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Abstract—Compressed sensing (CS) is an efficient technique
to acquire sparse signals in many wireless applications to, e.g.,
reduce the amount of data and save low-power sensors’ batteries.
This paper addresses efficient acquisition of sparse sources
through quantized noisy compressive measurements where the
encoder and decoder are realized by deep neural networks
(DNNs). We devise a DNN based quantized compressed sensing
(QCS) method aiming at minimizing the mean-square error of the
signal reconstruction. Once trained offline, the proposed method
enjoys extremely fast and low complexity decoding in the online
communication phase. Simulation results demonstrate the supe-
rior rate-distortion performance of the proposed method com-
pared to a polynomial-complexity QCS reconstruction scheme.

I. INTRODUCTION

In a myriad of wireless applications, the signals of inter-
est are sparse, i.e., they have many zero-valued elements,
either naturally or after a transformation [1]. Sparse sig-
nals are encountered in, e.g., environmental monitoring [2],
source localization [3], and spectrum sensing [4]. The sparsity
can be leveraged by the joint sampling and compression
paradigm, compressed sensing (CS) [5], [6], which enables
a sparse length-N signal to be accurately reconstructed from
its M < N (random) linear measurements. CS benefits from
simple and universal encoding by shifting the most compu-
tational work load to the decoder [7], making it especially
attractive for low-power sensor applications.

Early works on CS considered real-valued signals by treat-
ing the CS merely as a dimensionality reduction technique.
Recently, the interest in applying CS for transmission/storage
in digital systems, where the compressive measurements must
be converted into bits using a quantizer, initiated the quan-
tized compressed sensing (QCS) framework [8]. To achieve
satisfactory rate-distortion performance in a QCS setup, the
conventional CS reconstruction methods must be appropriately
redesigned. The main idea behind QCS algorithms is to
accommodate the non-linear impact of CS and quantization in
the encoder/decoder to ameliorate the signal reconstruction.
First works on QCS considered scalar quantizers (SQs) and
optimized either the encoder or quantization-aware decoder
[9], [10]. At the cost of increased complexity, QCS methods
relying on vector quantization have been devised in, e.g., [11],
[12], [13], outperforming the SQ based methods. Empirical
performance of various QCS methods is reported in [14].

Although the encoding in SQ based QCS methods is simple,
the decoder executes a (quantization-aware) convex/greedy
algorithm. Thus, the decoding can become computationally
infeasible for high-dimensional signals or cause intolerable
delays for real-time applications. On the other hand, VQ based
QCS methods yield superior rate-distortion performance, but
their encoding complexity may become a bottleneck.

The aforementioned problem could be counteracted by deep
learning, i.e., realizing the CS decoder by a deep neural
network (DNN), combined with a simple quantizer. Namely,
if such a scheme meets the pre-defined performance criterion
after intensively trained offline, the online communication
phase would be extremely fast with low complexity decoding.
The authors in [15] were the first to apply deep learning in a
non-quantized CS framework. The first work that applies deep
learning into a QCS framework is [16], where the authors
devised a DNN based method that optimizes a binary mea-
surement matrix, a compander based non-uniform quantizer,
and the CS decoder to reconstruct neural spikes.

We address efficient acquisition of sparse sources through
quantized noisy compressive measurements where the encoder
and decoder are realized by feedforward DNNs. We propose
a non-iterative DNN based QCS method which, once trained
offline, enjoys extremely fast and low complexity decoding
in the online communication phase, conducive to real-time
applications with high-dimensional signals. Stochastic gradient
descent (SGD) and backpropagation are used to train the
DNNs with the aim of minimizing the mean-square error
of the signal reconstruction. As a key design factor, we use
the soft-to-hard quantization proposed in [17] to approximate
the effect of the SQ in the training phase, which 1) facili-
tates backpropagating the gradient information, and 2) allows
learning an efficient non-uniform SQ in the end-to-end SGD
optimization loop. Simulation results illustrate the superior
rate-distortion performance of the proposed method compared
to a polynomial-complexity baseline QCS method.

The most related work is [16] which assumes that an
encoder has direct access to the source; we consider a remote
sensing setup where the encoder observes the source only
indirectly through CS principles, and in the presence of
measurement noise. The work [16] backpropagates the gra-
dient through the quantizer by the straight-through estimator,
whereas we use the soft-to-hard quantization. As a novelty, we
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Fig. 1. Illustration of the proposed DNN based QCS method for the signal length N = 10 and the number of measurements M = 4, where 1) EncNet has
L = 4 layers with γ1 =M = 4, γ2 = 5, γ3 = P = 3, and γ4 = P = 3 neurons, and 2) DecNet has J = 5 layers with γ1 = P = 3, γ2 = 5, γ3 = 6,
γ4 = 10, and γ5 = N = 10 neurons.

incorporate an encoder DNN to pre-process the compressive
measurements prior to quantization, conducive to improve the
rate-distortion performance. Since our encoder DNN performs
a non-linear transform, it effectively replaces the compander
used in [16] to perform non-uniform quantization.

II. SYSTEM MODEL

Consider a remote signal acquisition setup depicted in
Fig. 1. Encoder E observes a remote information source
indirectly in the form of noisy compressive measurements
(i.e., it performs a dimensionality reduction), pre-processes
the measurements, and quantizes them into a finite-rate bit
sequence. The bit sequence is communicated in an error-free
fashion to decoder D for signal reconstruction.

A. Source Signal and Compressive Measurements

Let x ∈ RN denote the length-N source vector, represent-
ing, e.g., a sequence of values of a random process at consec-
utive discrete time instants. The realizations of random vector
x are assumed to be independent and identically distributed
across time. We assume that the vector x is K-sparse, i.e.,
it has at most K non-zero entries, ‖x‖0 = K ≤ N . The a
priori probabilities of the sparsity patterns are assumed to be
unknown.

Encoder E observes the remote source x indirectly in the
form of noisy compressive measurements as [5], [6]

y = Φx + n (1)

where y ∈ RM is a measurement vector, Φ ∈ RM×N is a
fixed and known measurement matrix, and n ∈ RM is a noise
vector, M ≤ N . It is worth emphasizing that encoder E does
not have access to the information source x; the encoder device
samples and acquires x merely via the CS principles.

B. Encoder

1) Encoder DNN: As the first stage at encoder E, the
measurements in (1) are fed into a feedforward neural network,
dubbed EncNet. EncNet consists of L layers; the first layer
l = 1 is called the input layer and the last layer l = L is called
the output layer. For L ≥ 3, EncNet contains at least one
hidden layer; in this case, EncNet is referred to as a deep
neural network (DNN). Since our main interest is in L ≥ 3,
we refer to EncNet as a DNN from here onward.

Formally, let zEl ∈ Rγl denote the weighted input of layer l
of EncNet, defined as

zEl = WE
l a

E
l−1 + bE

l , l = 2, . . . , L, (2)

where WE
l ∈ Rγl×γl−1 is the weight matrix at the lth layer,

bE
l ∈ Rγl is the bias vector at the lth layer, γl denotes the

number of neurons at layer l, and aE
l ∈ Rγl is the output of

layer l, defined as

aE
l = σE

l (zEl ) = σE
l

(
WE

l a
E
l−1 + bE

l

)
, l = 2, . . . , L, (3)

where σE
l is an (element-wise) activation function of the lth

layer. Let P , γL denote the number of neurons at the output
layer of EncNet. Recalling that γ1 = M , EncNet takes a
measurement vector y ∈ RM as an input, and produces an
output vector aE

L ∈ RP . Thus, EncNet is defined as a mapping

ΓE : RM → RP , ΓE(y) = aE
L. (4)

2) Quantizer Encoder: The second stage at encoder E is to
quantize the output of EncNet, a vector aE

L ∈ [aEL,1 · · · aEL,P ]
T,

into a finite-rate bit sequence. We consider that the quanti-
zation of each aEL,p, p = 1, . . . , P , is performed by a fixed-
rate (non-uniform) scalar quantizer (SQ). More precisely, we
assume that each continuous-amplitude element aEL,p is con-
verted into a discrete representation using a single quantization



rule. Thus, the quantization operation of vector aE
L can be

modeled by P parallel identical SQs [18]. A formal definition
of an SQ is given next.

Definition 1. (SQ) Let Q = {QE,QD} represent an I-level
SQ, where QE is the quantizer encoder and QD is the
quantizer decoder. Let R1, . . . ,RI denote the quantization
regions, where Ri ∩Ri′ = ∅, ∀i 6= i′ ∈ I,

⋃
i∈I Ri = R, and

I = {1, . . . , I} is an index set. Let C = {c1, . . . , cI} denote
the quantizer code book, where ci ∈ R is the discrete code
word associated with region Ri, i ∈ I. The quantizer encoder
is a mapping from a real-valued scalar input to the set of
indices QE : R→ I; thus, for an input aEL,p (i.e., the pth output
of EncNet), QE operates as

QE(aEL,p) = ip ∈ I, if aEL,p ∈ Rip , p = 1, . . . , P. (5)

The quantizer decoder is a mapping from the set of indices to
the set of discrete code words QD : I → C; thus, for a given
index ip ∈ I, QD operates as

QD(ip) = cip ∈ C, p = 1, . . . , P. (6)

We assume that the quantization indices ip ∈ I are communi-
cated from encoder E to decoder D using binary code words
of the same length, i.e., entropy coding is not applied. Thus,
the rate of quantizer Q is RQ = dlog2Ie bits.

Combining the operations of EncNet and quantizer encoder
QE, encoder E can be expressed as a composite function

E = QE ◦ ΓE : RM → I × · · · × I︸ ︷︷ ︸
P

. (7)

The full operation of encoder E is summarized in (8).

Remark 1. Note that quantization of measurements y in (1)
is a practical necessity in any digital communication system.
Moreover, for devices like low-power sensors having stringent
resource limitations, the quantization resolution can be as low
as one bit per sample [19]. In such scenarios, the quantization
error becomes a pronounced factor in deteriorating the end-
to-end signal reconstruction accuracy, and thus, the effect of
quantization must be appropriately taken into account in the
design. Albeit advanced techniques like vector quantization
and entropy coding can provide significant compression gains
[12], [13], [14], we use SQ due to its simple implementation
and prevalent use in practical devices.

C. Decoder

1) Quantizer Decoder: As the first stage of decoder D, each
received index ip, p = 1, . . . , P , is fed into quantizer decoder
QD which produces a discrete code word cip according to (6).

2) Decoder DNN: As the second stage of decoder D, the
quantizer decoders’ outputs are fed into a J-layer feedforward
neural network, dubbed DecNet. More precisely, a code word
cip is fed into the pth neuron of the input layer of DecNet,
p = 1, . . . , P . Similarly as for EncNet, we consider J ≥ 3
and refer to DecNet as a DNN.

Formally, let zDj ∈ Rγj denote the weighted input of layer
j of DecNet, defined as

zDj = WD
j aD

j−1 + bD
j , j = 2, . . . , J, (9)

where WD
j ∈ Rγj×γj−1 is the weight matrix at the jth layer,

bD
j ∈ Rγj is the bias vector at the jth layer, and aD

j ∈ Rγj is
the output of layer j, defined as

aD
j = σD

j (zDj ) = σD
j

(
WD

j aD
j−1 + bD

j

)
, j = 2, . . . , J, (10)

where σD
j is an (element-wise) activation function of the jth

layer. Since the output of DecNet represents the estimate of
source signal x, we have γJ = N . Accordingly, DecNet takes
P discrete code words cip , p = 1, . . . , P , as an input, and pro-
duces an output vector aD

J ∈ RN . Defining c = [ci1 · · · ciP ]T,
DecNet is given as a mapping

ΓD : RP → RN , ΓD(c) = aD
J . (11)

Combining the operations of quantizer decoder QD and
DecNet, decoder D can be expressed as a composite function

D = ΓD ◦ QD : I × · · · × I︸ ︷︷ ︸
P

→ RN . (12)

The full operation of decoder D is summarized in (13).

III. DEEP QUANTIZED COMPRESSED SENSING METHOD

A. Problem Formulation

Our aim is to optimize encoder E = QE ◦ ΓE and decoder
D = ΓD ◦ QD for a given total quantization bit-rate PRQ bits
to minimize a cost function C(·) that is defined as the mean-
square error (MSE) distortion between the source x and the
output of decoder D, i.e.,

C(ΓE,QE,QD,ΓD) = E
[∥∥D(E(y)

)
− x

∥∥2
2

]
, (14)

where the expectation is with respect to the randomness of the
source vector x and noise vector n.

B. Optimization of Encoder and Decoder

First, jointly optimizing quantizer Q = {QE,QD} and the
DNN mappings ΓE and ΓD to minimize (14) is intractable.
Thus, we remove quantizer Q in the (offline) optimiza-
tion/training phase and minimize an alternative cost function
defined as

C̃(ΓE,ΓD) = E
[∥∥ΓD

(
ΓE(y)

)
− x

∥∥2
2

]
. (15)

As a countermeasure to the removal of Q in the training phase,
we consider the following approach. We use 1) particular
sizes for layers L − 1 and L of EncNet, and 2) a particular
weight matrix WE

L, bias vector bE
L, and activation function

σE
L at the Lth layer of EncNet to accurately approximate

the effect of an SQ between the output layer of EncNet and
the input of DecNet. By this procedure, the training provides
regions and code words of a "soft quantizer" as a by-product.
Once an actual SQ having similar regions and code words
is implemented in the device in the (online) communication



{i1, . . . , iP } = QE
(
σE
L

(
WE

L

(
. . . σE

3

(
WE

3

(
σE
2 (WE

2y + bE
2)
)

+ bE
3

)
. . .
)

+ bE
L

))
(8)

aD
J = σD

J

(
WD

J

(
. . . σD

3

(
WD

3

(
σD
2 (WD

2 (QD(i1, . . . , iP )) + bD
2 )
)

+ bD
3

)
. . .
)

+ bD
J

)
(13)

phase, the distortion in (14) is expected to be similar to that
achieved in the training phase in terms of (15).

Let us focus on the layers L− 1 and L of EncNet. We
set the number of neurons as γL−1 = γL = P , the weight
matrix as WE

L = IP , and the bias vector as bE
L = 0P (see

Fig. 1). Thus, we have aE
L = σE

L(zEL) = σE
L(aE

L−1). The acti-
vation function σE

L is modeled as the soft-to-hard quantization
[17] so that pth output of EncNet is given as

aEL,p= σE
L(zEL,p), p = 1, . . . , P

=
∑I−1
i=1 ditanh

(
giz

E
L,p − si

)
,

(16)

where di, gi, and si, i = 1, . . . , I − 1, are tunable real-
valued parameters and tanh(·) is the hyperbolic tangent
tanh(x) = ex−e−x

ex+e−x . Thus, (16) approximates a non-uniform
SQ as a weighted sum of shifted hyperbolic tangents, where
1) the shift coefficients s = [s1 · · · sI−1]T adjust the decision
regions, 2) the level coefficients d = [d1 · · · dI−1]T adjust the
values of the discrete code words, and 3) the step coeffi-
cients g = [g1 · · · gI−1]T control the accuracy of continuous-
to-discrete approximation.

1) DNN Training: We propose a supervised learning
method based on stochastic gradient descent (SGD) and back-
propagation [20] to optimize the DNN mappings ΓE and ΓD to
minimize (15). An advantage of the soft-to-hard quantization
(16) is that, unlike a quantizer, it is differentiable with respect
to its parameters. Therefore, the gradients of the cost function
with respect to its parameters can be passed (precisely) in the
backpropagation so that the shifts s and levels d can be jointly
optimized with DNN mappings ΓE and ΓD in the end-to-end
SGD optimization. The hyperparameters g are tuned outside
the loop, similarly as in [17].

In summary, we apply SGD for the cost function (15)
to obtain the parameters of EncNet {WE

l ,b
E
l }l=2,...,L−1, d,

and s (with WE
L = IP and bE

L = 0P ) and the parameters of
DecNet {WD

j ,b
D
j }j=2,...,J . Then, the obtained d and s are

used to determine the quantizer regions and discrete code
words of the SQ implemented in the system. We call the
proposed method as QCS-DNN.

IV. SIMULATION RESULTS

Simulation results are presented to assess the rate-distortion
performance of the proposed QCS-DNN method.

A. Simulation Setup

For the signal model, we consider that 1) each non-zero ele-
ment of signal x follows the zero-mean Gaussian distribution
N (0, 1), 2) the sparsity patterns are drawn from a uniform
distribution, 3) each element of the measurement noise vector
is Gaussian as N (0, 0.0001), and 4) the measurement matrix
Φ is generated by taking the first M rows of an N ×N
discrete cosine transform matrix and normalizing the columns

as ‖ · ‖22 = 1. The QCS-DNN method is implemented by a
handcrafted Matlab script. It is trained using a mini-batch
SGD of batch size 100 and the Adam optimizer [21] to adap-
tively tune the learning parameters. The activation functions
{σE

l }l=2,...,L−1 and {σD
j }j=2,...,J−1 are set as the hyperbolic

tangent, and σD
J is set as the bent identity. For EncNet, we

use L = 4 layers with γ2 = 5P . For DecNet, we use J = 5
layers with γ2 = γ3 = γ4 = 4N .

For a baseline, we use the compress-and-estimate method
QCS-CE [14], that 1) applies uniform SQ of measurements y
in (1), and 2) reconstructs the signal using the basis pursuit de-
noising method [22]. Reconstruction accuracy is measured as
the normalized MSE as D = 10log10

(
E[‖x− x̂‖22]/E[‖x‖22]

)
(dB), and the rate is measured as R = Rtot/N (bits), where
Rtot is the total number of quantization bits for a method.

B. Rate-Distortion Performance of the Proposed Method

Fig. 2 illustrates the rate-distortion performance of the
proposed QCS-DNN method compared to the baseline method
for the setups of different signal dimensions. The QCS-DNN
method scales well for the increasing signal dimensions,
outperforming the QCS-CE method for all signal setups.

Fig. 3 demonstrates the effect of the number of neurons
at the output layer of EncNet (i.e., P ) on the rate-distortion
performance of the QCS-DNN method. It can be observed
that P = 10 results in poor performance for high rates since
it applies too intensive "compression" at the encoder. For this
signal setting, P = M = 15 results in the best performance.

It is worth noting that while QCS-CE requires running a
polynomial time CS reconstruction algorithm, the proposed
non-iterative QCS-DNN method applies only fast matrix
multiplications and activation functions, beneficial in practical
real-time applications with high-dimensional signals. More-
over, all results for the QCS-DNN method were obtained
without fine tuning the DNN structures and learning pa-
rameters specifically for each quantization rate. In summary,
once the DNNs are trained even without extensive parameter
adjustment, the QCS-DNN method achieves higher recon-
struction accuracy with significantly faster decoding and lower
computational complexity than the baseline method.

V. CONCLUSIONS

This paper addressed deep learning based efficient acqui-
sition of sparse sources through quantized noisy compressive
measurements. We proposed a non-iterative DNN based QCS
method that aims at minimizing the MSE signal reconstruction
distortion. The method benefits from extremely fast and low
complexity decoding in the online communication phase. Sim-
ulation results showed the superior rate-distortion performance
of the proposed method compared to a polynomial-complexity
QCS reconstruction method.
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Fig. 2. Rate-distortion performance of the proposed method versus the baseline method for (a) N = 20, M = 10, K = 2, and P = 10; (b) N = 40,
M = 20, K = 4, and P = 20; (c) N = 60, M = 30, K = 6, and P = 40.
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Fig. 3. Rate-distortion performance of the proposed method for N = 30,
M = 15, K = 3, and the different number of neurons at the output layer of
EncNet.

ACKNOWLEDGEMENTS

The work has been financially supported in part by Infotech
Oulu, the Academy of Finland (grant 323698), and Academy
of Finland 6Genesis Flagship (grant 318927). The work of
M. Leinonen has also been financially supported in part by
the Academy of Finland (grant 319485). M. Codreanu would
like to acknowledge the support of the European Union’s
Horizon 2020 research and innovation programme under
the Marie Skłodowska-Curie Grant Agreement No. 793402
(COMPRESS NETS).

REFERENCES

[1] M. Leinonen, M. Codreanu, and G. B. Giannakis, “Compressed
sensing with applications in wireless networks,” Found. Trends Signal
Process., vol. 13, no. 1-2, pp. 1–282, Nov. 2019. [Online]. Available:
http://dx.doi.org/10.1561/2000000107

[2] G. Quer, R. Masiero, G. Pillonetto, M. Rossi, and M. Zorzi, “Sensing,
compression, and recovery for WSNs: Sparse signal modeling and
monitoring framework,” IEEE Trans. Wireless Commun., vol. 11, no. 10,
pp. 3447–3461, Oct. 2012.

[3] D. Malioutov, M. Çetin, and A. S. Willsky, “A sparse signal reconstruc-
tion perspective for source localization with sensor arrays,” IEEE Trans.
Signal Process., vol. 53, no. 8, pp. 3010–3022, Aug. 2005.

[4] J. A. Bazerque and G. B. Giannakis, “Distributed spectrum sensing for
cognitive radio networks by exploiting sparsity,” IEEE Trans. Signal
Process., vol. 58, no. 3, pp. 1847–1862, Mar. 2010.

[5] E. J. Candés, J. Romberg, and T. Tao, “Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency informa-
tion,” IEEE Trans. Inform. Theory, vol. 52, no. 2, pp. 489–509, Feb.
2006.

[6] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory,
vol. 52, no. 4, pp. 1289–1306, Apr. 2006.

[7] M. Duarte, M. Wakin, D. Baron, and R. Baraniuk, “Universal distributed
sensing via random projections,” in Proc. IEEE Int. Symp. on Inform.
Proc. in Sensor Netw., New York, NY, USA, 2006, pp. 177–185.

[8] V. Goyal, A. Fletcher, and S. Rangan, “Compressive sampling and lossy
compression,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 48–56,
2008.

[9] J. Sun and V. Goyal, “Optimal quantization of random measurements in
compressed sensing,” in Proc. IEEE Int. Symp. Inform. Theory, Seoul,
Korea, Jun. 28 – Jul. 3 2009, pp. 6–10.

[10] A. Zymnis, S. Boyd, and E. J. Candés, “Compressed sensing with
quantized measurements,” IEEE Signal Process. Lett., vol. 17, no. 2,
pp. 149–152, 2010.

[11] A. Shirazinia, S. Chatterjee, and M. Skoglund, “Joint source-channel
vector quantization for compressed sensing,” IEEE Trans. Signal Pro-
cess., vol. 62, no. 14, pp. 3667–3681, Jul. 2014.

[12] M. Leinonen, M. Codreanu, and M. Juntti, “Distributed distortion-rate
optimized compressed sensing in wireless sensor networks,” IEEE Trans.
Commun., vol. 66, no. 4, pp. 1609–1623, Apr. 2018.

[13] M. Leinonen, M. Codreanu, M. Juntti, and G. Kramer, “Rate-distortion
performance of lossy compressed sensing of sparse sources,” IEEE
Trans. Commun., vol. 66, no. 10, pp. 4498–4512, Oct. 2018.

[14] M. Leinonen, M. Codreanu, and M. Juntti, “Practical compression
methods for quantized compressed sensing,” in Proc. IEEE Int. Conf.
on Comp. Commun., Paris, France, Apr. 29–May 2 2019, pp. 756–761.

[15] A. Mousavi, A. B. Patel, and R. G. Baraniuk, “A deep learning approach
to structured signal recovery,” in Proc. Allerton Conf. Commun., Contr.,
Comput., Illinois, USA, Sep. 29–Oct. 2 2015, pp. 1336–1343.

[16] B. Sun, H. Feng, K. Chen, and X. Zhu, “A deep learning framework
of quantized compressed sensing for wireless neural recording,” IEEE
Acc., vol. 4, pp. 5169–5178, Sep. 2016.

[17] N. Shlezinger and Y. C. Eldar, “Deep task-based quantization,” Aug.
2019, available at https://arxiv.org/abs/1908.06845.

[18] N. Shlezinger, Y. C. Eldar, and M. R. D. Rodrigues, “Hardware-limited
task-based quantization,” IEEE Trans. Signal Process., vol. 67, no. 20,
pp. 5223–5238, Oct. 2019.

[19] P. T. Boufounos and R. G. Baraniuk, “1-bit compressive sensing,” in
Proc. Conf. Inform. Sciences Syst., Princeton, NJ, USA, Mar. 19–21
2008, pp. 16–21.

[20] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, no. 6088, pp.
533–536, Oct. 1986.

[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, available at https://arxiv.org/abs/1412.6980.

[22] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis
pursuit,” SIAM J. Scient. Comput., vol. 20, no. 1, pp. 33–61, 1998.


