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A Perfect Fit for Signal and Image Processing

| inding a general mechanism for switching be-
{ tween the continuous and discrete signal do-
mains is one of the fundamental issues in signal
. proccssmg It is a question that arises naturally
durmg the acquisition process where an analog signal or
image is to be converted into a se-
quence of numbers (discrete repre-
sentation). Conversely, the need for a
continuous signal representation co-
mes up every time one wishes to im-
plement numerically an operator that is initially defined
in the continuous domain. Typical examples in image
processing are the detection of edges through the com-
putation of gradients (spatial derivatives), and geomet-
ric transformations such as rotations and scaling
(interpolation).
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The textbook approach to those problems is provided
by Shannon’s sampling theory, which describes an equiv-
alence between a band-limited function and its equidis-
tant samples taken at a frequency that is superior or equal
to the Nyquist rate [76]. Even though this theory has had
an enormous impact on the field, it
still has a number of problems.
First, it relies on the use of ideal fil-
ters, which are devices not com-
monly found in nature. Second, the
band-limited hypothesis is in contradiction with the idea
of a finite (or finite duration) signal. Third, the
bandlimiting operation tends to generate Gibbs oscilla-
tions, which can be visnally disturbing in images. Finally,
the underlying cardinal basis fanction [sinc(x)] has a very
slow decay, which makes computations in the signal do-
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main very inefficient. While the first two problems can be

dealt with by using approximations and introducing con-
cepts such as an essential bandwidth and an essential time
duraion [78], there is no way to address the last two is-
sues other than changing basis functions.

Our purpose here will be to provide arguments in fa-
vor of an alternative approach that uses splines, which is
equally justifiable on a theoretical basis, and which offers
many practical advantages. To reassure the reader who
may be afraid to enter new territory, we must emphasize
that we are not losing anything because we will retain the
traditional theory as a particular case (i.e., a spline of infi-
nite degree). The basic computational tools will also be
familiar to a signal processing audience (filters and recur-
sive algorithms), even though their use in the present
context is less conventional, In the course of the presenta-
tion, we will also bring out the connection with the
multiresolution theory of the wavelet transform.

Interestingly, splines are slightly older than Shannon’s
sampling theory. They were first described in 1946 [70].
In his landmark paper, Schoenberg laid the mathematical
foundations for the subject; he showed how one could
use splines to interpolate equally spaced samples of a
function. He also introduced the B-splines, the basic at-
oms by which polynomial splines are constructed. De-
spite this early start, the subject of splines then lay more or
less dormant during the 1950s, while signal processing
developed at a rapid pace within Shannon’s elegant
tramework of band-limited functions. Splines only really
took off in the early 1960s when mathematicians realized
that these functions could model the physical process of
drawing a smooth curve (minimum curvature property),
This created an intense interest in the subject and the ap-
plications soon followed in approximation theory [24],
[74], numerical analysis [64], and various other branches
of applied mathematics [3]. With the advent of digital
computers, splines caught the interest of engineers and
had a tremendous impact on computer-aided design
[29], [45] and computer graphics [10]. However, there
was little crossover to signal processing, perhaps because
researchers in this field had become so accustomed to
thinking in terms of band-limited functions. Recently,
thanks in part to a new (non-band-limited) way of think-
ing brought forth by wavelet theory [51], the situation
has changed significantly.

This article attempts to fullfill three goals, The first is
to provide a tutorial on splines that is geared to a signal
processing audience. The second is to gather all their im-
portant properties and provide an overview of the mathe-
matical and computational tools available; i.e., a road
map for the practitioner with references to the appropri-

ate literature. The third goal is to give a review of the pri-
mary applications of splines in signal and image

Spline Interpolation

Polynomial Splines

Splines are piecewise palynomials with pieces that are
smoothly connected together. The joining points of the
polynomials are called knots, For a spline of degree s, each
segment is a polynomial of degree #, which would sug-
gest that we need #+1 coefficients to describe each piece.
However, there is an additional smoothness constraint
that imposes the continuity of the spline and its deriva-
tives up to order (#-1) at the knots, so that, effectively,
there is only one degree of freedom per segment. Here,
we will only consider splines with uniform knots and unit
spacing. The remarkable result, due to Schoenberg [70],
is that these splines are uniquely characterized in terms of
a B-spline expansion

5(%) =§6(1€)ﬁ " (w- k), ()

which involves the integer shifts of the central B-spline of
degree # denoted by B” («); the parameters of the model
are the B-spline coefficients e(k). B-splines, defined below,
are symmetrical, bell-shaped functions constructed from
the (#+1)-fold convolution of a rectangular pulse B°:

I, ~i<x<i

B =1L, =1
0, otherwise (2)
B (x)=P B x xB (x) (3)
{ #+1) times

The B-splines of degrees 0 to 3 are shown in Fig. 1. Since
the B-spline model (1) is linear, studying the properties of
the basic atoms can tell us a lot about splines in general
{cf. Box 1). Thanks to this representation, each spline is
unambiguously characterized by its sequence of B-spline
cocfficients ¢(k), which has the convenient structure of a
discrete signal, even though the underlying model is con-
tinuous (discrete/continuous representation).

. . : neg o C s
processing; most of those are discussed in the final part of TSR . ORI
the article, & 1. The centered B-splines of degres 0 fo 3.
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B-splines are very casy to manipulate. For instance, we
can obtain derivatives through the following formula

dﬁﬂ(x)_ #-1 H= __
T_B (x+3)-B Hx (4)

which reduces the degree by one. Similarly, we compute
the integral as

B (= 38" (5~ ~ ).
L” ,,Zd * (5)

Once we know the effect of linear operators such as (4) or
(5) on the basis functions, it is a trivial matter to apply
them to any spline via the B-spline representation (1).
Within the family of polynomial splines, cubic splines
tend to be the most popular in applications—perhaps due
to their minimum curvature property, which is discussed
in “Variational Properties.” Using (2}, we obtain the foi-
lowing closed-form representation of the cubic B-spline

2w +EL ) 0gly<1
Brw=q S, isjd<2
0, 254,

(6)
which is often used for performing high-quality inter-
polation.

B-Spline Interpolation via Digital Filtering

From what has been said so far, it appears that most of the
work consists in determining the B-spline model of a given
input signal s(k). We now consider the spline inzerpolation
problem where the coefficients are determined such that
the function goes through the data points exactly (cf. Fig.
2). For splines of degree 0 {piecewise constant) and splines
of degree 1 (piecewise linear), this is a trivial matter be-
cause the B-spline coefficients are identical to the signal
samples: ¢(k)=s(k), For higher-degree splines, however,
the situation is more complex. Traditionally, the B-spline
interpolation problem has been approached using a matrix
framework—setting up a band-diagonal system of equa-
tions, which is then solved using standard numerical tech-
niques (forward/backward substitution or LU
decomposition) [25], [64]. In the early 1990s, it was rec-
ognized that this problem (as well as many other related
ones) could also be approached using simpler digital filter-
ing techniques [33], [93], [96], [97].

To derive this type of signal processing algorithm, we
need to introduce the discrete B-spline kernel 5, which
is obtained by sampling the B-spline of degree » ex-
panded by a factor of m:

b (By=B" (x/ m) v & Bli(z)= kezzb"’ an
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Cubic B-Spline.Basis Functions

_ (b):

4 2. Example of a cubic spline signal that is represented as a lin-
ear combination of shifted cubic B-splines. Given the signal's

samples, the basic problem is to determine the appropriate co-
efficients in (1).

Now, given the signal samples s(k), we want to deter-
mine the coefficients ¢(k) of the B-spline model (1) such
that we have a perfect fit at the integers; ie., VkeZ,

S BB (2= ) wms =5 (A).

leZ
Using the discrete B-splines, this constraint can be rewrit-
ten in the form of a convolution

s(k)=(b1" %) (k). (12)
Defining the inverse convolution operator

@) (k) & 1/B!(a),

the solution is found by inverse filtering (cf. [97])
c(ky=(b1")" ws(k). {13)

Since & is symmetric FIR (finite impulse response), the
so-called direct B-spline filter (4"} is an all-pole system
that can be implemented very efficiently using a cascade
of first-order causal and anti-causal recursive filters [93],
[96]. This algorithm is stable numerically and is faster and
easier to implement than any other numérical technique.
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The explicit procedure for the cubic spline case is de-
scribed in Box 2.

Cardinal Splines

To bring out the connection between the spline interpo-
lation process and the traditional approach for
band-limited functions, it is helpful to introduce the car-
dinal spline basis functions that are the spline analogs of
the sinc function. Combining (1) and {13), we have

x)=2((191”)'1*I)(k)ﬁ”(x—k)

=Y ST (B R (L~ )
keZ teZ
=V s(km” (x— ),
kez;,f( m (x-k) 14

where we have identified the cardinal spline of degree n:

n" (@)=Y &) (R)B” (x— k).

keZ

Thus, (14} provides a spline interpolation formula that uses
the signal values as coefficients, The formula works because
n" (%) has the same interpolation property as the sinc func-
tion; it vanishes for all integers except at the origin, where it
takes the value one. The cardinal spline represents the im-
pulse response of the corresponding spline interpolator,
Note that, for » > 2, these fimctions are no longer compactly
supported; however, they decay exponentially fast. We can
also express (15) in the Fourier domain, which yields the
frequency response of the spline interpolator of degree »

sin{e / 2)]”“ 1
0)/2 B]n(gjm) .

(15)

H (co)=[ .
(16)

The cardinal cubic spline is shown in Fig. 4 and appears to
be quite similar to the sinc function. In fact, it has been
shown thatn” (x) converges to sinc(x) as # goes to infinity
[7]. It is a rather strong type of convergence (,-norm)
that holds in both time and frequency domains (cf. Fig. 5).

Note that the correspondence between splines of infi-
nite order and band-limited functions was known to
Schoenberg and his successors [27], [73]. However,
these mathematical results did not reach the signal pro-
cessing community until recently [7], mainly due to sub-
stantial differences in context and terminology.
Approximation theorists typically speak of “entire func-
tions of exponential type” when they refer to
band-limited functions. The recent cross-fertilization that
has occurred has been quite fruitful and there have been
benefits on both sides. For instance, the idea of using an
anti-aliasing filter in Shannon’s sampling theory has sug-
gested similar solutions for splmcs these are discussed in
the next section.

We should emphasize that the primary usefulness of
the cardinal splines is conceptual, They provide us with a
better understanding of the algorithm. From a practical
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point of view, however, it is much more efficient to work
with the B-spline representation, at least when we are per-
forming mterpolatlon The reason for this is that, in most
applications, it is the re-sampling part (evaluacion of the
expansion formula (1) or (17)) that is by far the most
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4 3. Recursive causal and anti-causal filters for cubic spline inter-
polation,

?\/ 0.2 \/ .-

& 4. Cardinal {(or fundamental) cubic spline.

15 2

Frequency (Cycles)

A 5. Frequency response of the spline interpolators of degres
n=1 and 3. As n increases, the spline interpolators tend to the
ideal low-pass filter (dotted line).

costly step. Accordingly, we have the advantage of using
the shortest possible basis functions (i.e., B-splines) such
that the number of terms that contribure for a given x is
minimized. This is precisely why splines are so much
more computationally efficient than the traditional
sinc-based approach. Because sinc(x) decays like 1/|x/,
computing a signal value at a particular non-integer loca-
tion with an error of less than 1% will require of the order
of 100 operations in each direction, while B-splines pro-
vide an exact computation with just a few non-zero terms
{(n+1 to be precise). (In g-dimensions, the complexity of
an interpolation algorithm that uses separable basis func-
tions increases with the power of g. For this reason, virtu-
ally no one uses sinc interpolation for images, not to
mention volumes.) An illustration of how these ideas can
apply tor the geometric transformation of images is given
in Box 3. When compared to any other type of
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interpolator, B-splines offer the best performance for the
least complexity (we discuss this issue in more depth later
in the article).

It is worth mentioning that many authors in image
processing leave out the essential prefiltering step in Box
3. This has a catastrophic effect on performance and per-
petuates the incorrect belief that high-order B-spline in-
terpolation results in increased image blurring. By
looking at the frequency responses in Fig. 5, the reader
will be convinced that this cannot be the case. In fact, us-
ing a high-degree spline interpolator (typ., #=5) is a
good, stable computational way of approximating the
ideal sinc interpolator. For a given computational bud-
get, it is usually superior to using a windowed sinc func-

tion, especially in high dimensions [84]. The spline’

approach wins because it has a high order of approxima-
tion (cf. “Controlling the Approximation Error”) and an
effective, sinc-like impulse response that is infinite
(thanks to the ITR prefiltering step).

Spline Sampling Theory

Most of the developments in this area are relatively recent
and have greatly benefited from the analogy of the tradi-
tional approach dictated by Shannon’s sampling theory
which recommends the use of an anti-aliasing filter when
the input signal is not band-limited [38], [95]. The concepts
are best explained from the general perspective of Hilbert
spaces [6]. For convenience, we will use a slightly more gen-
eral spline generating function, which we represent as

o)=Y p(k)B" (x— k),

kez

(18)
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with the important restriction that the sequence p is
such that the integer translations of ¢ form a basis of
our basic spline space. (The necessary and sufficient
condition for having a Riesz basis is thart
0< ‘P(efm )| < +oo, where P(¢/”) is the Fourier transform
of the sequence p(k) [6]). The two special cases that we
have in mind are the B-splines, with p(k)=8[#4] (the
Kronecker delta), and the cardinal splines with
p=(6")"". Since we are also interested in varying the

~ sampling step, we define the spline space of degrec #

with step size T by rescaling the basic model in (1)

st = {sx )= S thote/ T et el |. o

These splines with step size T are formed by taking linear
combinations of the generalized spline basis funcrions
rescaled by a factor T and spaced accordingly. As before,
there is exactly one coefficient ¢ (k) per knot or sampling
point. The condition ¢(k) €/, means that we are restricting
ourselves to linear combinations with a finite energy. In
this way, we are ensuring that S7 is a well-defined
subspace of L,, the space of all finite energy functions.
Note that the space L, is considerably larger than B, =87,
the traditional subspace of band-limited functions con-
sidered in signal processing. To use ananalogy, L, is to By
(or 8) as R (the real numbers) is to Z (the integers).

Spline Sampling via an Appropriate Prefilter
Now, we are interested in approximating an arbitrary sig-
nal s(x) by a spline s €57 . As a measure of error, we use
the L,-norm ||s — sy |, , which is induced by the L,-inner
product: '
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Pre-Filtering Sampling Post-Filtering

0 k 3x)=Ps
8(-x) e 1

3 s(x— k)

kez

4 6. Least-squares spline approximation. The analog input signal
s(x) is prefiltered with of—x) and sampled thereafter to yield
the generalized spline coefficients c(k)={ s(x), olx—k) \ The
sampling is modeled by @ multiplication with a sequence of
Dirac deltas. The spline approximation 5 (x)= ¥ e SO - k)
is then obtained by post-filtering with ¢(x)

Fraquancy (Cycles)

A 7. Frequency response of the optimal spline prefilters of degree
n=I and 3. As n increases, the optimal spline prefilters tend to
the ideal low-pass filter (dotted line).

s :m*x xdxe and =(f, il,
(£)=]f @8 1A, =(£.1) 0,

According to this criterion, the minimum error approxi-
mation of s{x) e L, in 87 is given by its orthogonal pro-
jection onto 87. Using the property that the
corresponding approximation error s(x) — s (%) must be
orthorgonal to $, it is not too difficult to show that the
coefficient of the best approximation (least-squares solu-
tion) are given by (cf. [95])

er ()= (50,006 / T~ ).

(21)

where t(f)(x} €& is the dual of (&), in the sense that
(§ler=B,00r—D) =8Tk~1

(bi-orthogonality condition). While this may sound
rather abstract, there is a simple prefiltering and sampling
interpretation of (21). The corresponding block diagram
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for the simplified case of a unit sampling step T=1 is
shown in Fig. 6.

This is similar to the conventional sampling procedure
dictated by Shannon’s theory except that thc optlmal
prefilter, which is the time-reversed version of 9(x), is not
necessarily ideal. In the particular case of the cardinal rep-
resentation where the spline coefficients are the signal
samples (i.c., p=(&") "), the transfer function of the opti-
mal prefilter is given by (cf. [95])

Hnn(w)=[sir;()n;é2)]

B! (e")
BIZ n+] (gjto )’

(22)

where BZ(¢°) is the Fourier transform of a discrete
B-spline of degree p [cf. (11)].

The frequency responses of the optimal prefilter for
the cardinal spline representations of increasing degrees
are shown in Fig. 7. The low-pass character of the re-
sponse suggests that the prefilter @(x) has a role analo-
gous to that of the anti-aliasing filter required in
conventional sampling theory. In fact, as the order of the
spline goes to infinity, both H " (w) and H " (w) [cf. (16)
and (22)] converge to the ideal low-pass filter {dotted
lines in Fig. 7) [95], which is consistent with the fact that
a band-limited stgnal can also be viewed as a spline of infi-
nite degree (.., By =87).

Controlling the Approximation Error

We have just seen thart there is no fundameneal difference
between the process of performing a least-squares spline
approximation of a signal and obtaining its band-limited
representation using the standard sampling procedure
dictated by Shannon’s theory. The only difference is in
the choice of the appropriate analog prefilter. So far so
good, but how should we choose the sampling step T? Is
there any equivalent of the sampling theorem that tells us
that the signal can be reconstructed exactly if it is sampled
at a frequency 1/7 that is at least twice the Nyquist rate
Wy / (27)F In principle, one should expect a similar re-
sult, at least for higher-order splines.

Because we are performing an orthogonal projection,
the approximation error will be generally non-zero unless
the signal is already included in our approximation space.
However, we can hope to control this error by choosing a
sampling step T that is sufficiently small. To analyze this
situation, which is more complicated than in the tradi-
tional band-limited case, we turn to approximation the-
ory. A fundamental result is that the rate of decay L of the
error as a function of T depends on the ability of the rep-
resentation to reproduce polynomials of degree p=L-1.
The approximation error also depends on the bandwidth
of the signal. The relevant measure in this conrext is

bof={ o

1

J ’ (23)
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where §(w) denotes the Fourier transform of s; this is
nothing but the norm of the Lth derivative of 5. The key
result from the Strang-Fix theory of approximation is the
following error bound (cf. [40, 80]):

VseWs, |s—Prs<Cp-T " [st?

; (24)

where Prs is the least-squares spline approximation of s at
sampling step T'and C, is 2 known constant. W3" denotes
the space of funcrions that are L times differentiable in the
L., or finite-energy sense. In other words, the error will
decay like O(T'*), where the order L=n+1 is one more
than the degree #. Spline interpolation gives the same rate
of decay as the least-squares approximation (21}, but
with a larger leading constant [103].

Recently, it has become possible to determine the ap-
proximation error much more precisely by simply inte-
grating the whole spectrum of the function to
approximate against a frequency kernel E” (w) [15]. The
justification for this procedure is the error formula

Vs(x)eWs ,

st

1w L
—-Prs|=| — | E” a .
s = Prs] [% L E" (Tw)ff ()] m] ++T B

where [y| is bounded by some known constant [13]. The
second term in (25) is a correction that may take positive
or negative values. It is zero for band-limited functions
and very small otherwise, provided thats{x) is sufficiently
smooth (s{x) e Wy with r large). Moreover, the second
term cancels out if we take the average approximation er-
ror over all possible shifts of the input function; this is
reasonable thing to do since the sampling phase is usually
arbitrary, Thus, the first term on the right-hand side in
(25) provides a very accurate prediction of the error,
which can be the basis for a quantitative Fourier domain
evaluation [15]. The error kernel for a least-squares spline
approximation of degree # is

Frequency (Cycles)

" & 8. Frequenicy plot of the error kernels for the least-squares
spline approximations of degree n=0, 1,2,3. Below the Nyquist
frequency w = =, the kernels (and therefore the errors) tend to
be smaller for splines of higher degree.
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E" (0))=1—H”((D)Hﬂ((ﬂ) (26)
where H " (w) and H " () are the spline filters defined by
(16) and (22), respectively, The main point is that the
study of these kernels gives us a very direct way to assess
the performance of the various types of spline approxima-
tions, This approach is simple, intuitive, and yet powerful
enough to recover all classical results and L,-bounds in
approximation theory [e.g. (24)]. We have plotted the er-
ror kernels for =0, to 3 in Fig. 8. This graph clearly
shows that for signals that are predominantly low-pass
(Le., with a frequency content within the Nyquist band),
the error tends to be smaller for higher-order splines.

The order property (24) is a direct consequence of the
degree of flatness of the kernel around the origin. Spe-
cifically, for an Lth order spline, E " (@) has2 L —1vanish-
ing derivatives at @ =0. This implies that

E"(T@)=(C;-T* 0" +OT* " @*"?)

as @ — 0, which explains the O(T ) behavior of the error
described by (24) (for more details, refer to [15]).

As the graph in Fig. § also suggests, the error ap-
proaches that of a band-limited approximation as the or-
der of the spline increases, which again reinforces the

-analogy with Shannon’s sampling theorem. In the limit as

n— +oo, the product H " (o) H ) tends to the ideal
low-pass filter, so that we end up with an error entirely
due to the out-of-band frequency content of the signal.
The implication is that higher-order splines will usually
produce better approximations in the L,-norm, although
this may occur at the expense of ringing artifacts as the
model gets closer to being band-limited.

Multiresolution Spline Processing

Consider a spline with knots at the integers and dilate it
by an integer factor #. The resulting enlarged function is
clearly piecewise polynomial in each unit interval, which
means that it is also a spline with respect to the initial inte-
ger grid. This simple observation is the key to the
multiresolution properties of splines, which makes them
perfect candidates for the construction of wavelets and
pyramids. Here, we will emphasize the special two-scale
relation for splines, and the construction of pyramids (we
touch on the subject of wavelets only briefly here), We
will also briefly make the connection between splines and
wavelets.

m-Scale Relation

For the above scale-invariance argument to hold, we need
the spline knots to be positioned on the integers. To sim-
plify the discussion, we will momentarily consider the
shifted causal B-splines

Q" (#)=p" (v— =), (27)
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which have the required property, Similar to the centered
B-splines (3), these can also be constructed from the
{n+1)-fold convolution of (p the indicator function in
the unit interval, Clearly, ¢ (x/m) which is one for
x €[0,m), and zero otherwise, can be written as

gm%x—k)s;h& (Yo (e ),

@ (x/m)= 28)

where 4}, (k) is the filter whose z-transform is
Hy(2)= Zé_ z* (discrete pulse of size m). By
convolving this equatlon with itself (#+1)-times and per-
forming the appropriate normalization, one finds that

(P"(x/m)=k2h$(k)¢"(x—k)> (29)
where
el 1 il k n+1
[ — H = - .
( ) "(muz ) (30)

This is a two-scale equation, which indicates that a
B-spline of degree # dilated by can be expressed as a lin-
ear combination of B-splines. With the appropriate phase
shift, this resulr also carries over for centered B-splines of
degree n odd; an alternative proofis givenin [101]. There
are two remarkable facts connected to the above result.
First, the two-scale equation (29) holds for any integerm
—not just powers of two, as encountered in the
multiresolution theory of the wavelet transform [48],
[81], [109]. Second, the refinement filter is simply the
(n+1)-fold convolution of the discrete recrangular im-
pulse of width m; this can be the basis for some very fast
algorithms [101]. In the standard case where m=2,
H 7 (2) is the celebrated binomsial filter that plays a crucial
rolein the theory of the wavelet transform [81] . The filter
coefficients appear in the Pascal triangle represented on
the first page of this article. The two-scale relation is illus-
trated in Fig. 9 for the case of the centered B-spline of de-
gree 1; this corresponds to the third line of Pascal’s
triangle.

Spline Pyramids

For constructing multiscale representations of signals, or
pyramids, one usually considers scaling factors that are
powers of two. The implication of the two-scale relation
for m=2 is that the spline subspaces S, , with m =2, are
nested: §" D83 28]

Aol [_'1 1]

& 9. Hllustration of the two-scale relation for the linear B-spline.
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Let P,; s =s; denote the minimum error approxima-
tion of some continuously defined signal s(x) € L; at the
scale m =2°. We choose to represent it by the following
expansion

P;s =;52, (Bp(x/2° — k),

[or the @(x /2’ — k)s are the spline basis functions at the
scale m=2" (B-spline or others); they are enlarged by a
factor of 2°and spaced accordingly]. The expansion coef-
ficients ¢, (k) are defined, at least formally, through the
inner product (21). The interesting implication of the
spline nestedness property is that the coefficients ¢, (k)
can be computed iteratively in a very simple fashion using
a combination of discrete prefiltering and
down-sampling operations, The key observation is that
we can obtain P,; s = 5; if we simply reapproximate s;_, at

P, s=P,;s;,). Thus, we may

(31)

the next finer scale (i.e.,
compute the expansion coefficient as [cf, (21)]

€y k)=2li<§z’cz.-q(p(x/2""l —l),(f)(x/zi —k)> . )

Using the two-scale relation to precompute the sequence
of inner products,

Bkyi= (00001277 130/ 270) = (ote+ .3/ 2)

(33)

it is not difficult to show that the ¢,; (k) are evaluated by
simple prefiltering with 4 and down-sampling by a factor
of two:

Cyi (B)={hc,i ) (2k). (34)
There is also a complementary “interpolation” filter » that
allows the extrapolation of a coarser resolution to the next
finer one. An example of such a pyramid is shown in Fig.
10, where we have used a cardinal representation; in
other words, we are displaying the samples of the under-
lying spline images. The corresponding 2D spline model
is separable, and the procedure is implemented by succes-
sive 1D filtering and decimation of the rows and columns
of the image. The error arrays on the right are obtained by
subtracting the next coarser approximation from the cur-
rent spline approximation; it displays the loss of informa-
tion introduced by image reduction. Specific filter
formulas can be found in [99]; the filter coefficients and
1D approximation routines in the C language can also be
obtained from the anthor on request.

Instead of minimizing the continuous L,-error, it is also
possible to construct spline pyramids that are optimal in
the discrete /,-norm [8]; pracrically, this amounts to a
small mochﬁcatlon of the reduction filter [96]. This kind
of algorithm provides an efficient filter-based implementa-
tion of the technique known as spline regression in statistics
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[2, 31, 113]. Most of the spline pyramids use symmetric
filters that are centered on the origin (in fact, these are
based on the centered B-splines rather that the causal ones
that have been used here to simplify the argument). Re-
cently, therc has been some incentive for designing centered
pyramids where the coarser nodes are positioned in the
center of the finer ones [17]. These last structures are espe-
cially useful when dealing with image labels. It has also
been shown that shifting the spline knots between levels
can improve encrgy compaction [55].

Spline Wavelets

The I,-spline pyramid that has been described above has
all the required properties for a multiresolution analysis
of L, in the sense defined by Maliac [50], [51]. In particu-
lar, the error bound (24} guarantees that we can approxi-
mate any L,-function as closely as we wish by letting the
scale go to zero. In the wavelet terminology, the
multiresolurion analysis is dense in L, [51]. Hence, there
is no major difficulty in constructing the associated wave-
let bases of L,. Those wavelets provide a more ctficient,
non-redundant way of representing the difference images
in Fig. 10. Since image reduction is achieved by repeated
projection, the difference between two successive signal

approximgtions P fandP, f bclc?ng to the subspace
W, that is the complement of § with respect to 8.,
Le, 87 =82 @W iwithS): MW ={0}. This is where
the famous wavelet y(x) enters the scene: it generates the

basis functions of the residual spaces [51], [91]
W, =span{y(x /2’ - )} i

There are many applications {e.g., coding) where it is
more concise to express the residues P, f-P, JeW)
using wavelets rather than the basis functions of V77, as
has been is done in Fig. 10. An example of wavelet trans-
form is shown in Yig. 11; this decomposition works well
for image coding because it produces many very small co-
efficients in slowly varying image regions.

In wavelet theory, splines constitute a case apart be-
cause they give rise to the only wavelets that have a
closed-form formula (piecewise polynomial). All other
wavelet bascs are defined indirectly by an infinite re-
cursion (ot by an infinite product in the Fourier domain)
23], [48], [81], [109]. It is, therefore, no coincidence
that most of the earlier wavelet constructions were based
on splines; for instance, the Haar wavelet transform
(n=0) [34], the Franklin system (n=1), Strémberg’s
one-sided orthogonal splines [82], and the celebrated

Battle-Lemarié wavelets

(&)

[11], [47]. Since then, the
family has grown and there
are now several other sub-
classes of spline wavelets
available; they differ in the
type of projection used and
in their orthogonality
properties.

Cortresponding to an or-
thogonal projection (and to
the L,-pyramid above) is the
class of semi-orthogonal
wavelets, which are or-
thogonal with respect to di-
lation [98]. These wavelers
span the same space as the
Battle-Lemarié splines, but
are not constrained to be or-
thagonel. This gives flexibil-
ity and makes it possible to
design wavelets with many
intcresting properties [5]
and almost any desirable
shape [1]. Of particular in-
terest are the B-spline wave-
lets [20], [94], which are
compactly supported and
optimally localized in time
®) and frequency; asymptori-

4, 10. Cubic spline multiresofution image approximation. (a) Cubic spline pyramid [ Pes, s Pis, Pis .
(b) Error pyramid: {Pus — Pis, Pys — Pis, Pos — o5, Fes }. What is displayed are the samples of those

splines at the location of the knots (cardinal representation).
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cally, they achieve the lower
limit specified by Heisen-
berg’s uncertainty principle
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{94]. The only downside of semi-orthogonal wavelets is that
some of the corresponding wavelet filters are ITR. This is not
a serious problem in practice, thanks to the availability of
fast-recursive algorithms (cf. Box 2)—dealing efficiently with
TR filters is the main thrust of B-spline signal processing.

Researchers have also designed spline wavelets such
that che corresponding wavelet filters are FIR [21], [108].
These biorthogonal wavelets are constructed using two
multiresolutions instead of one, with the spline spaces on
the synthesis side. The major difference with the semi-or-
thogenal case is that the underlying projection operators
are oblique rather than orthogonal [4]. Biorthogonal
spline wavelets have many desirable properties that have
made them very popular for applications: they are short,
symunetrical, easy to implement (FIR filterbank), and very
regular, Within the biorthogonal class, there is still one
possibility which is to orthogonalize the wavelets with re-
spect to shifts, which leads to the more recent class of
shift-orthogonal wavelets, Such a construction was first il-
Tustrated with a family of hybrid spline wavelets where the
analysis and synthesis basis functions ace splines of differ-
ent degree %, and », [104],

Further Optimality Properties

Variational Properties

Splines have some very interesting extremal properties.
One important result is the first integral velation [3],
which states that for any funcrion flx) whose mth deriva-
tive is square integrable, we have

+oa oo +eo

J ey do= Jisty? des [(F =5t di
e R L (35)

where s(x) is the spline interpolant of degree n=2m-1
such thats(k) = f{k). In particular, if we apply this decom-
position to the problem of the interpolation of a given
data sequence f{%}, we may conclude that, among all pos-
sible interpolants f{x), the spline interpolant s(x) is the
only one that minimizes the norm of the mth derivative,
which is a rather remarkable result [72]. The reason is
simply that the second term in (35) is non-zero if
f(x)#s(x) at the non-integer points. In this sense, the
spline is the interpolating function that oscillates the least.
For m=2, the energy function in (35) is a good approxi-
mation to the integral of the curvature for the curve
y=f{x), Thus, cubic splines interpolant exhibit a mini-
i curvature property, which justifies the analogy with
the draftmarn’s spline, or French curve. The latter device is
a thin elastic beam that is constrained to pass through a
given set of points.

Smoothing Splines

Interpolation is not the only approach for fitting a contin-
uous model to a signal. For noisy data, an exact fit may
noteven be desirable. Such situations can be dealt with by
relaxing the interpolation constraint and by making best
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use of our a priori knowledge about the problem. The
natural extension of the previous interpolation problem is
to find the function s(x) that minimizes

kezz(ﬂk)—s(k)f +%L(s"")(x))2m. 6

This is a well-posed, regularized least-squares problem
where the first term quantifies the error between the
model s{x) and the measured data points f{k); the second
term imposes a smoothness constraint on the solution.
The choice of a particular value of the regularization fac-
tor A reflects our a priori information; it can be based ei-
ther on the knowledge of the variance of the noise or the
degree of smoothness of the signal as measured by (35).
Here again, it can be shown that the optimal solution
among all possible functions is a spline of degree n=2m-1
[65], [71]. Part of the argument follows from the first in-
tegral equation; any non-spline fit can be improved by us-
ing its spline interpolant that further reduces the second
term in the criterion while keeping the same values s(%) at
the grid points. The solution to the above problem is
called a smoothing spiine, because it is equivalent to a spe-
cial form of smoothing of the data. Similar to the exactin-
terpolation that corresponds to the case A—0, the
B-spline coefficients of the smoothing spline can be com-
puted efficiently by recursive filtering [96].

Introducing a regularization term, as in (36), is a stan-
dard practice for dealing with many other types of
ill-posed problems [61], including sparse and
non-equally spaced data. The regularization parameter A
is typically used to control the smoothness of the solu-
tion. For m=1, the regularization wilt tend to privilege
small values of the derivative; a good physical analogy is
that of a membrane thar takes a constant value at equilib-

A 11. Separable cubic spline wavelet transform corresponding to
the multiresolution decomposition in Fig. 10. The wavelet
transform is implemented iteratively using a separable algo-
rithm, First, the rows of the image are split into two halfs using
a two-channel filterbank. Second, the same procedure is ap-
plied to the columns. This process is then iterated on the inter-
mediate lower resolution images, which are precisely the ones
displayed in Fig. 10q.
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rium. For m=2, there is no penalty for linear gradients.
The generalization of this problem to higher dimensions
leads to another area of study called “thin-plates splines”
[113]. Generalized splines and radial basis functions can
also be defined in a similar way by intreducing more com-
plex regularization terms [63].

Smoothing splines are closely related to wavelet
denoising techniques, which may be expressed in a regu-
larization framework as well [19]. The main difference is
that the smoothing spline is a linear estimator, while
Donoho’s wavelet shrinkage is non-linear [30]. The idea
is simple and was pioneered by Weaver et al. using or-
thogonal spline wavelets [114]: take the wavelet trans-
form of a signal and set to zero the coefficients below
some critical threshold while slightly attenuating the
other ones (soft-threshold); then reconstruct the signal
by inverse wavelet transform. The wavelet technique has
the advantage of preserving edges; it is well suited for sig-
nal or images that are piecewise smooth, and is optimal in
a well-defined statistical sense [30], [48].

Best-Approximation Properties Among Wavelets
In “Controlling the Approximation Error,” we saw that
splines have an L=#-+1 order of approximation, which
means that the error decays like the Lth power of the sam-
pling step. There are also non-spline functions @(x) that
have the same property; in particular, the Lth order scal-
ing functions encountered in the multiresolution theory
of the wavelet transform, Note that, in the wavelet world,
the order is usually specified by the number of vanishing
moments of the analysis wavelet y(x). An equivalent
statement of the order property is that the translates of the
function ¢ must reproduce the polynomials of degree #
[26], [79]. In general, the order property implies that we
have the following asymptotic form of the approximation
error (cf, [89])

s =Po.rs|=Co T H|s*?|, as T—0, (37)
where P, s is the projection of s onto the space
Vy =span{@(w /T = k}} .z and where the constant Cg ;.
can be determined explicitly [14], [89]. This is essentially
the same equation as (24) with an equality instead of an
upper bound; the asymptotic leading constant Cg ; s,
therefore, necessarily smaller than C; in (24).

Among all known wavelet families, splines appear
to have the best-approximation property in the sense
that the magnitude of the constant C,; , is minimum
[83], [89]. This means that, in the asymptotic regime
where the error is small, we can apply a coarser sam-
pling step if we use splines as opposed to other basis
functions (or wavelets) with the same order L, The po-
tential reduction in sampling density can be quite sig-
nificant. For instance, Sweldens observed that splines
at half the resolution could provide a better approxima-
tion than Daubechics’ wavelets [83]. Recently, the ex-
act subsampling factor such that the asymptotic errors
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in both cases are identical has been determined analyt-
ically [14]; it converges to 1 as the order L gets suffi-
ciently large!

Maximum Regularity and Shortest Support

It is well known from wavelet theory that the B-splines
are the shortest scaling functions of order L [23], [81].
They are also the most regular ones if one takes the size of
the refinement filter into account [90]: their Sobolev reg-
ularity (r derivatives it L,) i$ #mx =#+% [81] and their
Holder exponent is =7 [66]. This latter property means
that the B-spline of degree # is “almost™ # times continu-
ously-differentiable; strictly speaking, the #th derivative
of spline of degree » has some isolated points of disconti-
nuities (knots}, but is bounded nevertheless.

If one extends the mathematical analysis to functions
that do not necessarily satisfy the two-scale relation
(multiresolution property), then the B-splines can still be
shown to be the shortest functions of order I.. However,
there are also other solutions, albeit less regular [12].
Thus, in the most general sense, the B-splines are the
shortest and smoothest functions of order L. Since the
performance of an approximation algorithm is strongly
determined by the order of approximation and to some
extent by the regularity of the basis functions, this has im-
portant practical consequences, especially for image in-
terpolation (cf. Box 3). In this type of processing, where
computational cost is essentially determined by the size of
the basis function, it makes perfect sense to use the short-
est functions with the required order properties; i.e., the
B-splines.

Fractional Splines

Interestingly, B-splines can be generalized to fractional
orders (cf. the illustration on the cover of this issue)
[102]. The fractional splines are piecewise power func-
tions with building blocks of the form (x—a,)¥, with
o>—1 real. The corresponding B-splines provide a
smooth transition between the polynomial ones. They
retain all the properties of the conventional
B-splines—one merely replaces # by o in all formulas,
except the compact support [the finite sum in {10) be-
comes an infinite one]. One justification for looking at
the fractional B-splines is that they offer the same con-
ceptual ease for dealing with fractional derivatives as the
conventional splines do for derivatives, One potential
application is the analysis of fractional Brownian motion
processes..

Applications

Qur intent here is not to be exhaustive, but instead to give
a brief overview of the type of signal and image process-
ing applications that can benefit from the use of polyno-
mial splines.
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Zooming and Visualization

TImage zooming and interpolation are perhaps the most
obvious applications of splines, These manipulations are
especially useful for medical imaging [57], [60], but also
for multimedia and digital photography, which are rap-
idly expanding applications areas. The use of cubic splines
in image processing was pioneered by Hou and Andrews
[36]. The proposed approach was not yet very practical
because the B-spline coefficients were determined by ma-
trix inversion. The method was made much more effi-
cient with the introduction-of recursive filtering
algorithms [93]. Note that zcoming by powers of two
can also be implemented using the EXPAND function of
a pyramid [96].

Geometric Image Transformations

When there is no size reduction, geometric transforma-
tions are often implemented by staridard spline interpola-
tion (cf. Box 3). One of the drawbacks is that the
complexity of the method, which is two-dimensional,
grows rapidly with the order L=#+1 of the model [typi-
cally, O(L?) per pixel]. Fortunately, for the simplest trans-
formations (scaling and rotations), there are ways to
make the problem separable through a clever
factorization of the transformation matrix [58]. This
technique was used in [105] to design a high-quality
spline-baséd procedure allowing the rotation of images
using 1D convolutions only; it was extended in [86] to al-
low for affine transformations in 2D and 3D as well. For
image reductions, it is preferable to use a least-squares ap-
proximation to reduce aliasing -artifacts. Such an algo-
rithm exists for re-sizing images with arbitrary scaling
factors [100]-—not just the usual powers of two. Re-
cently, it has been simplified and accelerated using
oblique projections [46]. The idea is to use the box func-
tion as the simplest possible prefilter, and to apply the ap-
propriate digital filtering compensation afterward so that
the resulting approximation is a projection. The results
are almost indistinguishable from the least-squares solu-
tion, and the algorithm generalizes for any degree ».

Filter Design and Fast Continuous

Wavelet Transform

Thanks to the #z-scale relation; a signal can be convolved
very efficiently with a discrete B-spline of size # using a
cascade of moving average filters (recursive update). This
yields an algorithm that has a complexity independent of
the size of the basis functions. Thus, we have a very effi-
cient way of implementing a scalable filter whose impulse
response is the sum of a few B-spline basis functions. This
is an idea that has been exploited for filter design [59],
and for implementing the continuous wavelet transform
with integer scales [101], This type of algorithm achieves
the lowest O(1) complexity per computed coefficient. In
contrast with other wavelet transform algorithms [67],
the B-spline approach is non-iterative across scale and,
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therefore, well suited to a parallel implementation.
Splines are also used to compute wavelet transforms with
arbitrary non-integer scales [110]. This is more compli-
cated because it necessitates approximating enlarged
wavelets using either orthogonal [111] or oblique projec-
tions [ 112]. This latter opticn appears to be more advan-
tageous because it simplifies the determination of the
filter coefficients without any measurable degradation.

Image Compression

Image compression is another area where splines can be
helpfil. Most of today state-of-the-art methods use wave-
lets—the most prominent ones are Shapiro’s embedded
zero-tree wavelet coder [77], and Said and Pearlman’s
SPIHT [69]. While there are many possible cheices of
wavelet filters, many rescarchers tend vo favor the
biorthogonal splines for the reasons mentioned before
(symmetry, short support, and excellent approximation
properties) [9], [81]. We should alse mention some
non-wavelet-based systems: for example, the method of
Toraichi et al., which uses quadratic spline interpolation
[87], and Moulin’s decomposition in terms of hierarchical
spline basis functions [53]. Pyramid coders, which extend
Burt and Adelson’s initial idea, should not be dismissed ei-
ther [39], [56], [88], [107]. These can offer advantages,
especially in higher dimensions where the overhead with
respect to wavelets becomes negligible. Finally, splines
provide a good solution for sub-pixel motion compensa-
tion, Moulin et al. have proposed a nicely integrated sys-
tem where the motion vectors are represented using
hierarchical basis functions (linear splines) [54].

Multi-Scale Processing and Image Registration
Spline pyramids provide a very convenient tool for per-
forming multiscale image processing, especially when the
underlying problem is formulated in the continuous do-
main. This is a powerful idea for the implementation of it-
erative algorithms using a coarse-to-fine iteration
strategy [68]. The benefits are twofold: first, there is an
obvious acceleration because the cost of all
low-resolution iterations is essentially negligible. Second,
a multi-scale approach tends to be quite robust, which
means that the algorithm is much less likely to get trapped
in a local optimum. A good illustration of these ideas is
provided by the image registration algorithm described
in [85]. This method makes use of the same high-quality
spline model for all aspects of the computation: image
pyramid, geometric transform, and computation of the
gradient of the criterion that is optimized. The benefits of
this consistent design can be found in the results, which
are the best reported so far (error less than 1/100th of a
pixel in a series of controlled experiments). The approach
is reasonably fast because it makes the best use of its itera-
tions: good starting conditions with an optimizer
{Marquardt-Levenberg) that is extremely efficient near
the optimum.
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Contour Detection
The spline formalism lends itself very namurally to the

computation of gradients required for contour detection.

One can, for instance, reinterpret some of the classical
edge detectors from this perspective [96]. To improve the
gradient estimation in the presence of noise, Poggio et al.
proposed using a smoothing spline technique [61],[62].
They showed the approach to be more or less equivalent
to smoothing the image with a Gaussian filter in a prepro-
cessing step (Canny’s edge detector [18]). This analogy
holds even further [96]: there is an exact equivalence be-
tween a smoothing spline edge detector and Deriche’s re-
cursive formulation of Canny’s edge detector [28].
Finally, Mallat and Zhong used wavelets that are deriva-
tives of B-splines for obtaining their multi-scale edge rep-
resentation of images [49].

Snakes and Contour Modeling

In computer graphics, curves are often generated using
B-splines [10]. This parametric representation is also weli
suited to the analysis of shapes and contours [32]. In par-
ticular, it is well adapted to extracting shape invariants
[22], [37]. The simplest contour splines are piecewise lin-
car; they can be used to encode boundaries optimally in
the rate-distortion sense [44], [75].

Menet et al. proposed using B-splines snakes for ex-
tracting contours in images [52], A snake is an energy
minimization spline segment with external and internal
forces [43]. It simulates an elastic material that can dy-
namically conform to local image features. The internal
forces act as a regularization device by constraining the ri-
gidity of the curve, Alternatively, the smoothness of the
curve can also be controlled directly and more simply by
adapting the scale of the basis functions [16].

Analog-to-Digital Conversion

Spline and wavelet sampling present interesting alterna-
tives to the conventional approach dictated by Shannon’s
sampling theorem. These techniques can be adapted for
dealing with non-ideal acquisition devices [92], and
multi-channel measurements [106]. With this more gen-
eral view of sampling, it is tempting to modify the acqui-
sition scheme so as to measure the cocfficients of some
signal expansion (i.e., to perform some prescribed inner
products) rather than to measure the samples of the signal
itself. Healy and Weaver have pioneered this idea for
magnetic resonance imaging [35], [114]. They proposed
a wavelet-encoding scheme using separable basis func-
tions (Battle-Lemarié splines along the x-dimension, and
conventional Fourier exponentials along the y-direction).
Splines are also useful for the converse task of digi-
tal-to-analog conversion. Kamada et al. designed a qua-
dratic spline signal generator [41], [42]; one of their
circuits was used commercially for high-fidelity sound re-
production.
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Conclusion

We hope to have convinced the reader that splines consti-
tute a useful tool for signal processing. Their main advan-
tages can be summarized as follows:

A One can always obtain a continuous representation of a
discrete signal by fitting it with a spline in one or more di-
mensions. The fit may be exact (interpolation) or approxi-
mate (least-squares or smoothing splines). Spline fits are
usually preferable to other forms of representations (e.g.,
Lagrange polynomial interpolation) because they have less
of a tendency to oscillate (minimum curvature property).
4 Polynomial splines can be expressed as linear combina-
tions of ‘B-spline basis functions. For equally spaced
knots, the spline parameters (B-spline coefficients) may
be determined by simple digital filrering. There is no need
for matrix manipulations!

4 The primary reason for working with the B-spline rep-
resentation is that the B-splines are compactly suppotted.
They are the shortest furictions with an order of approxi-
mation L=zn+1. This short support property is a key con-
sideration for computational efficiency, Their simple
analytical form also greatly facilitates manipulations.

A Splines are smooth and well-behaved functions
(piecewise polynomials). Splines of degree # are (n-1)
continuously differentiable. As a result, splines have ex-
cellent approximation properties. Precise convergence
rates and error estimates are available.

4 Splines have multiresolution properties that make
them very suitable for constructing wavelet bases and for
performing muiti-scale processing.

4 B-splines and their wavelet counterparts have excellent
localization properties; they are good templates for
time-frequency signal analysis.

4 The family of polynomial splines provides design flexi-
bility. By increasing the degree #, we progressively switch
from the simplest piecewise constant (z=0) and
piecewise linear (#=1) representations to the other ex-
treme, which corresponds to a band-limited signal model
(# —> +oo). ' '

A The conventional sampling procedure can be easily
modified to obtain a spline representation of an analog
signal. This essentially amounts to replacing Shannon’s
ideal low-pass filter with another optimal prefilter speci-
fied by the representation. In principle, there is no com-
pelling reason other than history for preferring the
band-limited model—and its corresponding sinc
interpolator—over other ones.

Finally, similar spline techniques are also available for
non-uniformly spaced data, The price to pay, however, is
that one loses the convenient shift-invariant steucture (fil-
ters) that was emphasized in this article. The reader who
wishes to learn more about non-uniform splines is re-
ferred to [24] and [74]. '
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