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First, it is important to identify all social interactions during
the incubation period of 14 days and enforce social isolation
for such potential patients. Therefore, there is a requirement
to identify these social interactions. However, in this case, the
solely GPS based solutions are identified to be inaccurate as
they do not work indoors. Second, there is no proper social
interaction based infection prediction method available due
to the inability to track and obtain the past interactions of
patients accurately. Third, healthcare workers are at a high risk
of getting infected with COVID-19 virus, since they cannot
identify the COVID-19 carrier without testing them. Finally,
there is no proper method to identify the true group of people
that need to be tested for infection. The random or testing with
less information will be a waste of time, energy and money.
Besides, some of the patients will not be identified.

Several BLE based contact tracing systems were developed
recent past [3]–[6]. However, none of these systems are
capable to provide social interaction based infection prediction
to solve the above issues. To address these challenges, we
designed a BLE and GPS based social interaction tracking
system using a mobile app that can collect information about
the nearby phones. Based on the received signal strength, it
records the proximity of other phones and interaction duration.
The collected information will get uploaded into the cloud
with the GPS location (optional) and the timestamp. We
also formulated a social interaction based infection prediction
algorithm to calculate the COVID-19 infection probability
by analysing the uploaded data to the cloud. An automatic
alerting mechanism is designed to indicate critical events such
as the identification of high probable COVID-19 patients. The
prototype of the proposed solution is implemented and the
efficiency of the proposed prediction mechanism is compared
with a real COVID-19 patient data set.

The remainder of the paper is organized as follows: The
related work is presented in section II. In section III, the
system architecture is described and in section IV system
implementation details are discussed. Section V gives the
experiments and results. Finally, the paper concludes with the
conclusion and future works in section VI.

Abstract—Coronavirus disease 2019 (COVID-19) virus is an 
infectious disease which has spread globally since 2019, resulting 
in an ongoing pandemic. Since it is a new virus, it takes some 
time to develop a vaccine against it. Until then, the best way to 
prevent the fast spread of the virus is to enable the proper social 
distancing and isolation or containment to identify potential 
patients. Since the virus has up to 14 days of the incubation 
period, it is important to identify all the social interactions during 
this period and enforce social isolation for such potential patients. 
However, proper social interaction tracking methods and patient 
prediction methods based on such data are missing for the 
moment. This paper focuses on tracking the social interaction 
of users and predict the infection possibility based on social 
interactions. We first d eveloped a  B LE ( Bluetooth L ow Energy) 
and GPS based social interaction tracking system. Then, we 
developed an algorithm to predict the possibility of being infected 
with COVID-19 based on the collected data. Finally, a prototype 
of the system is implemented with a mobile app and a web 
monitoring tool. In addition, we performed a simulation of the 
system with a graph-based model to analyze the behaviour of the 
proposed algorithm and it verifies that self-isolation is important 
in slowing down the disease progression.

Index Terms—Internet of Things, Bluetooth Low Energy, GPS, 
COVID-19, SARS-CoV-2, Contact Tracing Algorithm, Infection 
Prediction

I. INTRODUCTION

A new epidemic has emerged since late December 2019
from Wuhan, China which is caused by Severe Acute Res-
piratory Syndrome Coronavirus 2 (SARS-CoV-2), and the
disease caused by this virus was named as COVID-19 by
the World Health Organization [1]. With the outbreak of this
disease to a pandemic, the health systems encounter a major
problem of overwhelming the patients and it could cause a
great risk to the health of these patients since the healthcare
systems may exceed their capacity to treat them properly.
Early identification of potential COVID-19 patients via contact
tracing leads to fast isolation and ultimately contributes to slow
down the spread of the disease and flatten the patients’ curve.

However, the manual contact tracing of a positive COVID-
19 case needs the effort of many personnel including health
workers and typically takes up to three days per case [2].
Moreover, the following issues are identified i n e xisting sys-
tems.
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Fig. 1: Proposed System Architecture

II. RELATED WORK

With the COVID-19 pandemic, several leading tech com-
panies and government organizations have started working
on the development of contact tracing systems to detect
possible contacts with COVID-19 patients while protecting
their privacy. They have followed several guidelines to achieve
their goals associated with these developments.

Among them, Google and Apple are collaboratively devel-
oping a system with a contact tracing app that is available
to both Google Android and Apple iOS platforms. In their
work, each mobile will ping each other continuously via
Bluetooth and if two mobiles have remained within the range
of each other, both will record the ID of the contacted mobile
accordingly [3]. With this app specifications, users have to
manually transmit the contact logs to the servers. In this
case, if he or she becomes positive for the COVID-19, it
may become problematic if someone is not informing the
authorities about the disease.

MIT (Massachusetts Institute of Technology) has presented
a similar work with the collaboration of many other re-
searchers. Their system relies on Bluetooth signals and is
consisting of a kind of random strings of numbers, equate
to “chirps” and these could be heard and remembered by the
nearby smartphones. Here, each smartphone is supported by
an application and each smartphone remembers what has been
broadcasted and what was heard from the outside. Users will
manually transmit the list of chirps into the server after a user
becomes positive for COVID-19 and alerts will be sent to the
possible contacts of the user accordingly [4].

Furthermore, the Singapore SGUnited, GovTech, and the
Ministry of Health have provided another solution namely
“TraceTogether” for contact tracing of COVID-19 patients
using Bluetooth by following similar principles as mentioned
in above two developments [3], [4]. Similarly, users have to
install a specific application in their smartphones to connect
with the system. Besides that, once an individual is confirmed
with the virus, that person can choose to allow health authori-

ties to access the data in the app to help identify close contacts
[5]. Moreover, a similar type of application is introduced by
the Australian government namely “COVIDSafe”. In this case,
also, a Bluetooth based contact tracing system is introduced
with the feasibility to manually upload the contact data if
a user becomes positive for COVID-19. However, with this
development, they have not discussed the periodic changing
of IDs of users but propose to store user data in an encrypted
format to ensure privacy [6].

However, most of the above-mentioned developments have
not discussed on real-time contact tracing and server-side
algorithm implementations for the contact tracing function-
alities. Moreover, they have not considered on continuous
participation of the servers with the system and GPS tracking
scenarios. We have identified that, even though the GPS based
tracking systems can violate privacy policies, it is possible to
obtain consent from the system users to share their location.
Furthermore, GPS data will be highly useful for situations
where high sensitive contact tracing and efficient isolation are
required. Besides that, the available systems do not present
any probability calculation for the exposed personals to be
infected. Moreover, the available solutions are generating some
common alerts considering the general parameters like the
contact period and distance. However, we identified that the
alerts should be specifically tailored for each user considering
their current medical conditions and some chronic conditions
which they are suffering for a while. In contrast, none of
the above works has considered a tier-based detection. But
that implementation is also important as the virus spreads in
chains from one victim to another. Therefore, we are targeting
the development of a more advanced system to mitigate the
issues and drawbacks associated with the available solutions
of COVID-19 contact tracing.

The TABLE I provides a detailed comparison between
existing contact tracing systems for COVID-19 and our pro-
posal. With this table, it is obvious that the proposing system
provides a higher degree of uniqueness to the contact tracing.



TABLE I: Covid-19 Contact Tracing System Comparison

Characteristic Ref
[3]

Ref
[4]

Ref
[5]

Ref
[6]

Our
Prop:

Real-time data transmission &
contact tracing No No No No Yes

Hybrid location tracking in
Bluetooth and GPS medium* No No No No Yes

Anonymous periodically
changing user identity Yes Yes Yes No Yes

Bluetooth based contact-tracing Yes Yes Yes Yes Yes
Switchable manual and automatic
data transmissions to servers** No No No No Yes

Algorithm based infection
probability prediction No Yes No No Yes

Specifically tailored alerts for user No No No No Yes
Tier-based contact tracing No No No No Yes
*The GPS tracking is only functioning if the feature is enabled
by the user.
**User is given the full privilege on the data transmissions
and he/she can select when the data to be transmitted.

RSSI (Received Signal Strength Indicator) of BLE can be
used to approximate the distance between two devices. RSSI
depends on distance and broadcasting power [7]. To estimate
the distance, a simplified form of the relation between distance
and RSSI is widely used [8]. In [9], authors have provided a
comprehensive guide to estimate distances using RSSI value in
a BLE system. In this case, they propose a strategy to estimate
the distances by changing the model of detection according to
the RSSI value. We utilized the same strategy in our work as
well.

III. PROPOSED ARCHITECTURE

An overview of the proposed system architecture is shown
in Fig. 1. As indicated from the architecture diagram, there
are 3 major entities i.e., (i) users with smartphones, (ii) cloud
servers and (iii) authorities and medical officers. To connect
with the system, each user has to install a specific app in
their smartphones and register with the system. Under the
operation of the system, each smartphone broadcasts BLE
advertisements as indications of its presence. In this case, the
broadcasting advertisement will only consist of a random ID,
which is assigned to the mobile phone via the cloud server
during the registration. Especially this ID would change after
a certain period to avoid unnecessary tracking of mobiles. The
registered mobile phones continuously listen and make records
of the advertisements receiving from the nearby mobiles. Here,
the mobile app records two specific parameters, namely (i)
RSSI value of the received BLE advertisements and (ii) contact
period with each mobile. In addition to that, with the user
permission, the mobile application keeps track of the GPS
locations of the mobile relay periodically, according to user
preferences. The mobile app is also capable of performing
the initial risk level predictions associated with each contact,
based on the above-mentioned personal parameters.

After gathering these data and calculating risk levels, the
mobile will transmit the data into the cloud server via an
active connection to perform second stage refined predictions
and associated contact tracing. In this case, the data transmis-

sion work is performed as a real-time or periodic procedure
according to the user preferences and the availability of the
internet connection. Then, if one of the users get infected from
COVID-19, the responsible authorities get access to server
data and analyze to get more detailed outputs. In this case,
specific algorithms aid with the server operation to extract
out more accurate results. As a result of that, the medical
officers can have a complete history of contacts up to 21 days
which is the period the user data is kept, related to the specific
patient. In addition to that, the servers can calculate the risk
levels associated with each contact of the patient and predict
their probability of infection. At the end of the procedure, the
system notifies all the contacts according to their associate risk
level and guide them to take further actions to avoid further
spread of disease. Especially, the medical officers like doctors
and public health inspectors who are working in regional areas
related to the patient and his/her contacts can get notified
to take immediate actions to neutralize the newly identified
cluster. In addition to that, the authorities can get a map view
of the traces of the patient if the GPS tracking feature is
enabled by the user.

A. Calculation of contact distance using RSSI

Since the distance between two people is a very important
factor, we have to approximate the proximity between two
mobile users. Here, RSSI is the only measurement which
can be obtained. Therefore we calculate the distance using
the RSSI values of nearby advertising mobiles. We used a
simplified form of the relation between distance and receive
power as in [8], [10].

Pr(dBm) = Pr1(dBm)−K · log10(D(m)) (1)

where Pr1 is the received power in dBm at 1 metre, K is
the loss parameter and D is the distance between the receiver
and the transmitter. In this case, we obtained values for K
experimentally for an indoor environment. Here, the RSSI
values and distances were recorded with a 1-metre interval
for a range of 15 metres. RSSI readings were taken 30 times
per each position in the range. The values of K are obtained to
be in between 18 and 22 by applying the experimental average
values to equation 1.

B. Infection Probability Prediction Algorithm

We also developed an algorithm to calculate the infection
probability for a particular user in the system. For the algo-
rithm, the probability of getting the infection from one person
to another is assumed to be depending on two main factors:
the distance and the contact period between them.

For the variation of probability of getting the infection with
the distance, we assumed that,

Pd(x) = e−nx (2)

where n is a positive constant and x is the distance. This
distribution has the property of decreasing the probability of
getting the infection with increasing distance between two



users. For instance, the probability of getting the infection at
a distance of 4 metres [11] is assumed to be 5% and the value
of n is calculated accordingly.

Fig. 2: Example Contact Tracing Process for a Single Se-
quence up to 3 Tiers

The variation of probability with the period of contact is
taken as,

Pt(t) = 1− e−mt (3)

where m is a positive constant and t is the period of contact.
This probability distribution has the property of increasing the
chances of getting the infection with more time. For instance,
the 95% confidence of getting infected is taken as 10800
seconds (3 hours) [12] of the contact period in the simulations.

A simple illustration for a contact tracing in a single
sequence provides in Fig. 2. As illustrated in Fig. 2, for a
connection between two people a and b where a is in tier r
and b is in the tier r+1, the contact distance dab and time tab
of the connection between them are considered as independent
and thus their probabilities are multiplied to get the probability
of having b being infected by a. This probability is denoted by
Pi(b, a). Also, the total probability of getting the infection Pi

to the person a affects the probability of getting the infection
to b. These can be given as,

Pi(b, a) = Pi(a) · Pd(dab) · Pt(tab) (4)

Apart from the distance and time, several other factors,
such as user’s medical conditions, can also be considered to
calculate the score, if a user provides these personal details. If
the contribution of a factor h to the probability is denoted as
Pch , by considering k number of such factors, the probability
Pi(b, a) of person b getting infected by the person a, can be
written as,

Pi(b, a) = min(Pi(a) · Pd(dab) · Pt(tab) +
k∑

h=1

Pch , 1) (5)

In this case, to calculate the associated Risk Factors (RF),
the case mortality rates presented in the [13] are used to derive
the values for the Pch . Under this, three basic characteristics
were considered as, age, comorbidity and gender. People
who are suffering from some long term chronic diseases and
people aged more than 60 years are highly vulnerable to
epidemics due to their weak immunity. This fact also has
proven by their higher death rates associated with COVID-
19. Therefore in this algorithm, extra weight is added to
the previously calculated probabilities (based on distance and
contacted period) to generate more specific results to each
user. Moreover, the base case scenarios for the risk factor
calculation are available in TABLE II with an assignment of
0.01. Other than that, the RFs related to the other situations
are calculated as relative variations of the base case scenario
as indicated in TABLE II.

TABLE II: Base-Case Scenarios and Relative Risk Factors
(RF) [13]

Age Group RF Comorbidity Condition RF
0-9 0.010 Healthy (No-Comorbidity) 0.0100
10-19 0.010 Cancer (Any) 0.0622
20-29 0.010 Hypertension 0.0667
30-39 0.010 Chronic Respiratory Disease 0.0700
40-49 0.020 Diabetes 0.0811
50-59 0.065 Cardiovascular Disease 0.1167
60-69 0.180 Gender Consideration RF
70-79 0.400 Female 0.0100
Age =>80 0.740 Male 0.0165

Since the person b can have q number of multiple connec-
tions from the previous tier, the total probability of getting the
infection to b, Pi(b), is taken as the minimum of either the
sum of all probabilities from each connection or 1.

Pi(b) = min(

q∑
j=1

Pi(b, j), 1) (6)

IV. IMPLEMENTATION

A BLE and location-based prototype mobile application is
developed in our work as indicated in Fig. 3 to track user
interactions and it is the pathway for users to connect with
the system.

The mobile app was developed for Android mobiles using
Android Studio 3.4. The app performs the user registrations
and during the registration phase, the user’s contact informa-
tion such as mobile number, address, and email are recorded
accordingly. Even though it is not mandatory, the users can
optionally provide some of their health-related data (e.g.
chronic conditions which they are suffering for a while) to
receive more accurate and specifically tailored alerts regarding
COVID-19. After successful registration, the user can log in
and enable the automatic functioning mode. Then the app can
run without any user intervention. Moreover, the users also
have the privilege to enable or disable privacy features such
as GPS tracking. The app enables the BLE advertising mode
and BLE scanning mode operations and they will perform



Fig. 3: Developed Mobile and Web Application Allows Users
to Connect with the System and Administrators to Track User
Locations

accordingly. The RSSI values of the nearby BLE advertising
mobiles (will be converted into distance values), the user GPS
location, and associated timestamps are recorded after each
scan and stored in the app memory. In addition to that, the
overall contact period with each of the nearby mobiles is also
recorded as mentioned before. Once the internet is available,
this data is sent to the cloud server via a web-socket. In this
case, the user can select one of the three options to transmit
the data on a real-time basis, transmit them periodically or
manual transmission of the data according to his/her prefer-
ences. The server is implemented using the “Java Spring Boot
framework”. It consists of a set of Application Programming
Interfaces (API) microservices. This model would help to
scale-up the services when more user traffic is available.

A front-end web application is implemented using the
Angular framework to view data of mobile users by authorized
administrators. This web application consists of a login portal
and upon successful login, the administrator can enter a phone
number of any user and view the details of the location and
nearby people within a particular period. The tracked locations
are shown in a map along with nearby users’ details for
each pin on the map (Fig. 3). The administrator can also
visualize these connections in a period using a graph to get
more insights about the contacts. The graph consists of up to
3 tiers of information about direct and indirect contacts, as
direct contacts can also have their contacts within the given
period.

After tracing the contacts, alerts can be generated via
emails and SMS message services. With these alerts, people
with higher risks will be notified automatically, to be self
quarantined and Polymerase Chain Reaction(PCR) tests can
be performed based on the descending order of the risk.
Regarding the privacy concerns, all the data will be gathered
and transmitted with user consent and we have addressed the
tracking protection with periodically changing random IDs.

V. EXPERIMENTS AND RESULTS

To observe the effects and to verify the validity of the
proposed algorithm, we simulated the system. For that, we
used a graph-based approach to represent users as nodes and
the connections among the users as edges. A node contains
the probability of the user getting the infection and the user’s
personal details of chronic disease conditions, gender and age.
The gender is initiated at random, which is equally distributed
in the graph. A triangular distribution is approximated for the
age such that the average age in the population is selected as
the peak in the probability distribution. The chronic disease
conditions are assumed to increase with age and set a max-
imum probability of two diseases per person with twice or
more of the average age.

An edge consists of the duration of contact and the average
distance between two nodes within the period. The formed
graph is a representation of a certain duration, with connec-
tions among individuals.

Therefore, a graph is initialized with a fixed number of
nodes and a set of edges randomly initialized from one node to
other nodes. This random number is set to have a minimum of
one edge and a maximum of n−1 where n is the total number
of nodes in the graph. Each edge has distance and contact
period values initiated at random. Initially, the probability of
getting the infection in each node is set to zero. Then, a new
patient is introduced to the graph by randomly selecting a node
and all the other nodes update their probability based on our
algorithm. This process is repeated for several iterations until
all nodes become infected.

To compare our simulations with a real data set, we se-
lected the COVID-19 patient infection data [14] from Hainan
province in China. The starting date of the dataset is 22nd

January 2020. A new patient was not identified from Hainan
from 19th February 2020 to 7th May 2020 and the province
had total confirmed cases of 168. Therefore, it is assumed that
all the cases were identified in the province.

We created a graph with the same number of nodes as the
168 patients and simulated the addition of one new patient
randomly with an iteration. One iteration is considered as
one day of real data and plotted the total patient count from
both simulated and real data. The simulation in Fig. 4a shows
that the number of iterations is much less than the total
number of nodes in the graph. That is due to the increments
in the probability of getting the infection of healthy nodes.
Over the iterations, some may get infected automatically. That
resembles the real spread of the disease from one person to
another.

The simulations in Fig. 4b shows that when the maximum
number of edges is decreased, the number of iterations it takes
to infect all the nodes is increased. According to this result, it
verifies that self-isolation is important to avoid or slow down
disease progression. Since the edges are created at random, we
performed simulations of infecting all nodes for 100 iterations
and obtained the mean patient count and the standard deviation
per each day. This is shown in Fig. 4c.



(a) Comparison of Simulation and Real Data
with Maximum Edges Count of 2

(b) Variation of Simulation Data with the
Maximum Edges Count

(c) Comparison of Mean Data of 100 Simu-
lations with the Real Data

Fig. 4: Graphs showing Comparison of Simulation Data with Real Patient Data of Hainan, China

Besides the above implementations, we also considered the
power utilization of the mobile application. As the mobile
application suppose to run as a background application con-
tinuously, high-level power efficiency is important. In this
experiment, we tested with two android smartphones and the
obtained results indicated as in TABLE III.

TABLE III: Mobile App Power Utilization

Mobile
Battery

Capacity
(mAh)

Total
Memory
(RAM)

App
Run Time

Energy
Consumption

(mAh)

Energy
Consumption

as Battery
Percentage(%)

Memory
(RAM)
Usage
(MB)

Samsung
A20 4000 3GB 1 hour 8 0.2 33

Samsung
M20 5000 4GB 1 hour 10 0.2 36

From the obtained results it is clear that the application
would run with lesser power consumption when it is running
as a background service. In this case, we can expect power
consumption of 192 - 240 mAh for a 24 hours operation of
the application and it is only about 4.8% power consumption
compared with the total battery capacity.

VI. CONCLUSION AND FUTURE WORKS

To address major issues described in contact tracing of
COVID-19 patients, we have developed a contact tracing
system with BLE and GPS capabilities while supporting both
offline and online operation modes. On the other hand, we
were able to analyze and generate infectious probabilities of
users using the developed algorithm and finally, the algorithm
enables to generate all the required alerts to indicate the
important events and notify the users about their associated
risk levels. Our work provides better options and flexibility
over many proposed solutions and simulation results helped
to obtain insights about how the system would function in a
real scenario.

In the future, we plan to improve privacy while collecting
the data by adding strong anonymity and unlinkability proper-
ties. Moreover, we are planning to integrate machine learning-
based probability predictions to further improve the accuracy
of prediction results.
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