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Mean Shift, Mode Seeking, and Clustering 
Yizong Cheng 

Abstract-Mean shift, a simple iterative procedure that shifts 
each data point to the average of data points in its neighborhood, 
is generalized and analyzed in this paper. This generalization 
makes some k-means like clustering algorithms its special cases. It 
is shown that mean shift is a mode-seeking process on a surface 
constructed with a “shadow” kernel. For Gaussian kernels, mean 
shift is a gradient mapping. Convergence is studied for mean shift 
iterations. Cluster analysis is treated as a deterministic problem 
of finding a fixed point of mean shift that characterizes the data. 
Applications in clustering and Hough transform are demon- 
strated. Mean shift is also considered as an evolutionary strategy 
that performs multistart global optimization. 

Index Terms-Mean shift, gradient descent, global optimiza- 
tion, Hough transform, cluster analysis, k-means clustering. 

I. INTRODUCTION 

ET data be a finite set S embedded in the n-dimensional L Euclidean space, X. Let K be aflat kernel that is the char- 
acteristic function of the A-ball in X ,  

The sample mean at x E X is 

c K ( s - x ) s  
m(x) = ’ss c K(s-x)  ‘ 

S € S  

The difference m(x) - x is called mean shift in Fukunaga 
and Hostetler [ 11. The repeated movement of data points to the 
sample means is called the mean shzji algorithm [l], [2]. In 
each iteration of the algorithm, s t m(s) is performed for all 
s E S simultaneously. 

The mean shift algorithm has been proposed as a method for 
cluster analysis [l], [2], [3]. However, the intuition that mean 
shift is gradient ascent, the convergence of the process needs 
verification, and its relation with similar algorithms needs 
clarification. 

In this paper, the mean shift algorithm is generalized in 
three ways. First, nonflat kernels are allowed. Second, points 
in data can be weighted. Third, shift can be performed on any 
subset of X, while the data set S stay the same. 

In Section 11, kernels with five operations are defined. A 
specific weight function unifying certain fuzzy clustering al- 
gorithms including the “maximum-entropy’’ clustering algo- 
rithm will be discussed. It will be shown that the k-means 
clustering algorithm is a limit case of mean shift. 

A relation among kernels called “shadow” will be defined in 
Section 111. It will be proved that mean shift on any kernel is 
equivalent to gradient ascent on the density estimated with a 
shadow of its. Convergence and its rate is the subject of Sec- 
tion IV. Section V shows some peculiar behaviors of mean 
shift in cluster analysis, with application in Hough transform. 
Section VI shows how, with a twist in weight assignment, the 
deterministic mean shift is transformed into a probabilistic 
evolutionary strategy, and how it becomes a global optimiza- 
tion algorithm. 

11. GENERALIZING MEAN SHIFT 

In Section 11, we first define the kernel, its notation, and 
operations. Then we define the generalized sample mean and 
the generalized mean shift algorithm. We show how this al- 
gorithm encompasses some other familiar clustering algo- 
rithms and how k-means clustering becomes a limit instance of 
mean shift. 

A. Kernels 

DEFINITION 1. Let X be the n-dimensional Euclidean space, R“. 
Denote the ith component of x E X by xi. The norm of x E X 

n 

is a nonnegative number 11.11 such that llx112 = cIx i12  . The 
i=l 

n 

inner product of x and y in X is ( x ,  y )  = c x.y. I , . Afunction 

K : X -+ R is said to be a kernel i f  there exists a profile, 
k : [ 0 , 4  + R, such that 

i=l 

(3) 

and 

1) k is nonnegative. 
2 )  k is nonincreasing: k(a) 2 k(b) if a < b. 

3) k is piecewise continuous and jm k(r)dr < m . 

Let a > 0. I f K  is a kernel, then aK, K,, and K“ are kernels 
defined, respectively, as 

(aK)(x)  = aK(x) ,  

(4) 

Manuscript received Aug. 27, 1993; revised Mar. 28, 1995. Recommended 

Y. Cheng is with the Department of Electrical and Computer Engineering 

IEEECS Log Number P95097. 

for acceptance by R. Duin. 

and Computer Science, University of Cincinnati, Cincinnati, Ohio, 45221. 
i f  K and H are kernels, then K + H is a kernel defined as 
(K + H)(x) = K(x) + H(x) and KH is a kernel defined as 

0162-8828/95$04.00 0 1995 IEEE 



CHENG: MEAN SHIm, MODE SEEKING, AND CLUSTERING 791 

(KH)(x) = K(x)H(x). Thesefive operators can be ordered in 
descending precedence as Kn, K*, aK, KH, and K + H. 0 

CLAIM 1. We have 
a(KH) = (aK)H = K(aH) 
a(K + H) = aK + a H  

(K + mu= Kn+ Ha 
(KIT)”= K“H“ 

WWa= K J L  

0 

EXAMPLE 1. Two kernels frequently used in this paper are the 
unit flat kernel 

and the unit Gaussian kernel 

qx) = e-IIxIIz 

These kernels are shown in Fig. 1. Clearly, the characteristic 
function of the A-ball, (l), is Fr Also notice that 
GB = Gp-,p . 

(a) (b) 
Fig. 1 .  (a) The flat kernel F and (b) the Gaussian kernel G. 

A kernel can be “truncated” by being multiplied by a flat 
kernel. For example, a truncated Gaussian kernel is 

(7) 

Notice that (GF),  = Ga-’ Fa. Fig. 2 shows some of the 

truncated Gaussian kernels. 0 

(a) (b) 

Fig. 2. Truncated Gaussian kernels (a) GF and (b) e ‘F. 

DEFINITION 2. Let S c X be a finite set (the “data” or 
“sample”). Let K be a kernel and w : S -+ (0, m) a weight 

function. The sample mean with kernel Kat  x E X is defined 
as 

K(s-x)w(s)s 

SE s 
Let T c X be afinite set (the “cluster centers”). The evolu- 
tion of T in the form of iterations T t m(T) with 
m(T) = {m(t); t E T) is called a mean shift algorithm. For 
each t E T, there is a sequence t, m(t), m(m(t)) ,- . . ,  that is 
called the trajectory of t. The weight w(s) can be either 
fixed throughout the process or re-evaluated afer  each it- 
eration. It may also be a function of the current T. The al- 
gorithm halts when it reaches afixed point (m(T) = T). 

When T is S, the mean shift algorithm is called a blurring 
process, indicating the successive blurring of the data set, S.0 

REMARK 1. The original mean shift process proposed in [l], 
[3] is a blurring process, in which T = S. In Definition 2, it 
is generalized so that T and S may be separate sets with S 
fixed through the process, although the initial T may be a 
copy of S. Notice that in (8), kernel K can be replaced with 
kernel aK for any a > 0, without generating any difference. 

This is the reason why we did not insist that K(x)dx = 1 , 

which will attach a factor to K that is related to n, the di- 
mensionality of X. Similarly, the weights w(s) can be nor- 
malized so that w(s) = 1. Because of the inconsequen- 

tiality of these factors, we will use the simplest possible ex- 
pressions for the kernel and the weights. We also have to 
assume that T is initialized such that K(s- t)w(s) > 0 

for all t E T. Also notice that this is a parallel algorithm, in 
the sense that all t E Tare simultaneously updated based on 
the previous t and w(s) values. 
0 

X 

.S€S 

S€S 

EXAMPLE 2. The “maximum entropy” clustering algorithm of 
Rose, Gurewitz, and Fox [4] is a mean shift algorithm when 
T and S are separate sets, GP is the kernel, and 

, S E S .  
1 c G ( s  - t ) 

w(s) = (9) 

t€T 

These authors also mention that when p approaches infinity, 
the algorithm degenerates to k-means clustering, which is 
often described as an optimizing Picard iterative routine [7]: 

1) Randomly initialize “cluster centers,” T. 
2) Compute the following function on T x S: 

2 
Vt , s  = [ i, if t = argmin,ls- tl B. Mean Shift Algorithms 

generalizations summarized in the introduction. 

otherwise Now we redefine the mean shift algorithm based on our 



192 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 17, NO. 8, AUGUST 1995 

3) Update “cluster centers:” 

c v t . , s  

c vt,s 

t E T .  < S€S 

S € S  

Go to 2. 
Indeed, when the profile k is strictly decreasing, 

Thus, k-means clustering is the limit of the mean shift al- 
gorithm with a strictly decreasing kernel p when p +- =. 0 

111. MEAN SHIFT AS GRADIENT MAPPING 

It has been pointed out in [ l ]  that mean shift is a “very in- 
tuitive” estimate of the gradient of the data density. In this 
section, we give a more rigorous study of this intuition. Theo- 
rem 1 relates each kernel to a “shadow” kernel so that mean 
shift using a kernel will be in the gradient direction of the 
density estimate using the corresponding “shadow” kernel. 

A. Shadow of a Kernel 

DEFINITION 3. Kernel H is said to be a shadow of kernel K ,  i f  
the mean shift using K ,  

theorem of calculus and the requirement that 

l rh(r )dr  < -, (15) is the only solution. In this case, we 

( l  have 

or, the magnitude of mean shift is in proportion to the ratio 
of the gradient and the local density estimate using kernel K. 
When a discontinuous point z is allowed in h, a constant can 
be added to the h from 0 to z ,  and h’(r) = - ck(r) is still sat- 

(12) 

c K(s-x)w(s)s  

S € S  

isfied except when r = z. 0 

CLAIM 2. Suppose kernel H is a shadow of K, and a > 0. The 
following are true. 

1) aH is a shadow of K. 
2) Ha is a shadow of K,. 
3) If L is a shadow of M, then H + L is a shadow of K + M. 
4) A truncated kernel KF, may not be continuous at = a. 

If the shadow is also allowed to be discontinuous at the 
0 same points, then HF, is a shadow df KF,. 

EXAMPLE 3. Using (15) we find that the Epanechnikov kernel 

is a shadow of the flat kernel, (5 ) ,  and the biweight kernel 

is in the gradient direction at ofthe density estimate using 
K 

is a shadow of the Epanechnikov kernel. These kernels are 
0 so named in [2] and they are shown in Fig. 3. 

q( X) = H ( s - X )  W( s). 
S d  

(14) 

0 

THEOREM 1. Kernel H is a shadow of kernel K ifand only i f  
their PROFILES, h and k ,  satisfy the following equation. 

h(r )=  f (r)+cjrmk(t)dt ,  (15) 

where c > 0 is a constant and f is a piecewise constant 
function. 

PROOF. The mean shift using kernel K can be rewritten as 
1 

m(x) - x = -x k(1ls - xl12)w(s)( s - x) (1 6) 
p(x)  S€S 

with p ( x )  = 

The gradient of (14) at x is 

k ( s -  x)w(s), the density estimate using K. 
sss 

Vq(x)  = - 2 c  h’(lls - xIl2)( s - x)w(s).  (17) 
SES 

To have (16) and (17) point to the same direction, we need 
h’(r) = - ck(r) for all rand some c > 0. By the fundamental 

(a) (b) 

Fig. 3. (a) The Epanechnikov kernel and (b) the biweight kernel. 

B. Gaussian Kernels 

THEOREM 2. The only kernels that are their own shadows are 
the Gaussian kernel GP and its truncated version GPFr In 
this case, the mean shift is equal to 

(21) 
1 

m ( x ) -  x = -Vlogq(x), 
2P 

where q is the data density estimate using the same kernel. 

PROOF. From Theorem 1 we know that kernel K is its own 
shadow if and only if k’(r) = -ck(r). Using the method of 
separation of variables, we have 



CHENG: MEAN SHIFT, MODE SEEKING, AND CLUSTERING 193 

-- -cdr,orlogk(r)-logk(O)=-cr . I: - I  
This gives us k(r) = k(O)eYr, which makes K the Gaussian 
kernel. If discontinuities are allowed in k ,  then we have the 
truncated Gaussian kernel. When K is its own shadow, p in 

0 

REMARK 2 .  A mapping f : R"+ R" is said to be a gradient 
mapping if there exists a function g : R" + R such that 
A x )  = V g ( x )  for all x 161. Theorem 2 is a corollary of a more 
general result from the symmetry principle: f is a gradient 
mapping if and only if the Jacobian matrix offis symmetric. 
In our case, A x )  = m(x) - x and by equating afilaxj and 
afpxi for all i and j, one obtains the necessary and sufficient 
condition that k'(r) = -ck(r) for any mean shift to be a gra- 

(18) is equal to q,  and (Vq(x))/q(x) = V log q(x). 

dient mapping. n 

A. Radius and Diameter of Data 

DEFINITION 4.  A direction in X is a point on the unit sphere. 
That is, a E X is a direction if and only if llall = 1. We call 
the mapping a, : X + R wirh a,(x) = (x, a) the projection in 
the direction of a. Let a,(S) = {a,(s); s E S ) .  The convex 
hull of a set Y c X is defined as 

h(Y) = n { x  E X; mina, (Y)  I a, ( x )  S maxa,(Y)}. (24 )  

0 
iiun=1 

CLAIM 3 .  The following are true. 
1) min a,(S) I min n,(m(T)) I max n,(m(T)) I max n,(S). 
2 )  m(T) G h@" L W). 
3)In a blurring process, we have h(S) 2 h(m(S)) 3 

h(m(m(S))).. .  . There exists an x E X that is in all the 
convex hulls of data. It is possible to make a translation 

C. Mode Seeking 

Suppose an idealized mode in the density surface also has a 
Gaussian shape, which, without loss of generality, centers at 
the origin: 

so that the origin is in all the convex hulls of data. U 

DEFJ"ION 5 .  Suppose after a translation, the origin is in all 
the convex hulls of data during a blurring process. Then, 
p(S) = max { Isl; s E S )  is said to be the radius of data. The 
diameter of data is defined as 

(22) 
d ( S )  = sup( maxa, (S) - min a, (S)). (25 )  

11.11=1 

x. (23 )  m(x)  - x = - V log q( x )  = - = -- 1 -2yxq(x) 

2 P  -2Pq(x)  P 
Because the density surface is estimated with the kernel G', 
any mode approximated by superimposing G' will have a 
y < P. The mean shift ( 2 3 )  will not cause overshoots in this 
case. 

Mean shift is steepest ascent with a varying step size that is 
the magnitude of the gradient. A notorious problem associated 
with steepest ascent with fixed step size is the slow movement 

0 
It should be clear that p(S) I d(S) I 2p(S). Because the 

convex hulls of data form a shrinking inclusion sequence, the 
radius or diameter of data also form a nonincreasing non- 
negative sequence, which must approach a nonnegative limit. 
Theorem 3 says that this limit is zero when the kernel in the 
blurring process has a support wide enough to cover the data 
set. 

B. Blurring With Broad Kernels 
on plateaus of the surface. For a density surface, large plateaus 
happen only at low density regions and after taking logarithm, 
the inclination of a plateau is magnified. Combined with the 

THEOREM 3.  Let k be the profile of the kernel used in a blur- 

for ring Process, and So the initial data. r f  k(d2(So)) 2 
preceding result about overshoot avoidance, mean shift is well- 
adjusted steepest ascent. some K > 0, then diameter of data approaches zero. The 

convergence rate is at least as fast as 

IV. CONVERGENCE 

Theorem 1 says that the mean shift algorithm is steepest as- 
cent over the density of S .  Each T point climbs the hill in the 
density surface independently. Therefore, if S or its density 
does not change during the execution of the algorithm, the 

vergence of steepest ascent for individual T points. 
However, in a blurring process, T i s  S, and S and its density 

change as the result of each iteration. In this case, convergence 
is not as obvious as steepest ascent. The main results of this 
section are two convergence theorems about the blurring proc- 
ess. The concepts of radius and diameter of data, defined be- 
low, will be used in the proofs. 

pROOF. Let be a projection, = min @(SI, = max qs), and 
= + ,,)/2. suppose 

convergence of the evolution of Tis a consequence of the con- E w(s) 2 E 4 s ) .  (27) 
s d , n ( s ) < z  S € S , l r ( S ) > Z  

men,  for E s, 
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v - x(m(s)) = c K(s’ - s)w( s’) 
S’ES 

s ’ E S , a ( s ’ ) s z  2 c K (  s’ - s)w( s’) 
S’ES 

v-U $ W( S’)K 7 

S’ES 

- K ( V  - U )  -- 
4 k ( 0 )  . 

Clearly, we have 

maxz(m(S))- minn(m(S)) I maxn(m(S)) - u 

which is negative when A > 1/& and positive when 

A < I/&. Thus I/& is a critical A value. When A is 
larger than this critical value, the density is unimodal and 
the two T points will converge to 1/2. When A is smaller 
than I/& , they will approach two distinct limit points. 0 

(28) 

The same result can be obtained when the inequality in (27) 
is reversed. Therefore, the result holds for all projections, 

0 
EXAMPLE 4. As the simplest example, let X be the real line and 
S = {x, y }  with x c y .  Let k be the profile of the kernel with 
k(lx-y12) > 0. If the weights on x and y are the same, a blur- 
ring process will make them converge to (x  + y)/2 with the 
rate 

and because v - U I d(S), we completed the proof. 

k ( 0 )  - k(lx - Y I 2 )  

k ( 0 )  + k(l. - Y I 2 )  
m(y)-m(x)= (Y-x).  (30) 

C. Blurring with Truncated Kernels 

When truncated kernels are used in the blurring process, S 
may converge to many points. In fact, if the kernel is truncated 
so that it will not cover more than one point in S, then S will 
not change in the process. The result of Theorem 3 applies to 
an isolated group of data points that can be covered by a trun- 
cated kernel. In this case, they eventually converge to one 
point, although the rest of the data set may converge to other 
cluster centers. Again, when the kernel is not ‘flat, no merger 
will take place after any finite number of iterations. (Flat ker- 
nels generate a special case where merger is possible in finite 
number of steps. See [8 ] . )  

When the blurring process is simulated on a digital com- 

(29) 

puter, points do merge in finite number of steps, due to the 
limits on floating-point precision. In fact, there is a minimum 
distance between data points that can be maintained. Theorem 
4 below shows that under this condition, the blurring process 
terminates in finite number of steps. 
LEMMA 1 .  Suppose X = R” and r(S) is the radius of data in a 

blurring process. If the minimum distance between data 
points is 6, then for any direction a, there cannot be more 
than one data point s E S with no(s) > r(S) - h, where h is a 
function ofr(S), 6, and n. 

PROOF. Suppose there is a direction a such that there are 
s, t E S with nu@) > r(S) - h and nu(t) > r(S) - h. Let b be a 
direction perpendicular to a and db = tnb(s) - %(t)I. Because 

rection u and One Of them must be dd2 away ‘Om the 
origin in direction b, the square of the radius of data cannot 

be smaller than ( r (S ) -h )  +d ,2 /4 .  It follows that 

The difference between the two points will not become zero 

ing both points. When the weights are different, x and y 
converge to a point that may not be the weighted average of 
the initial x and y with the same weights. 

initialized to S. Because this is no longer a blurring process, 
the result in Theorem 3 does not apply. That is, T may con- 
verge to more than one point. The two T points converge to 
(x  + y)/2 when the density of S is unimodal. Otherwise, they 
will converge to the two modes of the bimodal density. 
When G, is used as the kernel, and x = 0, y = 1 ,  the density 
is (n-1)(8r(S)h-4h2)+h2 >6’, 

-- 2 -- ( Z - l y  

& ) = e  a* + e  . 

at any iteration, unless the kernel is flat in the range contain- both and are at least r(s) - away from the Origin in di- 

2 

NOW assume that S is fixed through the process while T iS d i  5 gr(S)h-4h2.  The distance between and t ,  IJs - tl(, 
satisfy 

6* IIIs-tl12 <(n-1) (8r(S)h-4h2)+h2.  

If 

then these s and t cannot exist. This condition is satisfied when 

4(n - l)r(S) - ,/16(n - 1)’ r 2 (S )  - ( 4 n  -5 )6 ’ ] / (4n  - 5 )  

0 
The first derivative of q(z) always has a zero at z = 1/2. But 
the second derivative of q(z) at z = 1/2 is 
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LEMMA 2. In a blurring process, suppose the minimum dis- 
tance between data points is 6, K > 0 is a constant such that 

jority of the five will be 11 11, which has a distance 4 from 
the center, 0000, and there is a projection on which 

when K(x) > 0, K(x) > K ~ ( O ) ,  and max z(S) actually increases. U 

(33). 

S€S 

The radius of data, r(S), reaches itsfinal value in no more 
than r(S)/( K W h,) steps, where h, is defined in Lemma 1. 

PROOF. Let SE S be a data point that moves during an iteration. 
Then there must have been another data point S’E S such 
that K(s - s’) > Kk(0). Let a be a direction. Lemma 1 says 
that at least one of these two points, s or s’, denoted with s”, 
must have n,(s”) I r(S) - h,. Hence, 

res 

~ ( ~ ” - s ) w ( s ” ) ( r ( ~ ) -  rU(s”)) 
2 (34) c k(O)w(t) 

tes  

2 KWh. 

This shows that all moving points in S moves in one itera- 
tion to a position at least K Wh, away from the current r(S). 
Therefore, if r(S) changes during an iteration, its change 
must be at least K Wh,. 

THEOREM 4. If data points cannot move arbitrarily close to 
each other, and K(x) is either zero or larger than afixed 
positive constant, then the blurring process reaches a fixed 
point infinitely many iterations. 

PROOF. Lemma 2 says that the radius of data reaches its final 
value in finite number of steps. Lemma 2 also implies that 
those points at this final radius will not affect other data 
points or each other. Hence, they can be taken out from 
consideration for further process of the algorithm. The same 
argument can be applied to the rest of data. Since S is finite, 
by induction on the size of S ,  a fixed point must be reached 
in finitely many iterations. More precisely, the blurring 

REMARK 3. It is important that when close data points are 
merged, the radius of data does not increase. A simple 
mechanism is merging close points into one of them. This 
must be done before the exhaustion of floating-point preci- 
sion, because truncation may indeed increase the radius of 
data and cause cycles. An extreme case is the blurring proc- 
ess applied to categorical data, when a flat kernel based on 
the Hamming distance and round-off to the nearest integer 
are used in each mean shift step. In this case, the mean shift 
step becomes 

(35) 

0 

process halts in no more than r(S)l( K Wh,) steps. 0 

s t Majority{t E S ;  [It -SI[ 5 A} . 

D. Fixed Points as Local Maxima 

In Section 111, we showed that mean shift for individual 
points in X is hill climbing on the data density function. Be- 
cause the data density function also evolves in the blurring 
process, it is difficult to see where the hill climbing leads to. 
When the evolving set of points in X ,  either S (in blurring) or T 
(as cluster centers), is treated as a point in X”, where N is the 
number of points involved, real functions can be constructed 
and the fixed points of mean shift can be identified as local 
maxima of these functions. 
THEOREM 5. When S is fixed, the stable fixed points of the 

mean shqt process 

J 

are local maxima of 

(37) 

where H is a shadow of K. For the blurring process, 
S t m(S), assuming weights of data points do not change, 
the fixed points are the local maxima of 

V ( S ) =  C H ( s -  
s , t d  

PROOF. When S is fixed, each t E T reaches its fixed point 
when Vq(t) = 0, using the result and notation in (18). Be- 
causeU(T)=cq( t ) ,  a local maximum of U is reached 

when each t E T attains a local maximum of q(t). Because 
local minima of q are not stable fixed points for t ,  a stable 
fixed point of U can only be its local maximum. For the 
blurring process, we have 

I E T  

f3V 
- = 2 x h $ s - t 1 r ) ( ~ - t ) w ( s ) w ( t ) .  
ds t € S  

(39) 

Notice that w(s) will not change and thus is treated as a 
constant. a Vla s = 0 is equivalent to 

rss 

or 

K(s - t )w( t ) ( t - s )  

t E S  

Round-off may actually shift a data point out of the flat ker- 
ne1 centering at it. For example, 0111, 1011, 1101, and 

and thus, the local maxima of V(S) are fixed points of 
S t m(S). By the same reason as before, they are the only 

11 10 all have Hamming distance 3 from 0000, but the ma- stable fixed points. U 
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V. MEAN SHIFT CLUSTERING 

Theorem 3 shows that in a blurring process with a broad 
kernel (one with a broad support), data points do converge to a 
single position. To the other extreme, when the kernel is trun- 
cated to the degree that it covers no more than one data point 
at any position, the initial data set is a fixed point of the blur- 
ring process and thus no merger takes place. When the kernel 
size is between these extremes, data points may have trajecto- 
ries that merge into varying numbers of “cluster centers.” 

Iteration of mean shift gives rise to natural clustering algo- 
rithms. The final T contains the final positions of the cluster 
centers. In k-means like clustering, T is not initialized to S, 
fuzzy membership or nearest center classification must be used 
to decide how data points are divided into clusters. 

In this section, we will study the clustering results when T is 
initialized to S or when Tis  S (the blurring process). The data 
set S is partitioned into clusters based solely on their mean 
shift trajectories. When two data points or their T representa- 
tives converge to the same final position, they are considered 
to belong to the same cluster. Unlike k-means like clustering 
algorithms, which are probabilistic because the randomness of 
the initialization of T, mean shift clustering with T initialized 
to S is deterministic. 

A. Clustering as a Natural Process 

Many clustering algorithms are treated as means for opti- 
mizing certain measures about the partitioning. For example, 
the k-means clustering algorithm is aiming at minimizing the 
within-group sum of squared errors [7], and the maximum en- 
tropy clustering algorithm is to maximize entropy while the 
within-group sum of squared errors is held constant. Some- 
times, it is the algorithm itself that is emphasized, for instance 
in the case of the k-means clustering. The initial cluster cen- 
ters, T, are randomly or strategically chosen, and there is no 
guarantee that any execution of the algorithm will reach the 
global minimum. After the execution of the algorithm, all one 
can say is that a local minimum is reached, and the optimiza- 
tion goal becomes illusive. 

At other times, the reach of a global optimum is essential. 
The maximum entropy clustering is an example. The actual 
iteration that hopefully attains the goal is de-emphasized, 
based on precisely the same reason, that every run of the al- 
gorithm only reaches a local maximum [SI. It is known that 
optimization problems like these are NP-hard [9]. Hence, in 
general, clustering as optimization is computationally unattain- 
able. 

The philosophy of this paper is that clustering can also be 
viewed as the result of some natural process, like mean shift or 
blurring. As a deterministic process, the clustering result pro- 
vides a characteristic of the data set. In the light of Theorem 5 ,  
when Tis initialized to S, the final configuration of T is a local 
maximum of U(7J; when Tis S, it is a local maximum of V(S).  
The result or purpose of mean shift clustering is to use a local 
maximum of U or V as a characterization of S. The global 
maximum of U or V is not only unattainable, but also undesir- 
able. For instance, V reaches its global maximum when S 
shrinks to one point, which is the result only when the kernel 

has a broad support. The number and distribution of local 
maxima of U and V depend only on the kernel, the dimen- 
sionality of the space, and the data size. 
EXAMPLE 5. To visualize mean shift as clustering, we ran- 

domly chose an S of size 100 in the unit square (Fig. 4a) 
and applied five different variations of mean shift. Proc- 
esses were terminated when no update larger than 10” took 
place. The truncated Gaussian kernel, (GF)p-v i ,  was used 

in Figs. 4b, 4c, and 4d, while the Gaussian kernel, “non- 
truncated,” GO, was used in Figs. 4e) and 4f, all with p = 30. 
The blurring process was used in Fig. 4b and nonblurring, 
meaning 

(f) 

Fig. 4. Trajectories of different mean shift variations on the same data set. (a) 
The data set S, also the initial T set for nonblurring processes. (b) A blurring 
process with 10 iterations and nine clusters. (c) A nonblurring mean shift 
process with a truncated Gaussian kernel and uniform weights. It terminated 
in 20 iterations at 37 clusters. (d) Nonblurring mean shift with a truncated 
Gaussian kernel and an adaptive weight function. It terminated in 20 itera- 
tions at 64 clusters. (e) Nonblurring with a nontruncated Gaussian kernel and 
uniform weights. It terminated in 274 iterations at two clusters. (f) Nonblur- 
ring with a nontruncated Gaussian kernel and adaptive weights. It terminated 
in 127 iterations with 13 clusters. 

.. . 
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T was only initialized to S but S is fixed, was used in others. 
In (b), (c), and (e), data points were equally weighted, while 
in (d) and (f), a weight w that satisfies t /w( s )  = K ( t  - s) 

was used. U 
t € T  

B. Validation of Clustering 

When the truncated Gaussian kernel ( GF)p-o with varying 

p is used, we can see that in general, the smaller /3 is, the fewer 
clusters will be generated. But this may not always be true. 
Furthermore, a smaller cluster associated with a larger p value 
may not be the result of a “split” of a larger cluster associated 
with a smaller p value. However, if the clustering outcomes 
are plotted against a range of values, then it will be clear that 
some clustering outcomes are transient and unstable while oth- 
ers are more stable. The recurrence of a clustering outcome 
with varying p values can be used as an indication that the 
pattern may be more valid than the transient ones. 
EXAMPLE 6.  Fig. 5 is a plot of the blurring process applied on 

the velocities of 82 galaxies [ll]. The same data were fit 
with a bimodal normal mixture model by Roeder [lo] and 
conclusion was that the observable universe contained two 
superclusters of galaxies surrounded by large voids. How- 
ever, by observing Fig. 5 ,  one can see that the most stable 
outcome is three instead of two clusters. This shows that 
while bimodal mixture or k-means clustering requires some 
prior guessing about the number of clusters, the result from 

0 mean shift clustering is less arbitrary. 

k 

Fig. 5 .  Clustering of 82 galaxies based on their velocities. The tree-shape 
diagram shows the relative validity of clustering outcomes with the kemel 
(GO, of different J. values. Larger I values were used near the root of the 
tree, while smaller I values were used near the leaves of the tree, where the 
dimension across the tree indicates the velocities. 

EXAMPLE 7. Another example of blurring within a parameter 
continuum is demonstrated in Fig. 6, where 62 alphanu- 
meric characters were treated as data points in a 144 (the 
number of pixels involved in the 8 x 18 font) dimensional 
Euclidean space. Blurring with kernel ( G o ,  with A ranging 
from 1.6 to 3.8 was performed. The clustering results were 
discretized and displayed as two-tone pixels, n 

Fig. 6. Blurring of 62 8 x 18 font alphanumeric characters. Each row is the 
outcome of blurring using the kemel (GO, with a I value between 1.6 and 
3.8. The average number of iterations was 4.7. 

C. Application to Hough Transform 

EXAMPLE 8. Fig. 7 shows an application of mean shift cluster- 
ing in generalized Hough transform. 300 edge pixels were 
randomly chosen from a 100 x 100 image and each pair of 
them generated a straight line passing them. The intersec- 
tions of these lines and the borders of the image are rounded 
off to the nearest integers (pixel positions) and they are 
registered with 400 x 400 accumulators in the parameter 
space, similar to the “muff’ transform suggested by Wallace 
[121. 0 

\ 

(a) (b) 

Fig. 7. Mean shift peak detection in the parameter space of Hough (muff) 
transform. The image contains 300 edge pixels. Pairs of edge pixels make 
44,850 suggestions of possible lines that are coded as points in the parameter 
space. Each line is coded with two integers between 0 and 400, that label the 
intersections of the line with the borders of the image. (a) shows the line 
detection based on the number of suggestions falling into the each point in the 
parameter space. A threshold of 30 was used. (b) is the result after mean shift 
is applied to these lines in the parameter space. The kernel was (GF)io, 
weights were the number of suggestions, and four clusters emerged as the four 
lines shown. 

VI. MEAN SHIFT OPTIMIZATION 

The blurring process moves data points in the gradient di- 
rection of the function q on X ,  

q(x )  = C K ( s - x ) w ( s ) .  (42) 
SCS 

In clustering with mean shift, this function q is considered as 
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I A 

an approximation to the data density, and mean shift finds the 
local maxima of the density function. 

When data S is uniformly distributed in an area of X, and 
w(s) is the value of a turgef function f : X + R at the point s, q 
becomes an approximation off with some scaling. Mean shift 
with this setting will find all the local maxima off in a region, 
and this leads to another application of mean shift, namely 
global optimization. 

Because now the initial data set S has to be randomly (and 
hopefully uniformly) generated, the algorithm becomes prob- 
abilistic, even when Tis  S or is initialized to S .  To compensate 

the inevitable non-uniformity of any finite random set, the 
weight w(s) can be the f value at s augmented with a data 
density balancing factor, as 

(43) 

t € S  

When the blurring process is used, the next generation of S 
will concentrate more at the modes of the approximated F 
function, but the weight w will contain a factor that offsets this 
effect. It is also possible to make the algorithm more determi- 
nistic by placing the initial S on regular grid points. 
EXAMPLE 9: Fig. 8 is a demonstration of this optimization 

strategy. (a) is the underlying functionf, whose maxima are 
to be found. This function is unknown, but with a price,f(x) 
may be obtained for any x E X. The upper half of (b) shows 
the initial randomly chosen 100 x E X ,  as the set S ,  along 
with theirf(x) values. The lower half is the estimatedffunc- 
tion using 

(e) 

Fig. 8. Multistart global optimization using blurring. (a) shows the functionf; 
whose global maximum is to be found. The next four figures show the mean 
shift of S, at the (b) initial, (c) first, (d) third, and (e) fifth iterations of a blur- 
ring process whenfis  used as the weight function. In each of these four fig- 
ures, the vertical bars show the positions andfvalues of the S points, and the 
curve shows the y function, whose local maxima locations approximate those 
off. 

t € S  

In this demonstration, the range of X is the unit interval and 
A= 0.18. (c) contains the S set along withf(s) values after a 
single mean shift step, with the estimated f using this data 
set S in the lower half. (d) and (e) are the snapshots after 
three and five mean shift steps respectively. After five itera- 
tions, the global maximum and a local maximum were dis- 
covered and S reached its final configuration, a fixed point 

Mean shift optimization is a parallel hill climbing method 
comparable to many genetic algorithms. The blurring process 
in effect is an evolutionary strategy, with f being the so-called 
fitness function. 

Mean shift optimization also shows some similarity with 
some multistart global optimization methods [ 131. Because it 
is necessary to have sample points on both sides of a local 
maximum in order for mean shift to work, the method may not 
be efficient in a space of high dimensionality or anffunction 
with too many local maxima. Nevertheless, it has the unique 
property that the same simple iteration works for both local 
and global optimization, compared to most multistart methods 
where separate local and global approaches are used. 

of the blurring process. I1 

VII. CONCLUDING REMARKS 

Suppose one has made a number of observations, per- 
formed a series of experiments, or collected a stack of cases. 
What is a natural way in which the memory of data is organ- 
ized? It could be organized as a sorted list based on some key, 
or a decision tree, or a rule-based system, or a distributed as- 
sociative memory. But what can be more basic than to associ- 
ate each experience with similar ones, and to extract the com- 
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mon features that make them different from others? Mean 
shift, or confusing a point with the average of similar points, 
must be a simple and natural process that plays a role in mem- 
ory organization. A multiresolution representation of the data, 
containing both commonality and specificity, seems likely to 
be the foundation of law discovery and knowledge acquisition. 

Since this process is so intuitive and basic, it should have 
been used as an ingredient in various modeling and algo- 
rithmic efforts, or at least it should have been studied in 
mathematics as a simple dynamic system. However, based on 
the author’s search and communication, the existence of previ- 
ous efforts is not apparent. To the best knowledge of the 
author, Fukunaga and Hostetler [ l]  is still the first work pro- 
posing mean shift explicitly as an iterative algorithm, and a 
rigorous and comprehensive treatment of the process has not 
been done. 

This paper attempted to provide an appropriate generaliza- 
tion to the mean shift algorithm, so that many interesting and 
useful properties would be preserved. One property is that the 
process is either a gradient mapping, or a similar one that 
seeks modes of a real function. Compared to gradient descent 
or ascent methods, mean shift seems more effective in  terms of 
adapting to the right step size. 

The two major applications of mean shift discussed in this 
paper, namely cluster analysis and global optimization, have 
not been practiced widely. There may be computational ob- 
stacles, and they may not be suitable for problems with pro- 
hibitive sizes and dimensionalities. The computational cost of 
an iteration of mean shift is O(n2) where n is the size of S, the 
data set. It is obviously possible to reduce this time complexity 
to O(n log n) ,  by a better storage of the data, when only neigh- 
boring points are used in the computation of the mean. 
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