the storage usage and computation complexity. Due to
the destructive property of binary quantization, the perfor-
mance of highly quantized network has been validated to
be very poor [35]. BinaryConnect [36] used only two pos-
sible values (e.g., −1 or 1) to construct CNNs, and updated
the parameters using the back propagated error. BinaryCon-
nect achieved state-of-the-art results on small datasets (e.g.,
CIFAR-10, SVHN), but performed not very well on large-
scale datasets [37]. Based on [36], BinaryNet [38] went
one step further. It trained CNNs with both binary weights
and activations and then replaced most multiplications with
1-bit XNOR operations to reduce memory usage. Different
from [36] and [38], XOR-Net [37] proposed to binarize both
the filters and the input to convolutional layers, and outper-
formed BinaryNet by a large margin on ImageNet tasks.

The knowledge distillation methods learn a distilled model
and train a more compact CNNs but they reproduce the
performance of larger networks. Hinton et al. [39] introduced
a KD compression framework to ease the training of CNNs
through a student-teacher paradigm, in which the student was
penalized according to a softened version of the teacher’s
output. Motivated by LBP descriptor, Juefei-Xu et al. [17]
proposed an approximation for typical convolutional layer,
where the module is comprised of a set of sparse, pre-defined,
non-learnable and binary convolution filters together with a
1×1 learnable convolutional layer. Local Binary Convolu-
tional Neural Network (LBCNN) [17] is a related work to our
approach, but it has the different orientation encoding mech-
anism. We also compare with LBCNN on several datasets,
and our method outperforms LBCNN by a large margin (as
shown in Section IV-C, IV-D). Iandola et al. [40] proposed a
small CNN architecture named SqueezeNet which achieved
on-par performance with AlexNet [1] while showing 50×
fewer parameters.

III. ROTATION INVARIANT LOCAL BINARY
CONVOLUTIONAL TOPOLOGY
Rotation Invariant Local Binary Convolutional Network
(RI-LBCNN) is a CNN with Local Binary orientation Mod-
ules (LBoMs). An LBoM is composed of two components,

18422 VOLUME 6, 2018



X. Zhang et al.: RI-LBCNNs

i.e., three layers steerable module (two layers for the first
component and one for the second one), which takes advan-
tages of both Local Binary Convolutional [17] and Active
Rotating Filters [23]. Specifically, we do not concatenate
these two parts explicitly. Instead, we propose to compress
network but also show rotation-invariant representations.
With LBoMs, RI-LBCNN involves fewer learnable weights,
and it is an easily-trained and enhanced deep models.

In the following subsections, we will address four issues in
adopting LBoMs in CNNs. Firstly, we give a brief review of
LBCNN [17] and ARFs [23]; Secondly, we describe the pro-
posed LBoM and give a detailed analysis of LBoM; Thirdly,
we show how LBoM is learned during the back-propagation
stage; Finally, a detailed introduction of the RI-LBCNN
framework is provided.

A. LOCAL BINARY CONVOLUTIONAL NEURAL NETWORK
Local Binary Convolutional Neural Network is a parameter-
saving architecture, which is built by replacing a traditional
convolutional layer with an Local Binary Convolutional.
LBConv is a three-layer alternative representation for typi-
cal convolutional layer. The first layer in LBConv is a set
of sparse, fixed and pre-defined binary convolutional layer,
followed by an non-linear activation function layer. The last
layer is a set of learnable 1×1 convolution weights.

The steps of initializing the LBConv are as follows: First,
determine a sparsity level which indicates the percentage of
non-zero value weights of the binary convolutional layer. The
sparsity is defined as:

sparsity =
#number of non−zero weights

#sum of weights
(1)

Secondly, initialize the first convolutional layer through
Bernoulli distribution with 0, 1, and −1 randomly based
on the sparsity. Specially, each location in local binary fil-
ters shares an equal probability. Assume that LBConv has
p pre-defined non-learnable binary filters, q learnable
1×1 convolution filters. The input image is filtered by
p binary filters and becomes p difference maps, which are
changed to p bit maps through a non-linear activation layer.
Finally, the p bit maps are linearly combined using the q learn-
able 1×1 weights to approximate the traditional convolu-
tional layer. The weights in first binary convolutional layer
are fixed and do not update at the back propagation stage. The
learnable weights in 1×1 convolutional layer are updated just
like what’s in typical convolutional layer.

Because of the sparsity in weights and the fixed binary
value of the first convolutional layer, it is less representative
compared with the typical convolutional layer. To achieve the
similar performance with a traditional convolutional layer at
each LBConv, it needs a competitive number of local binary
filters (512 in [17]) and 1×1 learnable weight. Compared
with typical CNN architecture, an LBConv based network
can get on-par performance with fewer learnable param-
eters, but lacks of the ability to handle with the rotation
variations.

B. ACTIVELY ROTATING FILTERS
Actively Rotating Filters like a filter bank in which only
one filter being materialized and learned. Let us assume
N to be the number of the orientation channels in ARFs.
Through clockwise rotating the filters N − 1 times by 2πn

N ,
n = 1, . . . ,N − 1, the remaining N − 1 rotated filters
are obtained without any extra parameters. Compared with
typical convolutional layer having the same number of filters,
ARFs based convolutional layers (ORConv) can reduce the
number of parameters N − 1 times at a single layer. Feature
maps generated by ARFs are not rotation-invariant as orien-
tation information are encoded instead of being discarded.
In order to obtain within-class rotation-invariant represen-
tation, an alignment/pooling strategy is introduced in [23].
Assume the size of feature map after the last ORConv is
1×1×N . ORAlign is done by first calculating the dominant
orientation as D, and then spinning the feature by −D 2π

N .
The size of ORAlign output is still 1 × 1 × N . Another
rotation invariance encoding strategy is called ORPooling,
which is implemented by simply pooling the maximum value
amongN orientations. This strategy shrinks the output to size
of 1× 1× 1.
Although ARFs can reduce parameters of CNNs by

actively rotating filters, the number of learnable parameters
remains large, especially for those popular network architec-
tures like VGGNet [4]. This motivates us to develop filters
with binary values.

C. LOCAL BINARY ORIENTATION MODULE
In order to get the maximum approximation to the typical
convolutional layer with fewer learnable parameters, as well
as to learn the orientation information from raw data, we pro-
pose a new Local Binary orientation Module as showed
in Fig. 2. Along with orientation-invariant encoding layer,
we can get rotation-invariant feature representation. Infor-
mally, the LBoM will learn the sparse representation and the
orientation information from the input image data simultane-
ously.

Compared with the conventional convolutional layer,
LBoM is a two-part (i.e. three layers) differential module,
which consists of a pre-defined non-learnable convolutional
layer, an activation function layer and a 1×1 learnable con-
volutional layer. Different from LBCNN, each convolutional
layer in LBoM possesses an additional orientation channel
which is obtained through ARFs. Compared with ORNs [23],
the parameters of first convolutional layer of LBoM are
initialized with 0, 1 and −1, which are fixed and do not
updated at the back propagation stage. Thus all of the learn-
able parameters of LBoM are those learnable parameters
in 1×1 convolutional layer (see Fig. 2).
As illustrated in Fig. 2, LBoM starts with p pre-defined

non-learnable binary filters (bi) with N orientation channels,
where i = 1, . . . , p. Only the canonical filter (b) is materi-
alized using the Bernoulli distribution with sparsity level s,
and the rest N − 1 orientation channel filters are built using

VOLUME 6, 2018 18423



X. Zhang et al.: RI-LBCNNs

FIGURE 2. Illustration of the Local Binary orientation Module (LBoM) in RI-LBCNNs. This module is an LBoM with 3×3 kernels. Each LBoM consists of
two components (three layers), which are the non-learnable sparse representation (box with dash line) and the learnable linear combination (box with
solid line). The first convolutional layer is initialized using Bernoulli distribution with 0, 1 and −1. Xl and Xl+1 are the input and output of the module,
respectively. Wl is the learnable weights for linear combination. The extra orientation channel is obtained through clockwise rotating the kernels during
convolution (yellow semicircular arrows).

ARFs by clockwise rotating 2πn
N , n = 1, . . . ,N − 1. The

input Xl is filtered by these local binary orientation filters
and achieves p difference maps, which are then passed
into a non-linear activation gate (ReLU in Fig. 2) and the
corresponding bit maps are produced. These bit maps are
only discrete description because of the binary value and
the sparsity of the convolution kernels. Afterwards, the p bit
maps are linearly combined, which leads to the final output,
i.e., feature maps of the module. In order to get the corre-
sponding q channels output, here we use 1×1 convolutional
layer to convolve with N orientation channels. Among these
q learnable 1×1 weights, only q/N weights are learnable,
where the rest weights are its rotated copies by ARFs. Finally,
the output feature maps Xl+1 haveN orientation channels and
the k-th channel is computed as:

X kl+1 =
N−1∑
n=0

F (n)
θk
∗ X (n)

l , θk = k
2π
N
, k = 0, . . . ,N − 1,(2)

Fθk =
p∑
i=1

σ · bθki ·W
θk
l . (3)

Here X kl+1 is the output of (l)-th layer showing k-th ori-
entation; F is the ARF representation of LBoM. Fθk is the
clockwise θk -rotated version of F . F (n)

θk
and X (n)

l are the n-th
orientation channle of Fθk and Xl , respectively. σ is the non-
linear binarization operator, which is employed by the ReLU
activation. bθki is the i-th θk -rotated version of binary weights.
W θk
l is θk -rotated version of learnable 1×1 weights. For the

sake of simplicity, there’s no bias item in the convolutional
layer of LBoM.

Both the first layer of LBoM and LBConv are pre-defined,
fixed and do not update at the back propagation stage. But
only the canonical filters of the first convolutional layer in
LBoM are initialized using the strategy of LBConv, the rest

N − 1 orientation channels are produced by ARFs. Besides,
the 1×1 learnable linear weights are initialized using ARFs,
which are partial-learnable and are different from those in
LBConv. For LBCNN, the number of learnable weights is
p × q. For RI-LBCNN, the learnable weights are only part
of the 1×1 convolution step, so the number is p×q

N . We then
have:

#params in LBCNN
#params in RI − LBCNN

=
p× q

(p× q)/N
= N . (4)

To achieved within-class rotation invariance, we use
ORPooling/ORAlign operator introduced in ORN [23] at the
top layer of RI-LBCNN. After adding the rotation encoding
layer, the feature representation loses feature arrangement
information and RI-LBCNN is rotation invariant.

Because of the binary value and the sparsity of the first con-
volutional layer in LBoM, the representation capacity of each
LBoM is decreased compared to the covolutional layer in the
float value. In order to get the on par results, LBoM based
CNNs need to enlarge the width of first sparse convolutional
layer or the depth of whole network architecture to achieve a
better performance.

D. LBOM UPDATING
The training of LBoM is quite straightforward. Gradients are
propagated through the fixed convolution kernels just like
they do with learnable weights. Note that during the back-
propagation stage, we do not update the weights for the binary
filters as shown in Fig. 2. Only the weights in the learned
filters in 1×1 ORConv layer W θk

l,i needs to be updated. And
we have:

δ(k) =
∂L
∂Fθk

, θk = k
2π
N
, k = 0, . . . ,N − 1, (5)

18424 VOLUME 6, 2018



X. Zhang et al.: RI-LBCNNs

FIGURE 3. Comparison of CNN and RI-LBCNN network architectures.
(a) CNN baseline. (b) our RI-LBCNN topology. The left side of each
architecture are the size of its output feature maps (e.g., 32×32×1), and
the right side is the detailed model.

W = W − η

∑N−1
n=0 δ

(k)
−θk∑m

i=1 σbi
. (6)

where L is the loss function and η is learning rate. Error
signals δ(k) of all the rotated versions of the ARF are assigned
to δ(k)
−θk

. The backward procedure is almost the same as that
in ORNs [23], but is different in calculation. From the above
description, it can be seen that back propagation process
in LBoM is easily to be implemented. By only updating
the weights W in learnable 1×1 convolutional layer, the
RI-LBCNNs model can be more compact and efficient.

E. ROTATION INVARIANT LOCAL BINARY
CONVOLUTIONAL NEURAL NETWORK
In this subsection, we will introduce the architecture of
Rotation Invariant Local Binary Convolutional Neural Net-
work. Take the network used in MNIST series as exam-
ple (Fig. 3(b)), the numbers in the left side are the size
of the output at each stage (e.g., 10×1), and the right
side are the details of RI-LBCNN network. Here the num-
ber of orientation channels is 8. Yellow box is the extend
layer for data augmentation; Green boxes are non-learnable
sparse convolutional layer with pre-defined binary weights;

FIGURE 4. The sample images of the four datasets.

Blue boxes are learnable ORConv layer. Both of these two
layers have an additional orientation channel, which are
obtained through actively rotating the convolution filters
clockwise (yellow semicircular arrows); Box with dash line
is optional for the network; Gray boxes are dropout layer.
Meanwhile, the numbers in the layer boxes are the hyper
parameters for each layer. Taking the parameters of the first
convolutional layer as example (3×3, 1, 1, 0, 0, 128), it means
the convolutional layer consists of 128 kernels, and the kernel
size is 3×3. Meanwhile, the stride for both x and y direction
are 1, and the padding for both x and y direction are 0. Giving
an input image of size 32×32×1, the extend layer is used to
duplicate the input image 8 times. The augmented data is then
fed to an LBoM. Different from the traditional convolutional
layer, the ReLU layer in LBoM is used only after the binary
convolutional layer instead of each convolutional layer, and
the ORConv layer is employed to learn the combination of the
sparse binary representation. To reduce the computation cost,
max-pooling layer is employed here to downsize the feature
maps. After a bunch of LBoMs, the orientation information
is encoded in the feature maps instead of being discarded
in the traditional CNN. Thus the ORPooling/ORAlign layer
is employed to obtain the rotation-invariant representation.
Finally, the network outputs the class label of the input image.

IV. EXPERIMENTS
In this section, we present the experimental results on four
benchmarks, and the sample images for each dataset are
illustrated in Fig. 4. The first one is MNIST and its variants,
including MNIST [41], MNIST-rot-12k [42] (a small rota-
tion version of MNIST), and MNIST-rot used in ORN [23].
Firstly, the ablation experiment is conducted to explore the
details of LBoM. Secondly, we use both the MNIST and
MNIST-rot datasets to show the advantages of RI-LBCNN on
its rotation invariance. Furthermore, RI-LBCNN is tested on
MNIST-rot-12k to validate its generalization ability on rota-
tion invariance. Thirdly, we validate our proposed networks
are tested on texture classification. Finally, we upgrade the
VGGNet [4], ResNet [6] and WideResNet [5] network archi-
tectures using LBoMs, and applied the upgraded architectures
on CIFAR-10 and CIFAR-100 [43], i.e., two natural image
classification datasets, to further evaluate the performance of
our LBoMs on image classification.

VOLUME 6, 2018 18425



X. Zhang et al.: RI-LBCNNs

A. EXPERIMENTAL SETTINGS
For all the three MNIST datasets, we use the same net-
work topology. The baseline CNN we adopt is as introduced
in [23], which is composed of four convolutional layers with
multiple 3×3 kernels, as illustrated in Fig. 3(a). We build
another LBCNN baseline through replacing each convolu-
tional layer in CNN with LBConv [17]. In addition, we reim-
plement ORNs through replacing typical convolutional layer
with ARFs following the idea of [23]. The comparison of
CNN [23] and RI-LBCNN is illustrated in Fig. 3. RI-LBCNN
is generated by upgrading convolutional layers in baseline
CNN using LBoMwith 4 or 8 orientation channels. To obtain
the rotation-invariant representation, ORAlign/ORPooling
layer introduced in [23] is employed at the top layer of
RI-LBCNN architectures. In order to make a fair comparison,
we make a trade-off between representative and learnable
weights saving. Considering the LBoM module possesses
an additional orientation channel, we decrease the number
of kernels of the first sparse binary layer to one quarter
(128 vs. 512 in LBCNN), and the second learnable convo-
lutional layer to one-eighth. Therefore, the complexity of
RI-LBCNN is reduced compared with CNN (see the fourth
column of Tab. 2).

In experiments, we use the same hyper parameters as that
in [23], and we perform the training using tuning-free conver-
gent Adadelta algorithm [44], with the training epochs (50),
batch size (128) and dropout rate (0.5) for the fully-connected
layers. Our implementation is based on Torch [45]. We run
experiments on CPU i7, 128GB RAM and GeForce GTX
TITAN X (12G).

B. MNIST DATASETS
1) MNIST
The original MNIST [41] dataset is a very typical dataset
to verify the performance of the proposed method. MNIST
contains a training set of 60k and a testing set of 10k with
32×32 gray scale images showing the handwritten digits
from 0 to 9.

2) MNIST-rot-12k
MNIST-rot-12k [42] is a commonly used dataset for validating
rotation-invariant algorithm. It consists of images from a sub-
set of original MNIST, rotated by a random angle in [0, 2π ].
This dataset contains 12k training samples and 50k testing
samples. Among them, 2k images are randomly selected as
validation set and the remaining 10k images are training
set.

3) MNIST-rot
To verify the rotation invariance of the proposed RI-LBCNN,
the MNIST-rot dataset introduced in [23] is used. The rea-
sons that we choose the MNIST-rot dataset are two-fold.
Firstly, the scale ofMNIST-rot-12k is smaller than that of the
MNIST-rot (12k vs. 60k); Secondly, there are some limita-
tions for the training images (fewer rotation variations for

TABLE 1. Error rates on MNIST-rot compared with networks based on
A-LBoM.

examples) inMNIST-rot-12k. So Zhou et al. [23] proposed to
take the full MNIST dataset, generated the training set with a
random angle in the range of [0, 2π ]. This simple strategy not
only enlarges the size of the training data, but also increases
the diversity of rotation variations.

C. ABLATION EXPERIMENTS
In this subsection, we compare RI-LBCNN with net-
works that based Ablated Local Binary orientation Module
(A-LBoM). A-LBoM is obtained through removing ARFs in
the second part, i.e., the 1×1 convolutional layer in LBoM.
Results in Tab. 1 show that networks based on LBoM can
learn the additional orientation information and preform bet-
ter. Networks based on A-LBoM work poor compared to
those networks based on LBoM. One reason is that the
additional orientation channel obtained from LBoM will
encode the rotation information of an input image separately.
Through the ORAlign/ORPooling layer, the separated orien-
tation information will obtain rotation-invariant representa-
tion without losing the discriminative capacities. Networks
based on A-LBoM will result in a confusion of object rep-
resentation and object orientation representation, which will
result in an obvious decrease of the network performance
(23.47% vs. 56.09%). Thus, a separate orientation channel
all along with the module is recommended when LBoM is
employed in the network for the rotation invariance.

D. EXPERIMENT ANALYSIS ON MNIST
1) MNIST AND MNIST-rot
For both MNIST and MNIST-rot, we randomly select 10k
images for validation, and the rest 50k images for training.
The best model is selected by 5-fold cross validation and
then is applied to the test set. The results on MNIST and
MNIST-rot are presented in Tab. 2. Besides, the state-of-the-
art STN [21], TI-Pooling [22] and ORNs [23] are involved in
the comparison.

To evaluate the influence of the hyper-parameter sparsity,
by ranging the values from 0.1 to 0.9, we conduct experiments
on MNIST and MNIST-rot using RI-LBCNN architecture.
As is shown in Fig. 5, the influence of the sparsity level on
the classification accuracy is marginal when the sparsity is
changed, the best classification accuracy (all these three types
are considered) is achieved when sparsity = 0.4. While for
the fair comparison with LBCNN [17], we take the fixed
sparsity level sparsity = 0.5 at all the following experiments.

In Tab. 2, the second column refers to the weight type of
convolutional layers; The third column refers to the num-
ber of convolutional kernels in each layer, and a similar

18426 VOLUME 6, 2018



X. Zhang et al.: RI-LBCNNs

TABLE 2. Classification error rates on the MNIST and MNIST-rot datasets.

FIGURE 5. The classification performance comparison on the MNIST
dataset of RI-LBCNN using different sparsity during initialization.

notation is also used in [5]. In each LBoM (4 in total), we use
the same hyper-parameter as that in LBCNN [17]. We use
0.5 for sparsity, and 128 local binary filters in the first sparse
layer. The performance comparison is shown in the last three
columns in terms of error rate. By comparing with baseline
CNN, RI-LBCNN achieves better performance with LBoM
module but only using 1/3, 1/6 parameters of CNN. On the
original MNIST dataset without rotation, RI-LBCNN with
8 orientations and ORAlign operator achieves 0.73% test
error.

Moreover, in MNIST-rot datasets, the performance on
baseline CNN and LBCNN model degrade due to rotation,
while ORN and RI-LBCNN can capture orientation features
and achieve better results. Meanwhile, our RI-LBCNN-8
(ORAlign) outperforms ORN-8 (ORAlign) on the rotated
MNIST samples. However, when deploy models trained on
original MNIST and MNIST-rot (the last column in the
Tab. 2), our RI-LBCNN (23.46%) performs not so well com-
pared with ORN (16.21%). The reason causes this differences
is that with the parameter-saving strategy in the first binary
convolutional layer, the sparse binary-value feature response
in LBoM is less robust than that of float-value based ORN.
Finally, RI-LBCNN gains 60% improvement on the classifi-
cation performance over LBCNN baseline. Based on the t-
SNE [14] feature visualization techniques, it also can be seen
in Fig. 6 that the features produced by RI-LBCNN are more
discriminative than those of by CNN and LBCNN [17].

2) MNIST-rot-12k
Because the sample resolution in MNIST-rot-12k is smaller
than that of MNIST (32×32 vs. 28×28), we make a minor
modification of the network architecture to fit the input.

TABLE 3. Classification error rates on the MNIST-rot-12k datasets.

FIGURE 6. Visualization of the features on MNIST-rot dataset,
corresponding to the last column of Tab. 2. (a) CNN. (b) LBCNN.
(c) RI-LBCNN(ORAlign). (d) RI-LBCNN(ORPool).

The kernel padding of the second convolutional layer is 1,
compared to 0 for MNIST. We train this network on a single
GPU for 200 epochs and compare the performance with the
state-of-the-art results published on this dataset. We test the
RI-LBCNN-8 that uses LBoM with 8 orientation channels
and an ORAlign layer to encode the orientation information.
Tab. 3 shows that RI-LBCNN-8 (ORAlign) can decrease the
error rate from 6.39% to 3.05% using only 75% network
parameters of the baseline LBCNN.

E. TEXTURE CLASSIFICATION
We test the proposed RI-LBCNN in Outex datasets to ver-
ify the performance on texture classification since textures
always show rotation variations. Outex-TC-00011-r consists
of a 24-class gray-scale textures, which contains 20 samples
per class with the size of 120×120 or 100×100 each. All the
samples are obtained under an illumination of inca. To reduce

VOLUME 6, 2018 18427



X. Zhang et al.: RI-LBCNNs

TABLE 4. Classification error rates on the Outex datasets.

the over-fitting on this dataset because the limited number of
images (480 samples totally), we enlarge the Outex dataset
manually using the label-preserving transformations. We do
this by random extracting 32×32 patches from the source
image with an augmentation factor of 20, and training the
network on these extracted patches. Finally, we built a dataset
which contains 9000/600/9600 samples for train/val/test sep-
arately. The rotation samples are generated through rotating
image samples with a random angle in the range of [0, 360].
From Tab. 4, we can see that the proposed RI-LBCNN
achieved the best performance by a large margin(33.34%
vs. 48.79%) when the model is trained on original data and
deploy on the rotation samples. RI-LBCNN shows strong
generalization capacity on the classification of the rotated
patterns, though based on partly-fixed binary parameters. The
reason for the result is that: Compared with non-directional
binary filters learned by LBCNN, the oriented response filters
in RI-LBCNN can learn highly directional patterns, and some
of them are quite suitable for the recognition of the texture
samples. Meanwhile, both the LBCNN and RI-LBCNN are
benefitted from the data augmentation techniques. We also
find that the binary-value network RI-LBCNN outperforms
those float-value CNNs, which learn the texture patterns by
rote. The experiments on Outex validate the robustness of
RI-LBCNN to the rotation variations.

F. NATURAL IMAGE CLASSIFICATION
For the natural image classification task, we use the
CIFAR10 and CIFAR100 datasets [43]. CIFAR dataset con-
tains 60k samples, which is composed of a training set
of 50K and a testing set of 10K. Images in CIFAR dataset are
32×32 color images and have 10 or 100 classes respectively.
In each class, it respectively contains 6000 or 600 images.

CIFAR datasets contain a variety of categories with object
local/global orientation variations. First, we upgrade three
state-of-the-art CNNs including VGGNet [4], ResNet [6] and
WideResNet [5]. We use the LBoMs to replace the typical
convolutional layers in these CNNs, and the bottlenecks in
ResNet and wideResNet are replaced with 1×1 LBoM. The
convolutional layers in the main branch are replaced with
LBoMs, which consists of 3×3 LBoMs, BatchNorm, ReLU
and followed by 1×1 ORConv layer to learn the linear com-
bination of the binary sparse representation.

FromTab. 5, it can be seen that CNNs using LBoMs outper-
form those using LBConv on all three architectures but with
fewer parameters. RI-LB-VGG uses only 0.05% learnable
parameters compared to VGG itself, and it achieves 16.1%
(vs 20.75% for VGG) and 46.98% (vs 59.02% for VGG) error

FIGURE 7. CIFAR10 sample images that contain rotated objects falsely
classified by the LB-VGGNet but correctly recognized by the proposed
RI-LB-VGGNet.

rate on CIFAR-10 and CIFAR-100, respectively. With regard
to ResNet, RI-LB-ResNet uses only one-quarter learnable
parameters of LB-ResNet, but achieves an accuracy improve-
ment both on CIFAR-10 and CIFAR-100 significantly. These
three architectures are all composed of wider kernels and
considerable network depth, which means the redundancy
of the network parameters. Compared with LBConv based
networks, the additional orientation channels in RI-LBCNN
will result in a small performance improvement. Specifically,
the newly-added orientation channels contribute to the per-
formance gain on these rotated samples, Fig. 7.

V. DISCUSSION
In this paper, we propose an Local Binary orientationModule,
with which an Rotation Invariant Local Binary Convolutional
Neural Network is proposed for both the robustness to the
rotation invariance and network compression. In this section,
we now discuss some computation complexity and rotation
invariance afforded by LBoM over a typical convolutional
layer.

A. COMPUTATION COMPLEXITY
RI-LBCNN reduce the number of learnable parameters by a
factor 1.24× to 1675× compared with traditional CNNs, and
3× to 250× compared with VGG, ResNet and wide-ResNet
upgraded using LBConv. What’s more, the binary nature of
the first layer of LBoM and the active rotating mechanism on
convolution filters can further reduce the number of learnable
parameters and computation cost both during training and
inference. Experiments in Section IV show that the employed
rotation-encoding mechanism achieves more performance
gains on the classification accuracy compared with LBConv
based models. Additionally, RI-LBCNNwith fewer learnable
parameters can reduce the risk of over-fitting. Conventional
CNNs with high performance usually use Dropout [48] and
BatchNorm [27] to prevent over-fitting and reduce internal
co-variant shift.

B. ROTATION INVARIANCE
Compared with LBCNN and CNN, our RI-LBCNN can
handle rotation variance better, i.e., handling unseen rotated

18428 VOLUME 6, 2018



X. Zhang et al.: RI-LBCNNs

TABLE 5. Classification error rates on CIFAR-10 and CIFAR-100 image classification dataset, respectively. k is the widening factor introduced in
WideResNet [5].

samples based on LBoM (see Tab. 2 and 5). The results on
MNIST and MNIST-rot have shown that RI-LBCNN outper-
forms both CNN and LBCNN.

VI. CONCLUSION AND FUTURE WORK
In this paper, we introduce an Local Binary orientation Mod-
ule (LBoM). It contains a set of pre-defined binary, active
rotating, and randomly generated convolution filters and a set
of rotated learnable filters. Based on LBoM, a novel network
architecture named Rotation Invariant Local Binary Convo-
lutional Neural Network (RI-LBCNN) is proposed, which
is parameter-saving and orientation-invariant. RI-LBCNN
exploits the domain to construct neural networks with fewer
learnable parameters while endows features showing the
capacity of orientation invariance. Meanwhile, it improves
CNNs on the generalization ability of rotation by introducing
an extra orientation channel. Extensive experiments show that
RI-LBCNNs can achieve on-par or better performance with
the state-of-the-art performance over several benchmarks but
with fewer parameters. In the future, RI-LBCNN can be fur-
ther improved in the following directions: 1) New strategies to
boost the discriminability of RI-LBCNN; 2) Reduction of the
computational cost; 3) Application of RI-LBCNN to large-
scale computer vision tasks including object detection and
image retrieval.

ACKNOWLEDGMENT
Tekes, Academy of Finland and Infotech Oulu are also grate-
fully acknowledged.

REFERENCES
[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification

with deep convolutional neural networks,’’ in Proc. Int. Conf. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[2] M. D. Zeiler and R. Fergus, ‘‘Visualizing and understanding convolutional
networks,’’ in Proc. Eur. Conf. Comput. Vis., 2014, pp. 818–833.

[3] M. Lin, Q. Chen, and S. Yan. (2013). ‘‘Network in network.’’ [Online].
Available: https://arxiv.org/abs/1312.4400

[4] K. Simonyan and A. Zisserman. (2014). ‘‘Very deep convolutional net-
works for large-scale image recognition.’’ [Online]. Available: https://
arxiv.org/abs/1409.1556

[5] S. Zagoruyko and N. Komodakis. (2016). ‘‘Wide residual networks.’’
[Online]. Available: https://arxiv.org/abs/1605.07146

[6] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

[7] C. Szegedy et al., ‘‘Going deeper with convolutions,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2015, pp. 1–9.

[8] R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature hierarchies
for accurate object detection and semantic segmentation,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 580–587.

[9] R. Girshick, ‘‘Fast R-CNN,’’ in Proc. Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 1440–1448.

[10] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-time
object detection with region proposal networks,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2015, pp. 91–99.

[11] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
‘‘Feature pyramid networks for object detection,’’ in Proc. CVPR,
Jul. 2017, pp. 1–4.

[12] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, ‘‘Focal loss for
dense object detection,’’ inProc. Int. Conf. Comput. Vis. (ICCV), Oct. 2017,
pp. 2999–3007.

[13] K. He, G. Gkioxari, P. Dollár, and R. Girshick, ‘‘Mask R-CNN,’’ in Proc.
Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2980–2988.

[14] L. van derMaaten andG.Hinton, ‘‘Visualizing data using t-SNE,’’ J.Mach.
Learn. Res., vol. 9, pp. 2579–2605, Nov. 2008.

[15] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew, ‘‘Deep
learning for visual understanding: A review,’’ Neurocomputing, vol. 187,
pp. 27–48, Apr. 2016.

[16] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, ‘‘Quantized convolutional
neural networks for mobile devices,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2016, pp. 4820–4828.

[17] F. Juefei-Xu, V. N. Boddeti, and M. Savvides, ‘‘Local binary convo-
lutional neural networks,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 1–10.

[18] D. G. Lowe, ‘‘Object recognition from local scale-invariant features,’’ in
Proc. 7th IEEE Int. Conf. Comput. Vis., vol. 2. Sep. 1999, pp. 1150–1157.

[19] T. Ojala, M. Pietikäinen, and T. Mäenpää, ‘‘Multiresolution gray-scale and
rotation invariant texture classification with local binary patterns,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971–987, Jul. 2002.

[20] K. Liu et al., ‘‘Rotation-invariant HOG descriptors using Fourier analysis
in polar and spherical coordinates,’’ Int. J. Comput. Vis., vol. 106, no. 3,
pp. 342–364, 2014.

[21] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu, ‘‘Spatial
transformer networks,’’ in Proc. Int. Conf. Neural Inf. Process. Syst., 2015,
pp. 2017–2025.

[22] D. Laptev, N. Savinov, J. M. Buhmann, and M. Pollefeys, ‘‘TI-POOLING:
Transformation-invariant pooling for feature learning in convolutional
neural networks,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 289–297.

[23] Y. Zhou, Q. Ye, Q. Qiu, and J. Jiao, ‘‘Oriented response networks,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 4961–4970.

[24] D. Marcos, M. Volpi, N. Komodakis, and D. Tuia. (2016). ‘‘Rota-
tion equivariant vector field networks.’’ [Online]. Available: https://
arxiv.org/abs/1612.09346

[25] X. Zhang, L. Liu, Y. Xie, J. Chen, L. Wu, and M. Pietikäinen, ‘‘Rotation
invariant local binary convolution neural networks,’’ in Proc. IEEE Int.
Conf. Comput. Vis. (ICCV) Workshops, Oct. 2017, pp. 1210–1219.

[26] D. A. Van Dyk and X.-L. Meng, ‘‘The art of data augmentation,’’
J. Comput. Graph. Stat., vol. 10, no. 1, pp. 1–50, 2001.

[27] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ in Proc. Int. Conf. Mach.
Learn., 2015, pp. 448–456.

[28] X. Weng, S. Wu, F. Beainy, and K. Kitani. (2017). ‘‘Rotational recti-
fication network for robust pedestrian detection.’’ [Online]. Available:
https://arxiv.org/abs/1706.08917

[29] M. Denil, B. Shakibi, L. Dinh, and N. De Freitas, ‘‘Predicting param-
eters in deep learning,’’ in Proc. Adv. Neural Inf. Process. Syst., 2013,
pp. 2148–2156.

VOLUME 6, 2018 18429



X. Zhang et al.: RI-LBCNNs

[30] C. Yu, W. Duo, Z. Pan, and Z. Tao. (2017). ‘‘Model compres-
sion and acceleration for deep neural networks.’’ [Online]. Available:
https://arxiv.org/abs/1710.09282

[31] Y. Gong, L. Liu, M. Yang, and L. Bourdev. (2014). ‘‘Compressing deep
convolutional networks using vector quantization.’’ [Online]. Available:
https://arxiv.org/abs/1412.6115

[32] W. Chen, J. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen, ‘‘Com-
pressing neural networks with the hashing trick,’’ in Proc. Int. Conf. Mach.
Learn., 2015, pp. 2285–2294.

[33] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, ‘‘Exploiting
linear structure within convolutional networks for efficient evaluation,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 1269–1277.

[34] C. Tai, T. Xiao, Y. Zhang, and X. Wang. (2015). ‘‘Convolutional
neural networks with low-rank regularization.’’ [Online]. Available:
https://arxiv.org/abs/1511.06067

[35] M. Courbariaux, Y. Bengio, and J.-P. David. (2014). ‘‘Training deep
neural networks with low precision multiplications.’’ [Online]. Available:
https://arxiv.org/abs/1412.7024

[36] M. Courbariaux, Y. Bengio, and J.-P. David, ‘‘BinaryConnect: Training
deep neural networks with binary weights during propagations,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2015, pp. 3123–3131.

[37] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, ‘‘XNOR-Net:
ImageNet classification using binary convolutional neural networks,’’ in
Proc. Eur. Conf. Comput. Vis., 2016, pp. 525–542.

[38] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio.
(2016). ‘‘Binarized neural networks: Training deep neural networks with
weights and activations constrained to +1 or −1.’’ [Online]. Available:
https://arxiv.org/abs/1602.02830

[39] G. Hinton, O. Vinyals, and J. Dean. (2015). ‘‘Distilling the knowledge in
a neural network.’’ [Online]. Available: https://arxiv.org/abs/1503.02531

[40] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer. (2016). ‘‘SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and < 0.5 MB model size.’’ [Online]. Available:
https://arxiv.org/abs/1602.07360

[41] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[42] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio,
‘‘An empirical evaluation of deep architectures on problems with many
factors of variation,’’ in Proc. 24th Int. Conf. Mach. Learn., 2007,
pp. 473–480.

[43] A. Krizhevsky and G. Hinton, ‘‘Learning multiple layers of features from
tiny images,’’ Univ. Toronto, Toronto, ON, Canada, Tech. Rep., 2009.

[44] M. D. Zeiler. (2012). ‘‘ADADELTA: An adaptive learning rate method.’’
[Online]. Available: https://arxiv.org/abs/1212.5701

[45] R. Collobert, K. Kavukcuoglu, and C. Farabet, ‘‘Torch7: A matlab-like
environment for machine learning,’’ in Proc. BigLearn NIPS Workshop,
2011, pp. 1–6.

[46] J. Bruna and S. Mallat, ‘‘Invariant scattering convolution networks,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1872–1886,
Aug. 2013.

[47] T.-H. Chan, K. Jia, S. Gao, J. Lu, and Z. Zeng, Y. Ma, ‘‘PCANet: A sim-
ple deep learning baseline for image classification?’’ IEEE Trans. Image
Process, vol. 24, no. 12, pp. 5017–5032, Dec. 2015.

[48] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, ‘‘Dropout: A simple way to prevent neural networks
from overfitting,’’ J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

XIN ZHANG received the B.S. and M.S. degrees
from the National University of Defense Technol-
ogy, Changsha, China, in 2011 and 2013 respec-
tively, where he is currently pursuing the Ph.D.
degree in control science and engineering. His
research interests include image/video processing
and deep learning.

YUXIANG XIE received the B.S., M.S., and
Ph.D. degrees in systems engineering from
the National University of Defense Technology
in 1998, 2001, and 2004, respectively. She is
currently an Associate Professor with the School
of Information System and Management, National
University of Defense Technology. Her research
interests include image and video analysis, classi-
fication, and retrieval.

JIE CHEN (M’07) received the M.S. and
Ph.D. degrees from the Harbin Institute of Tech-
nology, China, in 2002 and 2007, respectively.
Since 2007, he has been a Senior Researcher
with the Center for Machine Vision and Signal
Analysis, University of Oulu, Finland. In 2012 and
2015, he visited the Computer Vision Laboratory,
University of Maryland at College Park and the
School of Electrical and Computer Engineering,
Duke University, respectively. His research inter-

ests include pattern recognition, computer vision, machine learning, dynamic
texture, deep learning, and medical image analysis. He has authored over
60 papers in journals and conferences. Hewas a Co-Chair of the International
Workshops at ACCV, CVPR, and ICCV.Hewas aGuest Editor of the Journal
of Neurocomputing and TPAMI. He is an Associate Editor of The Visual
Computer.

LINGDA WU received the Ph.D. degree in
management science and engineering from the
National University of Defense Technology,
Changsha, China. She is currently a Professor with
Space Engineering University, Beijing, China. Her
research interests include multimedia information
systems and virtual reality technology.

QIXIANG YE (SM’15) received the B.S. and
M.S. degrees in mechanical and electrical engi-
neering from the Harbin Institute of Technol-
ogy, China, in 1999 and 2001, respectively, and
the Ph.D. degree from the Institute of Comput-
ing Technology, Chinese Academy of Sciences,
in 2006. He was a Visiting Assistant Professor
with the Institute of Advanced Computer Studies,
University ofMaryland at College Park until 2013.
He has been a Professor with the University of

Chinese Academy of Sciences since 2016. He has authored or co-authored
over 80 papers in refereed conferences and journals. His research interests
include image processing, visual object detection, and machine learning. He
received the Sony Outstanding Paper Award.

LI LIU received the B.S. degree in communica-
tion engineering, the M.S. degree in photogram-
metry and remote sensing, and the Ph.D. degree in
information and communication engineering from
the National University of Defense Technology,
China, in 2003, 2005, and 2012, respectively. Dur-
ing her Ph.D. study, she spent over two years as
a Visiting Student at the University of Waterloo,
Canada, from 2008 to 2010. From 2015 to 2016,
she visited the Multimedia Laboratory at the Chi-

nese University of Hong Kong. From 2016 to 2018, she is visiting the Center
for Machine Vision and Signal analysis at the University of Oulu, Finland.
She joined the faculty at the National University of Defense Technology
in 2012, where she is currently an Associate Professor with the College of
Information System and Management. Her research interests include texture
analysis, image classification, object detection, and scene understanding.

18430 VOLUME 6, 2018


	INTRODUCTION
	RELATED WORKS
	ROTATION-INVARIANT FEATURES
	HANDCRAFTED FEATURES
	DEEP NEURAL NETWORKS FEATURES

	NETWORK COMPRESSION

	ROTATION INVARIANT LOCAL BINARY CONVOLUTIONAL TOPOLOGY
	LOCAL BINARY CONVOLUTIONAL NEURAL NETWORK
	ACTIVELY ROTATING FILTERS
	LOCAL BINARY ORIENTATION MODULE
	LBOM UPDATING
	ROTATION INVARIANT LOCAL BINARY CONVOLUTIONAL NEURAL NETWORK

	EXPERIMENTS
	EXPERIMENTAL SETTINGS
	MNIST DATASETS
	MNIST
	MNIST-rot-12k
	MNIST-rot

	ABLATION EXPERIMENTS
	EXPERIMENT ANALYSIS ON MNIST
	MNIST AND MNIST-rot
	MNIST-rot-12k

	TEXTURE CLASSIFICATION
	NATURAL IMAGE CLASSIFICATION

	DISCUSSION
	COMPUTATION COMPLEXITY
	ROTATION INVARIANCE

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	XIN ZHANG
	YUXIANG XIE
	JIE CHEN
	LINGDA WU
	QIXIANG YE
	LI LIU


