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Abstract

While 5G is being rolled out in different parts of the globe, few research groups around the world − such

as the Finnish 6G Flagship program − have already started posing the question: What will 6G be? The 6G

vision is a data-driven society, enabled by near instant unlimited wireless connectivity. Driven by impetus to

provide vertical-specific wireless network solutions, machine type communication encompassing both its mission

critical and massive connectivity aspects is foreseen to be an important cornerstone of 6G development. This

article presents an over-arching vision for machine type communication in 6G. In this regard, some relevant

performance indicators are first anticipated, followed by a presentation of six key enabling technologies.

Index Terms

6G, machine type communication, energy harvesting, edge intelligence, machine learning, security, multi-

system operability.

I. INTRODUCTION

The fifth-generation (5G) cellular standard, also known as 5G New Radio (NR), is designed to serve the

growing demand of multi-service wireless communication. 5G NR ushered in a paradigm shift by introducing

‘Ultra-Reliable and Low Latency Communications’ (URLLC) and ‘massive Machine Type Communications’

(mMTC) service classes, thus facilitating the coexistence of services with highly heterogeneous requirements.

URLLC addresses critical applications in different vertical industries, whereas mMTC entails providing energy-

and spectral-efficient connectivity to a large number of Internet of Things (IoT) devices.

State of the art URLLC and mMTC solutions can be viewed from two different perspectives. The first takes a

system design approach by improving existing networks to support the emerging requirements. Examples include

physical layer redesign [1], scheduling and resource allocation aspects [2] and IoT-oriented radio technologies

like Narrowband IoT. The second perspective, such as finite blocklength transmission [3] and coded random

access [4], are primarily motivated by the information-theoretic aspects of these service classes.
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However, both of this approaches leave a number of loose ends with respect to fully complying with the

envisioned requirements of 5G NR. Meanwhile, new requirements continue to emerge with the appearance

of new vertical applications opened up by 5G NR. Therefore, it is important to start evaluating 5G NR and

predicting the evolution of wireless networks towards 2030. Focusing on this goal, several research projects

around the globe have recently started exploring ‘beyond 5G’/‘sixth generation (6G)’ networks [5]–[8].

The world’s first such initiative is the Finnish 6G Flagship program, a recently formed academic and industrial

consortium aiming at developing key enabling technologies for 6G [6]. The 6G vision is a data-driven society,

enabled by near instant unlimited wireless connectivity. In order to achieve this vision, future wireless networks

are expected to support a wide range of heterogeneous and sometimes conflicting requirements.

Driven by impetus to provide vertical-specific wireless network solutions, machine type communication

(MTC) will be an important cornerstone of 6G development. Many MTC/IoT applications encompass aspects

of both, URLLC and mMTC, service classes. Therefore, these service classes are expected to be under the

same umbrella in 6G, to be distinguished as critical MTC (cMTC)/mMTC, respectively. Improving the network

scalability, reliability, latency and efficiency in terms of spectral usage and energy consumption while decreasing

the deployment costs, are the main design goals for an MTC optimized, cost-effective network.

Key Performance Indicators for MTC in 6G

Reliability, latency, device density and energy efficiency are among the main key performance indicators

(KPI) pertinent to MTC. The 6G reliability and latency requirement is expected to be diverse and use case

specific, with the most extreme values being 10−9 and 0.1 millisecond (ms), respectively, corresponding to the

current requirements for wired industrial control networks in Industry 4.0 applications [7].

Extrapolating the ITU specified 5G device density of a million IoT devices per km2 and considering that 3D

connectivity will be an important capacity measure in 6G [8], we anticipate networks required to support about

10 devices per m2 − 100 devices per m3.

In terms of energy efficiency, 6G will introduce ultra-long battery life aided by a combination of energy-

efficient communication, advanced battery technology and energy harvesting (EH) techniques. The ultimate

vision is to completely remove the need for separately charging mobile devices [5].

In addition, 6G is expected to be the first generation to consider from scratch a number of new require-

ments covering technical (e.g., positioning accuracy), societal (e.g., measuring connectivity as a human right),

environmental (e.g., CO2 footprint) and economical aspects.

Major Contributions

This paper presents an over-arching vision for MTC in 6G. In particular, we discuss six key technologies that

will enable the ambitious design requirements outlined above. These six enablers and corresponding solution

components are illustrated in Figure 1, and detailed in the rest of this article.

We foresee that some existing elements like massive connectivity and energy efficiency will continue to evolve

and be further optimized. Additionally, new security considerations and the applications of emerging technology

components like multi-access edge computing (MEC) and machine learning (ML) are highly relevant. Within
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these aspects, topics like network slicing, edge intelligence and ML enabled algorithms will play prominent

roles.

With the growing need to provide vertical-specific wireless connectivity solutions, different vertical sectors

will be intricately involved in 6G design and development. Consequently, ensuring seamless interoperability

across different systems within the same vertical will be an important design challenge.

The six enablers presented are by no means exhaustive. Other potential important enablers for 6G not covered

in this article include ultra-high speed links exploiting terahertz and visible light communication, utilizing

unmanned aerial vehicles and very low-earth orbit satellites as network infrastructure, and the integration of

metamaterials and intelligent structures like software-defined materials and fluid antennae with massive MIMO

technology.
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Fig. 1. Six key enablers for MTC in 6G and their respective solution components.

II. EFFICIENT AND FAST MASSIVE CONNECTIVITY

Ensuring fast, efficient and reliable channel access for a large number of diverse MTC devices with dynamic

and generally low payload traffic and varying latency/reliability requirements is a key design challenge for

MTC. The conventional access mechanism of granting exclusive rights to users through a four-way handshake

procedure is not suitable for URLLC/mMTC services due to their diverse and challenging requirements.

Therefore, efficient radio access technology (RAT) solutions are imperative.

In the physical layer (PHY), using agile numerology can improve the latency and reliability of wireless

links. For instance, 5G NR has introduced mini-slots of duration as low as 0.07 ms as opposed to the fixed

slot duration of one ms in LTE, thereby considerably reducing the minimum transmission time [1]. Reducing

the time it takes to establish channel access is also important for latency reduction. In this respect, grant-free
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(GF) random access allows users to transmit immediately upon data packet arrival at PHY, thereby reducing

the access latency and signaling overhead.

As URLLC and mMTC services are becoming more interlinked moving towards 6G, novel unified solutions

and further optimization of existing technologies are required to meet the challenges of efficient and fast massive

connectivity. Three potential research directions are hereby presented.

Predictive Resource Allocation and Scheduling

The inherent properties of MTC traffic [9] can be utilized to allocate resources pre-emptively. For example,

correlation in the traffic arrival among neighboring transmission nodes can be harnessed to allocate resources

to a given node conditioned on the neighbor’s transmission. Alternately, semi-persistent scheduling [1] can be

efficient for use cases with periodic traffic arrival.

An illustration of a pre-emptive scheduling is shown in Figure 2, where we consider an industrial process

involving two manufacturing nodes operating sequentially. Assuming the time difference for the manufacturing

process between the two nodes is ∆t, the base station (BS) can pre-emptively allocate resources to the second

node at time t + ∆t when a process arrives at the first node at the time t.

Enhancement of GF Random Access

Controlling and resolving collisions is one of the main challenges in GF random access. The use of advanced

reception techniques like non-orthogonal multiple access (NOMA) and successive interference cancellation in

cooperation with GF transmissions enhances its reliability. Moreover, GF can be combined with conventional

schemes. For instance, the initial transmission can be performed over dedicated grant-based resources, while

proactive hybrid automatic repeat request retransmissions can be performed over shared resources by using GF

schemes. In this context, differentiated random access and scheduling policies considering the latency budget

will gain increasing attention.

Improved NOMA Schemes

NOMA allows transmissions to be multiplexed in time by relying on advanced receivers to detect overlapping

transmissions. Most NOMA techniques can be grouped into signature-domain or power-domain multiplexing.

Differentiation between users sharing the same resource is done based on the use of different signatures in the

former, and by utilizing difference in their received signal power in the latter. NOMA studies in 6G are likely

to focus on improving transmitter side processing for the signature domain NOMA and receiver side processing

for the power domain NOMA.

III. SECURITY FOR MTC

With a massive number of connected devices, huge bandwidth increase and exploding use cases from various

vertical industries, 6G will unavoidably introduce enormous security challenges. This is particularly challenging

for MTC considering the device constraints, which are usually delay-sensitive and/or limited in hardware,

processing capabilities, storage memory, cost, and energy. Therefore, low-cost and efficient solutions for security

and privacy aspects will be highly demanding, as current cryptographic methods are unsuitable for most MTC
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Fig. 2. An illustration of preemptive resource allocation using information about the traffic correlation between neighboring nodes in an

industry 4.0 scenario.

use cases. In the following, we highlight some paramount aspects to be addressed for defining secure 6G

networks.

Efficient and Low-Cost Authentication and Authorization

Simultaneous authentication, authorization and accounting (AAA) processes from millions of connected

MTC devices can lead to severe signalling congestion. Short payloads and latency constraints of MTC traffic,

and the limited computational capabilities of the devices, demand more scalable solutions for authentication

processes. Lightweight and flexible solutions like group-based authentication schemes, anonymous service-

oriented authentication strategies to manage a large number of authentication requests [10], lightweight physical-

layer authentication, and the integration of authentication with access protocols [11] represent promising

solutions that are likely to be adopted in 6G.

User identification will also be an important challenge in 6G. Conventional subscriber identity module (SIM)

based solution is simply not scalable and cost-effective for billions of IoT devices, and new AAA mechanisms

are therefore necessary.

Network Slice Security

Network slicing enables the core network infrastructure to be seamlessly shared across different service

classes. The differences in the quality of service (QoS) requirements and security levels of different network

slices corresponding to different service classes can be accommodated through discriminated security. An

important consideration for network slicing is to ensure secure isolation between the slices such that malicious

attacks on a given slice cannot impact the operation of other slices. Moreover, customized security designs

with adaptive AAA protocols among different domain infrastructure must be designed [10]. A schematic of the

network slicing architecture and different associated security solutions is shown in Figure 3.
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Improved Physical Layer Security Techniques

Physical layer security (PLS) techniques enable secure transmission while preventing eavesdropping by

exploiting the wireless channel characteristics. PLS techniques have shown to be a promising alternative for

providing security in MTC networks, as they do not rely on complex processes of encryption or decryption.

However, it is crucial to develop more robust, efficient and appealing PLS techniques that simultaneously satisfy

the requirements on reliability, energy overhead, latency, short payloads, and throughput, and tailored to MTC

applications. Moreover, evaluating the performance of secure systems for MTC will demand new secrecy metrics

for realistic and practical scenarios compared to the legacy secrecy capacity or secrecy outage probability.

Edge Intelligence to Prevent Security Attacks

MTC networks are evolving into highly heterogeneous networks, where the wide diversity of devices,

capabilities, and services will introduce unprecedented and more powerful forms of artificial intelligence (AI)

based malicious security threats. However, computing capabilities provided by emerging network technologies

such as MEC and software-defined networks (SDN), which provide powerful computation capabilities at the

edge tier, can help to design effective strategies to prevent from distributed denial of service (DDoS) attacks

jointly with advanced ML and data mining strategies [12].

eMBB
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URLLC
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MEC

CORE 

NETWORKS

MEC/AI -based

security

Network slicing security

Service-based authentication

RAN security

Integrated authentication

Physical-layer

Security

Fig. 3. Network security solutions for core networks with network slicing architecture.

IV. POWERING MASSIVE DEPLOYMENTS THROUGH WIRELESS ENERGY TRANSFER

Improved battery lifetime, especially for IoT devices, was a key design focus in 5G NR. Powering a large

number of connected devices in an efficient and green way while guaranteeing uninterrupted operation will

continue to be an important design challenge in 6G. The ultimate vision is to completely remove the need
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for separately charging mobile devices, enabled by a combination of energy-efficient communication, advanced

battery technology, offloading of energy-intensive processing to the edge (see Section V) and EH techniques.

EH is an efficient solution to avoid replacing or externally recharging batteries, a procedure that may be costly

or impossible in hazardous environments, building structures or inside the human body.

Energy Harvesting Sources

The sources of harvestable energy can be from natural sources like solar, vibrational, thermal, biological

(such as blood pressure), microbial fuel cells (bio-electrochemical transducers that convert microbial reducing

power into electrical energy), human powered (such as walking) etc. Furthermore, energy can be harvested

from man-made sources via wireless energy transfer (WET), where energy is transferred from a source to a

destination through the transmission of dedicated energy beacon [13]. In the rest of this section, we present

some of the research challenges in the application of EH using WET as an example.

Seamless Integration of Wireless Information and Energy Transfer

A key challenge in WET is its coexistence with wireless information transfer (WIT). The efficiency of the

radio circuitry for WET and WIT are very different. Typical information receivers can operate with very low

sensitivities, whereas an EH device needs much more incident power. Thus, energy and information transceivers

usually require different RF systems. A potential solution is to have devices with different antenna systems for

each application.

Energy and information transmissions can be performed either in an out-of-band or in-band manner. While

the former approach allows avoiding interference, the latter alleviates the spectrum efficiency issue by allowing

information and energy to be transmitted over the same band in a time-division or even full-duplex manner.

Incorporating WET into communication architectures as depicted in Figure 4 faces important design chal-

lenges. First, the system design must support the coexistence of heterogeneous WIT and WET, e.g., relying on

dedicated energy beacons and hybrid WET+WIT access points. Second, WET may also cause some interference

to other nearby communicating devices. Therefore, WET design cannot be independent from WIT and a joint

optimization of both processes, while considering their particular characteristics, is needed.

In this sense, introducing new metrics, such as effective capacity (EC) and effective energy efficiency (EEE)

provides a robust framework for joint WIT and WET optimization. The EC metric can be applied to capture

statistical delay requirements in parallel with transmission throughput, whereas EEE is defined as the ratio

between EC and the total power consumption. The latter is well-suited to capture the inherent energy-limited

characteristics of WET systems and bursty traffic scenarios in MTC.

V. MULTI-ACCESS EDGE COMPUTING

Multi-access Edge Computing is the deployment and operation of distributed computing, caching, network

communication, and data analytics resources at the edge of the cellular network. (i.e., locations which are

geographically close to the devices that generate and/or use the data). MEC evolved from the fog computing

concept, which was mainly introduced so that IoT-like applications could take advantage of cloud computing at
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Fig. 4. Integrating WET into communication architectures. Optimum performance requires taking WET and WIT jointly into account.

While one EH MTC device is performing WET and WIT in an out-of-band manner, the other one is exploiting also in-band energy and

information transmissions.

the network edge. MEC extends this concept further to encompass additional capabilities like data processing,

storage, and using the data to make network decisions [14].

MEC will play a leading role in 6G by operating as an intermediate layer that provides fast and localized data

processing for critical and resource constrained applications. Security, vehicle to anything (V2X) communication,

energy efficiency and offloading for URLLC can be cited as particularly relevant use cases. Concrete examples

of different MEC functionalities as enablers of multi-service communication for massive and critical MTC in

6G are illustrated in Figure 5 and detailed below.

Fast and localized data analysis

The end-to-end (E2E) latency, which is the latency between the application layers at two ends of a communi-

cation link, depends on the access link quality and delays introduced by both the transport and the core network.

Many emerging applications like augmented reality and cellular V2X require low E2E latencies. Towards this

end, MEC can provide processing capabilities at the edge of the network, thereby significantly reducing the

E2E latency [14].

The higher capabilities of the cloud/centralized data centers allow sophisticated and detailed data analysis at

the expense of transport and processing delays. The introduction of MEC allows data analytics to be divided

into two stages. At the edge, fast and localized data processing, analytics, and content caching can serve critical

applications due to its close proximity to end users [14], whereas a more in-depth and holistic data analysis

over a larger time scale can be carried out at the core.

The incessant growth of MTC data volume not only increases the amount of data that needs to be processed,

but also makes it more difficult to distinguish between useful and unnecessary data. A primary data analysis

cycle at the edge, enabled by MEC servers, will allow the huge amount of MTC data generated by end devices

to be sorted out and thinned before passing on to the core/cloud network.
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Centralized/semi-centralized resource allocation

Efficient management of scarce communication and computing resources is a well-known optimization

problem. Usually distributed but sub-optimal solutions are implemented in practical networks to limit detailed

channel state information (CSI) requirement and complexity. The integration of MEC servers at the network

edge in 6G will render (semi) centralized allocation of communication and computing resource on a fast basis

practically feasible. Thus, centralized resource allocation algorithms for a cluster of devices connected to the

edge can be efficiently executed with limited complexity and CSI. Concurrently, coordination among MEC

servers can introduce another layer of resource management over a larger time frame, for example, allocating

the number of radio channels to a set of base stations.

Industry 4.0
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Fig. 5. Examples of different MEC functionalities as enablers for multi-service communication for massive and critical MTC in 6G.

VI. THE ROLE OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

The 6G vision for a data-driven society, enabled by near-instant and unlimited wireless connectivity, will

require addressing complex, heterogeneous and often conflicting design requirements. The ever-increasing

complexity of the network and its configurations, and the emergence of multi-service communication and

applications, demand comprehensive network intelligence. It is imperative to enhance network intelligence to

enable self-organization. Moreover, some applications in 6G may demand dynamic and/or multiple service-type

allocation, as opposed to the static categorization into enhanced mobile broadband (eMBB), URLLC and MTC

service classes in 5G NR.

Incorporating network intelligence requires tracking changes in the environment and estimating uncertainties,

which are then used as inputs in decision-making and network re-configuration. AI techniques, which aim

to equip machines and systems with intelligence, have long been used in specific scenarios to optimize

heterogeneous network configurations [15]. It is once again in the spotlight as a key element in the design

of future 6G networks [8]. In this sense, AI tools can solve problems related to observing changes, learning

unknowns, identifying issues, forecasting changes, and facilitating the decision-making.
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In this regard, ML is one of the most promising AI tools. ML can be categorized as supervised, unsupervised

and reinforcement learning. In supervised learning, the output corresponding to a new input is estimated by

learning the input-output relation from exposure to labelled data and their matched outputs. In unsupervised

learning, the input data is not labelled a priori and the agent needs to find on its own the inherent structure of

the input data. Some examples include, clustering of small cell users, and intrusion, fault and anomaly detection

in security protocols. Finally, in reinforcement learning, the agent interacts with its environment to achieve its

goal without explicitly knowing whether the goal is achieved by attempting to maximize a cumulative reward,

such as Markov decision processes and Q-learning in competitive scenarios.

It is just recently that such tools have started focusing on addressing MTC network issues. Therefore, we

expect for the upcoming years that AI-oriented solutions thrive specially in the context of MTC due to its

heterogeneous requirements. Moreover, current MTC networks (massive and critical) are static with fixed slicing.

With the increase of MEC capabilities and vertical-oriented services, as discussed in Sections V and VII,

respectively, we expect MTC network to be autonomous, self-organizing and dynamic. Therefore, they will be

able to exploit traffic information and usage patterns of MTC devices and their respective security requirements

to perform dynamic slice partitioning and resource allocation according to the needs of each application and/or

vertical-oriented service.

VII. THE RISE OF THE VERTICALS

In contrast with the primarily user agnostic approach in earlier generations of wireless networks, 5G NR

introduced vertical-specific wireless connectivity solutions. The existing approach of having industry-specific

standards in different verticals limits scalability, flexibility and cost-effectiveness. While 5G NR has made the

first step towards a vertical market driven approach, 6G may be the first wireless standard to completely replace

existing industry-specific standards by a single global solution enabling seamless connectivity for the eclectic

communication needs across different vertical industry.

In essence, digitalization via 6G will be strongly driven through the verticals. Connecting various vertical

industries through MTC will open up enormous new economical and societal opportunities for the society at

large. Alongside, the vertical sectors will be able to capitalize on the communication industry’s expertise to

enhance their productivity, while the communication industry will have the prospect of new business models

in the vertical sectors and be able to find new revenue sources.

Seamless Operability in a Multi-Operator System

Ensuring compatibility in a multi-operator (including other than legacy telecommunications operators) system

will be a major challenge in providing a global vertical-market driven connectivity solution in 6G. The key

research question is: how to ensure seamless operability (including, but not limited to, authorization, security,

service provisioning, accounting, etc.) across the different information technology (IT) systems of the different

players involved?

Examples of the different players involved in the Automotive sector are the different car manufacturers with

their respective V2X solutions (e.g., Cellular-V2X advocated by 5G Automotive Association), owners and/or

operators of different parts of the road, the agency/agencies managing the spectrum and the national/regional
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authority/authorities. Persistent health monitoring without compromising security and privacy of a patient as

he/she travels across cities or even countries in the eHealth sector is yet another example requiring such seamless

inter-operability in a multi-operator system. In this respect, the question of ownership, privacy and security of

the generated data is also a significant concern. Who owns the generated data and where should it reside as a

device moves across different systems in a given vertical sector?

Seamless operability in a multi-operator system is not limited to providing connectivity while roaming, rather

it concerns enabling compatibility of different IT systems of the different players involved across any given

vertical sector. The challenge will be further exacerbated for cMTC application requiring ultra-reliability and

low-latency.

Enablers of Vertical-Specific Connectivity Solutions

Future 6G networks are expected to be flexibly designed to serve the wide-ranging needs of different vertical

sectors within a simple and unified system with a modular-designed radio access network connected to a dynamic

core network. The modular design of the lower layers will allow addressing the different design requirements

of different verticals in an efficient manner. On the other hand, the use of network slicing and technologies

like network function virtualization (NFV) and SDN will allow the same core network to dynamically serve

the needs of different verticals. In this sense, an enhanced RAT, network slicing, MEC, and the use of cloud

core are among the key enablers for the traditional wireless communication industry to serve industry-specific

communication requirements of different vertical sectors.

VIII. SUMMARY AND OUTLOOK

The introduction of multi-service communication in 5G NR catalyzed a paradigm shift from human-centric

communication to MTC. The latter can be broadly categorized into massive MTC − targeting energy and

spectrally efficient connectivity solutions for IoT devices, and critical MTC − aimed at applications requiring

high reliability and low latency. MTC is envisioned to be the primordial focus of the next generation 6G wireless

network. In this article, we have forecasted the evolution of MTC in 6G, and presented six technologies that will

enable the ambitious design targets. A comprehensive overview of the design challenges, their corresponding

enabling technologies and the expected outcomes is outlined in Table I.
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