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Abstract—Millimeter Wave (mmWave) systems are considered
as one of the key technologies in future wireless systems due
to the abundant spectrum resources in mmWave band. With
the aim of achieving the capacity requirements in vehicular
networks, large antenna arrays can be deployed at both the
road side units (RSUs) side and the vehicles side. However,
dynamic blockage caused by mobile obstacles in mmWave bands
may hinder the system reliability. In this work, we study the
temporal effects of dynamic blockage in vehicular networks and
propose a deep reinforcement learning framework to overcome
dynamic blockage. By dynamically adjusting blockage detection
parameters and making intelligent handover decisions according
to the observed states, system reliability can be significantly
improved. Simulation results based on ray-tracing channel data
show that the proposed scheme reduces the violation probability
by 28.9% over conventional schemes.

I. INTRODUCTION

Recently, vehicular networks are gaining worldwide atten-
tion due to their significant potential in autonomous driving
and cooperative vehicles infrastructure systems [1]. In ve-
hicular networks, intelligent vehicles communicate with road
side units (RSUs) and other vehicles for message delivery,
task offloading, sensor sharing and so forth. To support the
diverse requirements of these applications, vehicular networks
are supposed to provide ultra-reliable and low latency commu-
nications (URLLC) for safety issues, as well as large capacity
to deliver massive sensor data. To this end, the evolution of
wireless communication technologies in vehicular networks is
in urgent need.

Extensive works have been devoted to realizing URLLC
in vehicular networks [2]-[5]. While sub-6 GHz bands are
widely considered in these works, millimeter wave (mmWave)
bands have also been included as potential bands for vehic-
ular networks in 3GPP standards [6]. In mmWave systems,
beamforming is applied on the transceivers to compensate
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for the high path loss, which requires the accurate align-
ment of the beam directions between the transceivers. High
mobility in vehicular networks leads to more frequent beam
alignment and larger training overhead. Meanwhile, mmWave
signals can be easily blocked by obstacles, which hurts the
system reliability. In vehicular networks, dynamic blockage
caused by pedestrians and vehicles occurs more frequently
and is harder to be predicted compared with static blockers
like buildings. The work in [7] analyzes the blockage and
coverage probability in vehicular networks. The work in [8]
studies the temporal effects of mobile blockers in mmWave
cellular systems, and formulates the transmission process as
an on-off process. Authors in [9] exploit stochastic geometry
theory to analyze the impact of mobile blockers in mmWave
cellular systems. However, existing work mainly focuses on
the scenario of static transceivers or the impact of human
blockage. Further study on the dynamic blockage in vehicular
networks is still an open problem.

To deal with dynamic blockage, the work in [10] consid-
ers using dual-band systems, wherein the sub-6 GHz band
can provide services when the mmWave link is blocked.
However, supporting two separate bands increases the system
complexity and hardware cost. Authors in [11] propose a
deep learning based method to predict the blockage and
proactively handover the vehicles to nearby RSUs. The method
requires data collection and model update in an online manner.
The work in [12] proposes to involve multi-connectivity to
improve the performance of mmWave cellular networks at the
cost of deploying extra resources. Essentially, these works
find backup transmission links, which can be non-line-of-
sight (NLoS) paths, lower frequency bands and nearby relay
nodes. However, choosing appropriate backup links is still an
unsolved problem considering the different switching cost and
the temporal effects of dynamic blockage.

In this work, we apply deep reinforcement learning (DRL)
to jointly optimize beam training and data transmission to
improve the reliability of a vehicle-to-infrastructure (V2I)
communication system. To cope with blockage, we leverage
NLoS paths or nearby RSUs to ensure system reliability, in
which the switching decisions are followed by the proposed
DRL algorithm. The main contributions are listed as follows:

o We analyze the temporal effects of dynamic blockage in

V2I networks and provide analytical expressions of the
duration of blockage and non-blockage intervals. This
finding reveals the relationship between channel states
and physical states and inspires the usage of context
information for decision making.

« We propose a deep reinforcement learning framework to

deal with dynamic blockage in mmWave V2X networks.



The proposed online framework can detect dynamic
blockage during the transmission phase and make appro-
priate switching decisions to improve system reliability.

o We evaluate the performance of the proposed framework
on ray-tracing based channel data, in which simulation
results show a 28.9% reduction of violation probability
over baseline algorithms.

II. SYSTEM MODEL

Considering a V2I communication system, a target vehicle
is served by one RSU out of the total Ny, RSUs. The vehicle
needs to download contents through the V2I link continuously,
and the goal is to guarantee the reliability of the downlink
transmission process. The RSUs are equipped with a uniform
linear array (ULA) and have M; antennas, while the vehicle
is equipped with M, antennas forming a ULA.

A. Channel Model

Considering a geometry stochastic channel model [13], the
downlink channel between the RSU and the vehicle can be
expressed as:

H= /MY Vadw).

Here «; denotes the complex impulse response and f[; is
a parameter representing whether the propagation path is
blocked by other vehicles. We assume that if the path is
blocked, 5; = 0, otherwise 8; = 1. 6; and ; denote the
angle of arrival (AoA) and angle of departure (AoD) of the
[-th path, respectively. a is the steering vector and for a ULA,
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where d is the antenna spacing and u is the wavelength.
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B. Beamforming Model

For simplicity, we adopt analog beamforming for the
transceivers, i.e., the beamforming weights are given as

[w]; = e =01, ,M—1 A3)

where ¢; denotes the phase of the i-th antenna. The beamform-
ing codewords are from a discrete Fourier transform (DFT)
matrix, i.e. ¢; = 6, where 0, € {(-1 + 221

)TN =
1,2,---,M}. The beamforming gain can then be expressed
as:

= |wg Huwr|?, )

where wy and w; denote the beamforming weights of the
receiver and the transmitter, respectively.

We adopt a two-stage beam training (BT) protocol, in-
cluding a sector level sweeping (SLS) phase and a beam
refinement (BR) phase'. In the sector-level training, vehicles
can receive the pilot signals from all RSUs and measure
the corresponding SNRs. These measurements are reported

n this work, we assume that the resource allocated for each user is divided
by bandwidth instead of time slots, therefore the problem is simplified to
single user case. The multiple user case is left for future work.

to the active RSU for reducing the search space in the next
stage as well as making handover decisions. In the dedicated
BR phase, narrower beams are trained between the vehicle
and the active RSU. The length of each BR phase can be
adjusted to optimize the system performance. As for the beam
training vectors, a naive method is adopted, by which the
neighborhoods of the current beam direction are first trained,
and the remaining beam directions are uniformly sampled
based on the training overhead. After the BT phase, the active
RSU chooses the beam directions for data transmission (DT)
and determines two lists recording backup beam pairs and
backup RSUs. Specifically, the first list records potential beam
pairs corresponding to the NLoS paths, while the second list
records RSUs with good channel conditions. The service rate
can be expressed as:
PGy

rt) = WN

Hereinafter, 7pr denotes the set of all time slots in the
DT phase. W, P, G; and Ny denote the bandwidth, the
transmission power, beamforming gain at time ¢ and noise
power, respectively. If a dynamic blockage happens in the DT
phase, the transceivers will try backup beam pairs first and
then try the backup RSUs.

1(t € Tor)W log(1 + ). (5)

C. Queueing Model

Consider a stochastic queuing network that operates in a
slotted time ¢ € {0,1,2,...}. We assume that there are N,
queues in the network, and the queuing vector at an active
RSU follows the following evolution:

Qur(t + 1) = max{Qu)(t) — ru)(t),0} + At), (6)

where U(t) indicates the active RSU in the slot ¢ and A(¢)
is the data arrival of the target vehicle during slot ¢, which is
i.i.d. over time with a mean value X [14].

During the handover process, the buffered data in the source
RSU will be transferred to the target RSU. In other words, if
the vehicle is switched to RSU U’ from RSU U starting from
time slot ¢ to time slot ¢ 4 tyo, the queue length of the target
RSU can be expressed as:

Qu(t+tuo) = Qu(t) + Z;;l Nt+71). (D)

III. DYNAMIC BLOCKAGE IN VEHICULAR NETWORKS

In this section, we study the temporal effects of dynamic
blockage in mmWave-enabled vehicular networks to gain some
insights on blockage statistics.

As shown in Fig. 1, a RSU is located at [0, y,s,] with a
height of H,,. Assume that there are totally V|, lanes and the
width of each lane is WW),. Target vehicle moves on the center
of the m-th lane, with a size of [L., W;, H] and a uniform
speed of v;. Assuming that a vehicle on the n-th lane with a
size of [Ly, Wy, Hy] and a uniform speed of vy is blocking
the line-of-sight (LoS) path of the target vehicle. Using the
similar methods in [7], blockage conditions can be obtained.
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Fig. 1. (a) Top view of the scenario. (b) Side view of the scenario.

Lemma 1. A vehicle on the n-th lane that blocks the LoS path
of target vehicle should satisfy the following two constraints:

n <m,
Hyy—Hy o (20=1)Wis+ Wi~ 2y, ®)
Hi—He = Cm—1)Wia—2ymu  *

Proof. The first constraint results from the fact that the LoS
can only be blocked by the vehicles on the closer lanes to the
RSU. As for the latter, according to geometry relationship in
Fig. 1(b),

Hrsu - Hb _ Yint — Yrsu
H, — H: (m_ 1/2)I/Vla _yrsu.

Herein y;,; denotes the coordinate of the intersections in the
y axis, and yine < (n—1/2)W, + 1/2W,,. Substitute y;n into

(9) and obtain the second constraint. O]

€))

Lemma 2. The duration for a single blocker can be approx-
imated as:
Ly

th= ——m——
7 low — k]|’

(10)

_ Hs—Hy, (2n—1)W.—W, ; ;
where k = maX{Hrsu—Hﬁ D)W (- The interval be

tween two successive blockers on the same lane can be
approximated as:

Lgis — Ly
tb = 7— ) (11)
[lvp — K
where Lgis is the distance between two blockers.
Proof. The proof is given in Appendix A. O

According to (10) and (11), the blockage duration is related
to the sizes, speeds and the lanes of the vehicles, therefore
this context information is useful for blockage detection and
making corresponding decisions. Combining the blockage
states of all lanes, the blockage state of the target vehicle
can be obtained. We can then formulate the transmission
process of the target vehicle as a renewal process with on
phase and off phase. During the on phase when the LoS path
exists, the channel condition is good and a high SNR can be
achieved. During the off phase, the LoS path is blocked, and
the corresponding SNR is relatively low.

IV. DEEP REINFORCEMENT LEARNING FRAMEWORK TO
COMBAT DYNAMIC BLOCKAGE

In this section, a deep reinforcement learning framework is
proposed to tackle dynamic blockage in vehicular networks.

A. Problem Formulation

According to Little’s law, the average latency in ¢-th frame
is proportional to the average queue length, which is expressed
as M However, this average metric cannot guarantee
low latency and high reliability, which are stringently required
in 5G networks and beyond [15]. Moreover, latency and
reliability are two coupled factors, and thus, in this work we
focus on the reliability of vehicular networks by taking queue
statistics into account, as a proxy for latency constraints. In
particular, we impose the probabilistic queuing constraint to
measure the reliability by maximizing the probability that the
queue length is not greater than a pre-defined threshold. The
studied problem can be formulated as follows:

max LS 1(Qui (1) < Q")
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where Q" denotes the maximum queue length.

B. Reinforcement Learning Framework

The active RSU makes decisions on allocating beam training
resources and switching to backup links, which affects the
achievable rate and queue length. Since blockage can happen
at any time slot in a frame, the optimal decision should be
made at each time slot. However, per-slot decision is hard to
implement, therefore in this work the decisions are made at
the start of each frame.

During the k-th frame, the state can be expressed as
S = (Qk7rSNR,k7 (lkﬂjk)) eSS =0Qx RLo x C, including
the queue length @i, SNR feedback from previous time slots
TSNR,k» location I, and speed vy. @, R and C denote the states
sets of queue length, SNR feedback and context information,
respectively, while L, is the length of SNR feedback records.
Provided the system states, the RSU decides the beam training
overhead and blockage detection parameters, which are de-
scribed as a = (’I’th,k, (TdJ€7 SNRp, & k) € A= Npt X Phad.
Here, ny: denotes the overhead in the BR phase, and the
corresponding action set Ny, contains the integers smaller than
the beam codebook size. Py is the set of blockage detection
parameters, including the detection time length Tj, the SNR
threshold SNRy, and frequency threshold 7. A blockage is
assumed to be detected when the following formula holds:

1 Ty

Ty £—t=1 T(SNR(t) < SNRy) > 7.

13)
For instance, given Ty = 1 and n = 1, a blockage is assumed
to happen if current SNR is smaller than SNRy, and the
transceivers will try backup beam pairs. If however (13) is
still satisfied, representing the possible blockage of the NLoS
path, the vehicle will be switched to the backup RSU. By
adjusting these parameters according to the system states, the
switching behaviours can be controlled, which may improve
the system performance.

The cumulative reward is the sum of the per time slot reward
in the whole frame and can be expressed as

Ry = Z:::ﬂ(ﬂ(Q(t) < Qn) —1Q®1), (14



where 75 denotes the start of the k-th frame and ~y is a trade-
off factor. The first part indicates the reliability of the current
slot, while the second part reflects the latency performance
according to Little’s law.

C. Deep Reinforcement Learning Implementation

Faced with the large state space and continuous actions,
we adopt a model-free RL algorithm, namely Deep Deter-
ministic Policy Gradient (DDPG) [16], as shown in Alg.
1. Two networks are included in the method, namely critic
network Q(s,a|f#?) and actor network s(s|0"), where s and
a denote the states and actions respectively. The actor network
can generate deterministic actions based on the input states,
while the critic network is a neural network (NN) function
approximator.

In this work, each episode is defined as the sojourn of a tar-
get vehicle in the area of interest. At the start of the k-th frame,
the actor network chooses the action ar = p(sk|60*) + Ny
based on the current state s; and exploration noise N},. After
executing the action and collecting the reward, transitions
including state s, action ay, reward 7y, and the corresponding
next state sg4; will be stored in an experience buffer. A mini-
batch of the buffered record transitions will then be used for
training. The critic network is updated to minimize the loss:

1
Le=+ Zi(ri +94Q(si41, 1(si41)) — Qs ai))?, (15)

while the actor network is updated based on the sampled policy
gradient:

1
Vord = 5 D VaQ(5, ) smsiamu(s)) Vor1(8)] o=, (16)

Here N is the batch size and ~4 is the discounting factor.

Algorithm 1: DDPG for Dynamic Blockage

Initialize actor network g and critic network @) with
parameters 0* and 69 randomly;

for episodes = 1, 2, ---, N do

Initialize the random exploration noise \;

Receive the initial observation sgq;

for k=0,1,---, K—1do

Select action aj based on the output of actor
network and the exploration noise;

Set beam training and data transmission
parameters according to ay;

Observe the reward 7 and new state si; after
data transmission in the k-th frame;

Store transition (sg, ag, Tk, Sk+1) in the
experience buffer;

Sample a minibatch from the experience buffer;

Update critic network based on (15);

Update actor network based on (16);

V. SIMULATION RESULTS

We evaluate the performance of the proposed algorithm on
ray-tracing based channel data. In the simulation settings, a

TABLE 1
SIMULATION PARAMETERS
Parameter Value Parameter Value
[Nia, Wia] 6 X 35m w 500 MHz
Hysy 5m No -173 dBm/Hz
[Lt, Wk, Hy] 5x 2 x 1.6 m P 23 dBm
[Lb,Wb,Hb] 13 X 2.6 X 3 m Mt 32
Ut [50,60] km/h M; 1
Vp [50,60] km/h A 100 Mbps
® —&— DRL, with context information
\ -@- DRL, without context information
--@- Baseline
2
§ 107t
o
a
c
2
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o
<
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Latency constraint (ms)

Fi

g. 2. Violation probability versus latency constraint.

vehicle is going straight on an urban street with surrounding
buildings under the service region of 4 RSUs. 100 records
are generated for training, leaving another 50 records for
test. Simulation parameters are listed in Table I. The channel
parameters of each ray are generated from ray-tracing software
Wireless inSite [17], while the blockage state of each ray
is simulated based on (10) and (11). The carrier frequency
is set to be 28 GHz. Traffic density is characterized by the
distance between two blockers on the same lane, which follows
an exponential distribution with a minimal distance of 2 m.
Handover time tyo is uniformly distributed between 15 ms and
25 ms, and the queue length threshold Qy, is set to be X,
where Tj, denotes the latency constraint. The scaling factor ~y
in the reward function (14) is 1/Qu. The context information
includes the estimated location and speed of the target vehicle,
with an estimation error of 1 m and 1 m/s, respectively.

We implement the proposed reinforcement learning frame-
work on Tensorflow [18]. Both the actor and critic network
have two dense layers with 128 and 64 hidden nodes each
layer. The learning rates for the actor network and critic
network are 10~* and 1073, respectively. The batch size is
256 and the discounting factor is 0.95.

Fig. 2 shows the trade-off between reliability and latency.
We compare our scheme with a baseline algorithm wherein
beam training overhead and blockage detection parameters are
fixed. It can be observed that the proposed DRL-based method
outperforms the baseline scheme, owing to dynamic beam
training overhead and flexible handover decisions. Besides,
the performance can be further improved leveraging context
information.

Fig. 3 shows the violation probability under different set-
tings of traffic density, represented by the average distance



e —&— DRL, latency constraint = 3 ms
—<— DRL, latency constraint = 10 ms

N -@- Baseline, latency constraint = 3 ms

N -4~ Baseline, latency constraint = 10 ms

o
[
o
.
’

o
o
o]

Violation Probability
o o
R S

o
o
S

50 100 150 200 250
Average distance between blockers (m)

Fig. 3. Violation probability versus average distance between two blockers.

between two blockers. It can be observed that the violation
probability increases with the traffic density, while the perfor-
mance gain of the proposed scheme decreases with the latency
constraint. For example, the proposed scheme can reduce
violation probability by 28.9% when the average distance
between blockers is 30 m and latency constraint is 3 ms.

VI. CONCLUSION

This work studied the problem of dynamic blockage in
mmWave-enabled V2I networks. By leveraging the DRL
framework, a novel handover mechanism was proposed, which
taking channel states, physical states, and context information
into account. Based on ray tracing channel data, numerical
results show significant improvements in system reliability.

There are many future directions to be explored. The
extension to the multi-user case is challenging, since multiple
access schemes should be included. Another interesting topic
is using intelligent vehicles as relay nodes, calling for the joint
optimization of V2I and V2V transmission.

APPENDIX A

As shown in Fig. 1(a), the RSU is located at [0, yrsy)-
Assumes that all vehicles move on a straight line at a uniform
speed. At time t, the coordinate of target vehicle can be
expressed as [xg + vot, (m — 1/2)W,,], and the coordinate
of the i-th blocker on the n-th lane is [z; +v;t, (n —1/2)W,,].
Assuming that the blockage interval of the i-th blocker is from
t; to t;, then the following equations hold:

x; +UitiiLb/2 _

k, 17
xo + ’Uoti ( )
i+oiti FLe/2
w =k, (18)
xo + vot;
Yint —Yrsu

where & According to the geometric

relationship in Fig. 1(b), k£ can also be expressed as H,

unless yine < (m — 1/2)W), — 1/2W,. Therefore, k =
Hey—H, (2n—1)W|a—Wb}

P\ Heu—He' — @m—D)W,

k has the similar expression and can be approximated as

k, i.e. k ~ k. Combining (17) and (18), we have t; — t; =

max

m, which is the duration of a single blocker. Replacing

i with 4 + 1 in (17), we obtain “+1—$;+(7;:'+1:i)+1—vm = k.
o\ti—Ulq

Assuming that v;,; = v;, we obtain t;,1 — t; = %

Subtracting the blockage time, the duration between two

successive blockers is obtained.
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