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Abstract—Freshness of status update packets is essential for
wide range of real-time Internet of things applications. In this
paper, we study the information freshness of a single-server
multi-source queueing model under a first-come first-served
(FCFS) serving policy. In the considered model, each source
independently generates status update packets according to a
Poisson process. The information freshness of the status updates
of each source is evaluated by the average age of information
(AoI). We derive an approximate expression for the average AoI
for a multi-source M/G/1 queueing model having a general service
time distribution. Simulation results are provided to validate and
assess the tightness of the proposed approximate expression for
the average AoI in the M/G/1 queueing model where the service
time follows a gamma distribution.

I. INTRODUCTION

With the advent of new services in 5G and beyond such
as real-time Internet of things applications, autonomous flying
vehicles, and cyber physical applications, the delivery of fresh
status updates is gaining increasing interest. For enabling these
services, low power sensors are assigned to send status updates
about a random process to intended destinations [1]–[5]. Such
a status update system can monitor, e.g., temperature of a
specific environment [1], and a vehicular status (position,
acceleration, etc.) [6]. Freshness of the sensors’ information
at the destination is vital for the services. Recently, the age
of information (AoI) was proposed as a destination-centric
metric to measure the information freshness in status update
systems [7], [8]. A status update packet contains the measured
value of a monitored process and a time stamp representing
the time when the sample was generated. Due to wireless
channel access, channel errors, and fading etc., communicating
a status update packet through the network experiences a
random delay. If at a time instant t, the most recently received
status update packet contains the time stamp U(t), AoI is
defined as the random process ∆(t) = t − U(t). Thus, the
AoI measures for each sensor the time elapsed since the last
received status update packet was generated at the sensor.

The first queueing theoretic work on AoI is [7] where the
authors derived the average AoI for a single-source M/M/1
first-come first-served (FCFS) queueing model. The work
[9] was the first to investigate the average AoI in a multi-
source setup. The authors of [9] derived the average AoI for
a multi-source M/M/1 FCFS queueing model. The closed-
form expressions for the average AoI and average peak AoI

in a multi-source M/G/1/1 preemptive queueing model were
derived in [10]. The authors of [11] studied the average AoI
in a multi-source M/G/1 queueing model under the FCFS
policy. However, they wrongly used steady-state properties of
a queueing system in calculating the average AoI.

In this paper, we analyze the average AoI of the different
sources in a single-server multi-source queueing model under
an FCFS service policy with Poisson packet arrivals. We point
out the difficulties in deriving the average AoI for an M/G/1
case. Consequently, as the main contribution of this paper, we
derive an approximate expression for the average AoI in a
multi-source M/G/1 queueing model. Simulation results show
that the proposed approximation is relatively tight in the M/G/1
case where the service time follows a gamma distribution.

II. SYSTEM MODEL AND DEFINITIONS

We consider a system consisting of a set of independent
sources denoted by C = {1, . . . , C} and one server. Each
source observes a random process, representing, e.g., temper-
ature, vehicular speed or location at random time instants. A
remote destination is interested in timely information about
the status of these random processes. We assume that the
status update packets of source c are generated according to
the Poisson process with rate λc, c ∈ C.

Definition 1 (AoI). Let tc,i denote the time instant at which
the ith packet of source c was generated, and t′c,i denote the
time instant at which this packet arrives at the destination. At
a time instant τ , the index of the most recently received packet
of source c is given by Nc(τ) = max{i′|t′c,i′ ≤ τ}, and the
time stamp of the most recently received packet of source c
is Uc(τ) = tc,Nc(τ). The AoI of source c at the destination is
defined as the random process ∆c(t) = t− Uc(t).

From here onwards, we refer to the ith packet from source
c simply as packet c, i. Let Xc,i denote the ith interarrival
time of source c; Wc,i denote the waiting time of packet c, i;
Sc,i denote the service time of packet c, i; and Tc,i denote the
system time of packet c, i, i.e., the time interval the packet
spends in the system which consists of the sum of the waiting
time and the service time, Tc,i = Sc,i+Wc,i. Then, the average
AoI of source c, denoted as ∆c, is given as [7]

∆c = λc

(E[X2
c,i]

2
+ E[Xc,iTc,i]

)
(1)

= λc
(
E[X2

c,i]/2 + E[Xc,i(Sc,i +Wc,i)]
)
.



III. AVERAGE AOI IN A MULTI-SOURCE M/G/1
QUEUEING MODEL

To evaluate the AoI of one source, we can consider two
sources without loss of generality. Thus, we evaluate the AoI
of source 1 by aggregating the other C − 1 sources into source
2 having the Poisson arrival rate λ2 =

∑
c′∈C\{c} λc′ . The

mean service time for each packet in the system is equal, given
as E[S1,i] = E[S2,i] = 1/µ,∀i. Let ρ1 = λ1/µ and ρ2 = λ2/µ
be the load of source 1 and 2, respectively. Since packets of
each source are generated according to the Poisson process
and the sources are independent, the packet generation in the
system follows the Poisson process with rate λ = λ1+λ2, and
the overall load in the system is ρ = ρ1 + ρ2 = λ/µ. Since we
do not assume any specific probability density function (PDF)
for the service time, the considered model is referred to as a
multi-source M/G/1 queueing model.

In the following, we derive the average AoI (1) for source
1, denoted as ∆1. The first term in (1) is easy to compute.
Namely, since the interarrival time of source 1 follows the
exponential distribution with parameter λ1, we have E[X2

1,i] =
2/λ21. However, because the random variables X1,i and T1,i
are dependent, the most challenging part in calculating (1) is
E[X1,iT1,i] = E[X1,i(W1,i+S1,i)] which is derived next.

Since the interarrival time and service time of the packet
1, i are independent, we have

E[X1,i(W1,i+S1,i)] = E[X1,iW1,i]+
E[X1,i]

µ
, (2)

Next, we derive E[X1,iW1,i]. To calculate E[X1,iW1,i], we
follow the approach of [9] and characterize the waiting time
W1,i by means of two events EB

1,i and EL
1,i as

EB
1,i =

{
T1,i−1 ≥ X1,i

}
, EL

1,i =
{
T1,i−1 < X1,i

}
. (3)

Here, brief event EB
1,i is the event where the interarrival time

of packet 1, i is brief, i.e., the interarrival time of packet 1, i is
shorter than the system time of packet 1, i−1. On the contrary,
long event EL

1,i refers to the complementary event where the
interarrival time of packet 1, i is long, i.e., the interarrival time
of packet 1, i is longer than the system time of packet 1, i−1.

Under the event EB
1,i, the waiting time of packet 1, i (W1,i)

contains two terms: 1) the residual system time to complete
serving packet 1, i− 1, and 2) the sum of service times of the
source 2 packets that arrived during X1,i and must be served
before packet 1, i according to the FCFS policy. Under the
event EL

1,i, the waiting time of packet 1, i contains two terms:
1) the possible residual service time of a source 2 packet that
is under service at the arrival instant of packet 1, i, and 2)
the sum of service times of source 2 packets in the queue
that must be served before packet 1, i according to the FCFS
policy. Thus, by means of the two events in (3), the waiting
time for packet 1, i can be expressed as

W1,i =

{
T1,i−1 −X1,i +

∑
i′∈MB

2,i
S2,i′ , EB

1,i∑
i′∈ML

2,i
S2,i′ +RL

2,i, EL
1,i,

(4)

where MB
2,i is the set of indices of queued packets of source

2 that must be served before packet 1, i under the event EB
1,i,

where |MB
2,i| = MB

2,i; ML
2,i is the set of indices of source

2 packets that are in the queue (but not under service) at the
arrival instant of packet 1, i conditioned on the event EL

1,i and,
thus, must be served before packet 1, i, where |ML

2,i| = ML
2,i;

RL
2,i is a random variable that represents the possible residual

service time of the packet of source 2 that is under service at
the arrival instant of packet 1, i conditioned on the event EL

1,i.
For the case EB

1,i, let us further divide the waiting time W1,i

in (4) into two terms RB
1,i and SB

1,i as follows. Let

RB
1,i = T1,i−1 −X1,i (5)

represent the residual system time to complete serving packet
1, i− 1 and let

SB
1,i =

∑
i′∈MB

2,i
S2,i′ (6)

represent the sum of service times of source 2 packets that
arrived during X1,i and must be served before packet 1, i.
Similarly for the event EL

1,i, let

SL
1,i =

∑
i′∈ML

2,i
S2,i′ (7)

represent the sum of service times of source 2 packets that
must be served before packet 1, i. Based on (5), (6), and (7),
E[X1,iW1,i] in (2) can be expressed as

E[X1,iW1,i] =

(
E[RB

1,iX1,i|EB
1,i] + E[SB

1,iX1,i|EB
1,i]

)
P (EB

1,i)

+ E[(SL
1,i +RL

2,i)X1,i|EL
1,i]P (EL

1,i), (8)

where P (EB
1,i) and P (EL

1,i) denote the probabilities of the
events EB

1,i and EL
1,i, respectively.

Next, we derive the expressions for P (EB
1,i) and P (EL

1,i) in
(8). Then, by referring to E[RB

1,iX1,i|EB
1,i], E[SB

1,iX1,i|EB
1,i],

and E[(SL
1,i+R

L
2,i)X1,i|EL

1,i] in (8) as the first, the second, and
the third conditional expectation terms of (8), we derive the
first and second terms in Sections III-1 and III-2, respectively,
and in Section III-3 we point out the difficulties in computing
the third term for a generic service time distribution.

Lemma 1. The probabilities of the events EB
1,i and EL

1,i in
(3) are calculated as follows:

P (EB
1,i) =

LS(λ1)(λ+ (ρ− 1)λ1)− λ2
λLS(λ1)− λ2

, (9)

P (EL
1,i) =

(1− ρ)λ1LS(λ1)

λLS(λ1)− λ2
,

where LS(λ1)=E[e−λ1S ] is the Laplace transform of the PDF
of the service time S at λ1; note that the service times of all
packets are stochastically identical as S1,i=

stS2,i=
stS, ∀i.

Proof. Using the facts that T1,i−1 and X1,i are independent
and the PDF of X1,i is fX1,i

(x) = λ1e
−λ1x, P (EB

1,i) can be
written as

P (EB
1,i) =

∫ ∞
0

P (T1,i−1 ≥ X1,i|T1,i−1 = t)fT1,i−1(t)dt

=

∫ ∞
0

FX1,i(t)fT1,i−1(t)dt = 1−
∫ ∞
0

e−λ1tfT1,i−1(t)dt



(a)
= 1− E[e−λ1T ] = 1− LT (λ1), (10)

where equality (a) follows because the system times of differ-
ent packets are stochastically identical, i.e., T1,i =st T2,i =st

T , ∀i [9], [12]; FX1,i(x) is the cumulative distribution function
(CDF) of X1,i; and LT (λ1) denotes the Laplace transform of
the PDF of the system time T at λ1. Because EL

1,i is the
complementary event of EB

1,i, we have

P (EL
1,i) = 1− P (EB

1,i) = LT (λ1). (11)

The relation between the Laplace transforms of the PDFs
of the system time T and service time S is given as [13,
Sect. 5.1.2]

LT (a) =

(
1− ρ

)
aLS(a)

a− λ
(
1− LS(a)

) , HS(a). (12)

Finally, substituting (12) in (10) and (11) results in the
expressions in (9).

1) The First Conditional Expectation in (8): Let us now fo-
cus on the first conditional expectation term E[RB

1,iX1,i|EB
1,i]

in (8). According to (5), this term is expressed as follows:

E[RB
1,iX1,i|EB

1,i] = E[T1,i−1X1,i|EB
1,i]− E[X2

1,i|EB
1,i] (13)

=

∫ ∞
0

∫ ∞
0

xtfX1,i,T1,i−1|EB
1,i

(x, t)dxdt−
∫ ∞
0

x2fX1,i|EB
1,i

(x)dx,

where fX1,i|EB
1,i

(x) is the conditional PDF of the interarrival
time X1,i given the event EB

1,i and fX1,i,T1,i−1|EB
1,i

(x, t) is
the conditional joint PDF of the interarrival time X1,i and
system time T1,i−1 given the event EB

1,i. They are given by
the following two lemmas.

Lemma 2. The conditional PDF fX1,i|EB
1,i

(x) is given by

fX1,i|EB
1,i

(x) =
λ1e
−λ1x(1− FT1,i−1(x))

P (EB
1,i)

. (14)

Due to the space limitations, the proof is given in [14].

Lemma 3. The PDF fX1,i,T1,i−1|EB
1,i

(x, t) is given by

fX1,i,T1,i−1|EB
1,i

(x, t) =
1

P (EB
1,i)

{
0 x > t

λ1e
−λ1xfT1,i−1

(t) x ≤ t.

Due to the space limitations, the proof is given in [14].
Now, having introduced the conditional PDFs in Lemma 2

and Lemma 3, we can compute the conditional expectation
E[RB

1,iX1,i|EB
1,i] in (13). Using Lemma 3, the first term in

(13) is calculated as

E[T1,i−1X1,i|EB
1,i] =

∫ ∞
0

∫ ∞
0

xtfX1,i,T1,i−1|EB
1,i

(x, t)dxdt

=
1

P (EB
1,i)

∫ ∞
0

∫ t

0

txλ1e
−λ1xfT1,i−1(t)dxdt (15)

=
1

P (EB
1,i)

(
− E[T 2e−λ1T ]− E[Te−λ1T ]

λ1
+

E[T ]

λ1

)
(a)
=

1

P (EB
1,i)

(
− L′′T (λ1) +

L′T (λ1)

λ1
+

E[W ] + 1/µ

λ1

)
,

where in equality (a) the first and second derivative of the
Laplace transform, L′T and L′′T at λ1, respectively, were
obtained using the feature of the Laplace transform that for
any function f(y), y ≥ 0, we have [15, Sect. 13.5]

Lynf(y)(a) = (−1)n
dn(Lf(y)(a))

dan
. (16)

Following the notation in (12) as L′T (a) = H ′S(a) and
L′′T (a) = H ′′S(a), (15) can be written as

E[T1,i−1X1,i|EB
1,i] = (17)

1

P (EB
1,i)

(
−H ′′S(λ1)+

H ′S(λ1) + E[W ]+1/µ

λ1

)
.

Using Lemma 2, the second term E[X2
1,i|EB

1,i] in (13) is
calculated as

E[X2
1,i|EB

1,i] =

∫ ∞
0

x2fX1,i|EB
1,i

(x)dx (18)

=
1

P (EB
1,i)

∫ ∞
0

x2λ1e
−λ1x

(
1− FT1,i−1

(x)
)
dx

=
1

P (EB
1,i)

(
2

λ21
− λ1Lx2FT1

(x)(λ1)

)
.

The Laplace transform Lx2FT1
(x)(λ1) in (18) is given by the

following lemma.

Lemma 4. Lx2FT1
(x)(λ1) is given as follows:

Lx2FT1
(x)(a)

∣∣
a=λ1

=
λ1H

′′
S(λ1)− 2H ′S(λ1)

λ21
+

2HS(λ1)

λ31
.

(19)

Due to the space limitations, the proof is given in [14].
Applying Lemma 4, the conditional expectation in (18) is
given as

E[X2
1,i|EB

1,i] = (20)
1

P (EB
1,i)

(
2

λ21
−H ′′S(λ1)+

2H ′S(λ1)

λ1
− 2HS(λ1)

λ21

)
.

Finally, substituting (17) and (20) in (13), the first condi-
tional expectation E[RB

1,iX1,i|EB
1,i] in (8) is given by

E[RB
1,iX1,i|EB

1,i] = (21)
1

P (EB
1,i)

(
E[W ] + 1/µ

λ1
− H ′S(λ1)

λ1
+

2HS(λ1)

λ21
− 2

λ21

)
.

2) The Second Conditional Expectation in (8): Next, we
derive the second term E[SB

1,iX1,i|EB
1,i] in (8). First, let us

elaborate the quantity MB
2,i which is an integral part of

calculating (8). Recall that MB
2,i is defined as the number

of queued packets of source 2 that must be served before
packet 1, i according to the FCFS policy under the event
EB

1,i = {T1,i−1 ≥ X1,i}. Thus, MB
2,i is equal to the number

of arrived (and thus, queued) packets of source 2 during the
(brief) interarrival time X1,i. Consequently, we have a Markov
chain T1,i−1 ↔ X1,i ↔MB

2,i conditioned on the event EB
1,i,

i.e., MB
2,i is independent of T1,i−1 given X1,i under the event



EB
1,i. Accordingly, E[SB

1,iX1,i|EB
1,i] in (8) can be expressed as

E[SB
1,iX1,i|EB

1,i]=

∫ ∞
0

xE
[∑

i′∈MB
2,i
S2,i′ |EB

1,i, X1,i

]
fX1,i|EB

1,i
dx

(a)
=

1

µ

∫ ∞
0

xE
[
MB

2,i|X1,i = x

]
fX1,i|EB

1,i
(x)dx (22)

(b)
=

ρ2
P (EB

1,i)

∫ ∞
0

x2λ1e
−λ1x(1− FT1,i−1

(x))dx

(c)
=

ρ2
P (EB

1,i)

(
2

λ21
−H ′′S(λ1) +

2H ′S(λ1)

λ1
− 2HS(λ1)

λ21

)
,

where equality (a) follows because (i) the service time S2,i′

is independent of all other random variables in the system
and (ii) by the Markov chain property T1,i−1 ↔ X1,i ↔MB

2,i

conditioned on EB
1,i, M

B
2,i is independent of T1,i−1 given

X1,i = x under the event EB
1,i; equality (b) comes from

Lemma 2 and the fact that E[MB
2,i|X1,i = x] = λ2x; equality

(c) comes from Lemma 4.
3) The Third Conditional Expectation in (8): The third term

E[(SL
1,i+R

L
2,i)X1,i|EL

1,i] in (8) can be calculated as

E[(SL
1,i+R

L
2,i)X1,i|EL

1,i]=

∫ ∞
0

∫ ∞
0

xE
[∑

i′∈ML
2,i
S2,i′ | · · · (23)

X1,i = x,T1,i−1 = t,EL
1,i

]
fX1,iT1,i−1|EL

1,i
(x, t)dxdt

+

∫ ∞
0

∫ ∞
0

xE
[
RL

2,i|X1,i = x, T1,i−1 = t, EL
1,i

]
· · ·

fX1,iT1,i−1|EL
1,i

(x, t)dxdt,

where the first term on the right hand side is calculated as∫ ∞
0

∫ ∞
0

xE
[∑

i′∈ML
2,i
S2,i′ |X1,i = x, T1,i−1 = t,EL

1,i

]
· · ·

fX1,iT1,i−1|EL
1,i

(x, t)dxdt
(a)
=

1

µ

∫ ∞
0

∫ ∞
0

xE
[
ML

2,i| · · ·

X1,i = x, T1,i−1 = t, EL
1,i

]
fX1,iT1,i−1|EL

1,i
(x, t)dxdt

=
1

µ

∫ ∞
0

∫ ∞
0

x
∑∞
m=0mPr[ML

2,i=m|X1,i = x, · · ·

T1,i−1 = t, EL
1,i]fX1,iT1,i−1|EL

1,i
(x, t)dxdt, (24)

where equality (a) follows because the service time S2,i′ is
independent of all other random variables in the system.

The second term on the right hand side of (23) and the
final expression in (24) reveal two critical issues in deriving
the third conditional expectation term of (8). The second term
on the right hand side of (23) contains the possible residual
service time of the packet of source 2 that is under service at
the arrival instant of packet 1, i, RL

2,i, which cannot be further
simplified. In the final expression in (23), computing the
probability Pr[ML

2,i = m|X1,i = x, T1,i−1 = t, EL
1,i] requires

complicated transient analysis, which for an M/G/1 queueing
model is intractable. Thus, we next propose an approximation
for (23) and derive an approximate expression for the average
AoI in a multi-source M/G/1 queueing model.

To approximate (23), we make the following two simpli-

fications for the long event EL
1,i: 1) we neglect the possible

residual service time of source 2 packet that is under service
at the arrival instant of packet 1, i and 2) we assume that the
average number of packets of source 2 that must be served
before packet 1, i is equal to the average number of packets of
source 2 that are queued during the system time of packet 1, i−
1. Thus, we assume E

[
ML

2,i|X1,i = x, T1,i−1 = t, EL
1,i

]
=

E
[
JL
2,i|X1,i = x, T1,i−1 = t, EL

1,i

]
in step (a) of (24), where

the random variable JL
2,i represents the number of source 2

packets in the system at the departure instant of packet 1, i−1
for the long event EL

1,i. Thus, we assume that during the time
interval x− t, the arrivals and departures of source 2 packets
cancel out. Note that in general, the exact characterization of
the number of source 2 packets during the time interval x− t
relies on the transient analysis of an M/G/1 queue which is
intractable.

With the simplifications above, (23) is approximated as

E[(SL
1,i+R

L
2,i)X1,i|EL

1,i]≈
1

µ

∫ ∞
0

∫ ∞
0

xE
[
JL
2,i|X1,i=x, · · ·

T1,i−1 = t,EL
1,i

]
fX1,i,T1,i−1|EL

1,i
(x, t)dxdt

(a)
= ρ2

∫ ∞
0

∫ ∞
0

txfX1,i,T1,i−1|EL
1,i

(x, t)dxdt (25)

(b)
=

ρ2
P (EL

1,i)

∫ ∞
0

∫ ∞
t

xtλ1e
−λ1xfT1,i−1

(t)dxdt

=
ρ2

P (EL
1,i)

∫ ∞
0

(
t2e−λ1tfT1,i−1

(t) +
te−λ1t

λ1
fT1,i−1

(t)
)
dt

(c)
=

ρ2
P (EL

1,i)

(
H ′′S(λ1)− H ′S(λ1)

λ1

)
.

where (a) comes from the fact that
E
[
JL
2,i|X1,i = x, T1,i−1 = t, EL

1,i

]
= λ2t, (b) follows from

Lemma 5, and (c) follows from (16).

Lemma 5. The PDF fX1,i,T1,i−1|EL
1,i

(x, t) is given by

fX1,i,T1,i−1|EL
1,i

(x, t) =
1

P (EL
1,i)

{
0 x < t

λ1e
−λ1xfT1,i−1

(t) x ≥ t.

Due to the space limitations, the proof is given in [14].
By substituting the probabilities P (EB

1,i) and P (EL
1,i) given

by Lemma 1 and the three derived conditional expectation
terms (21), (22), and (25) into (8), an approximation for
E[X1,iW1,i] is calculated. Finally, by substituting the ap-
proximate expression for E[X1,iW1,i] and (2) into (1), an
approximation for the average AoI of source 1 in a multi-
source M/G/1 queueing model is given as

∆1 ≈ E[W ] +
2

µ
+

2HS(λ1)

λ1
−H ′S(λ1) (26)

− 1

λ1
+ ρ2

(
2

λ1
+H ′S(λ1)− 2HS(λ1)

λ1

)
,

where the average waiting time of each packet in the system,
E[W ], is given as E[W ] = E[S2]λ/(2− 2ρ) [16, Sect. 3],
where E[S2] = 2/µ2 is the second moment of the service time,
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Fig. 1: The average AoI of source 1 as a function of λ1 for different
values of λ2 with E[S] = 1, κ = 2, and β2 = 2.

HS(λ1) is a function of the Laplace transform of the PDF of
the service time calculated by (12), and H ′S(λ1) and H ′′S(λ1)
are the first and second derivative of HS(·) at λ1.

IV. VALIDATION AND SIMULATION RESULTS

We evaluate the accuracy of the proposed approximate
expression in (26) in the considered queueing model where
the service time follows a gamma distribution. A gamma
distribution can be used to characterize the service time
in a wireless system where a transmitter is not directly
accessible to its intended receiver. Consider a relay net-
work with multiple wireless hops between a transmitter
and the receiver. If the service time of each hop follows
an exponential distribution, the end-to-end service time in
the system follows a gamma distribution [17]. The PDF
of a gamma distributed random variable S is defined as

fS(s) = Gamma(s;κ, β) =
βκsκ−1 exp(−βs)

Γ(κ)
, s > 0, with

parameters κ > 0 and β > 0, where Γ(κ) is the gamma
function at κ. The first and the second moment of this random
variable is E[S] = κ/β and E[S2] = κ/β2, respectively. A
gamma distribution with parameter κ and β can be interpreted
as the summation of κ independent exponential random vari-
ables with parameter β.

Fig. 1 shows the average AoI of source 1 as a function of λ1
for different values of λ2 with a fixed mean service time of the
system E[S] = 1, κ = 2, and β = 2. The figure shows that the
derived approximate expression in (26) provides an accurate
estimate of the average AoI in the considered queueing model
where the service time follows a gamma distribution.

V. CONCLUSIONS

We considered a single-server multi-source FCFS queueing
model with Poisson arrivals and analyzed the average AoI
of each source. We derived an approximate expression for
the average AoI for a multi-source M/G/1 queueing model.
The simulation results showed that the approximate expression
for the average AoI is sufficiently accurate for a gamma
distributed service time.
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