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Abstract -We propose a technique for specifying universal 
quantification and existential quantification (combined with nega- 
tion) in a two-dimensional (graphical) database query language. 
Unlike other approaches that provide set operators to simulate 
universal quantification, this technique allows a direct repre- 
sentation of universal quantification. We present syntactic con- 
structs for specifying universal and existential quantifications, 
two-dimensional translation of universal quantification to existen- 
tial quantification (with negation), and translation of existentially 
quantified two-dimensional queries to relational queries. The 
resulting relational queries can be processed directly by many 
existing database systems. Traditionally, universal quantification 
has been considered a difficult concept for typical database 
programmers. We claim that this technique renders universal 
quantification easy to understand. To substantiate this claim, we 
provide a simple, easy-to-follow guideline for constructing univer- 
sally quantified queries. We believe that the direct representation 
of universal quantification in a two-dimensional language is new 
and that our technique contributes significantly to the under- 
standing of universal quantification in the context of database 
query languages. 

Index Terms- Universal quantification, existential quantifica- 
tion, graphical query languages, databases, relational calculus, 
entity-relationship model. 

I. INTRODUCTION 

NIVERSAL quantification is an important element in U relational calculus [2]. Yet it has not been fully in- 
tegrated in many practical database query languages. There 
are two possible reasons: 1) in a linear-syntax language, 
complex syntax is needed to support universal quantification, 
and 2) universal quantification can be replaced with exis- 
tential quantification and negation, which many languages 
provide. Some approaches support universal quantification by 
using set operators [17], [ l l ] .  However, in these approaches 
the user has to transform a universally quantified query to 
multiple subqueries connected by set operators. Oftentimes, 
the transformation is a nontrivial task for average database 
programmers. SQL [5]  supports universal quantification that 
can be specified in the form, expression = ALL (subquery). 
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However, only very limited cases of universal quantification 
can be represented in this form. 

In this paper we present a simple elegant technique for 
specifying universal quantification. Our technique employs 
a two-dimensional representation of queries.' Unlike other 
set-oriented approaches, this technique allows a direct repre- 
sentation of universal quantification. We first present syntactic 
constructs for specifying universal quantification and exis- 
tential quantification (with negation). We then present an 
algorithm for transforming automatically a universally quanti- 
fied query to an existentially quantified query. Next, we present 
an algorithm to transform an existentially quantified query to 
a relational calculus query. This sequence of transformations 
proves that the universally quantified query specified in our 
two-dimensional language can be easily implemented by using 
any of many existing relational database systems, provided 
that it supports negation and existential quantification. (Many 
database systems support existential quantification implicitly 
or explicitly. See Section IV for more discussion on this 
aspect.) 

Many two-dimensional query languages have been proposed 
in the literature [17], [lo], [15], [16], [4], [7]. We exam- 
ine these languages by classifying their features into three 
categories: the data model, aggregation, and quantification. 
We pay special attention to aggregation and quantification, 
because these features require a scoping operator to define 
parts of the query (i.e., subqueries) to which they apply. In 
a linear syntax, the scoping operator is a parenthesis or a 
keyword. In a two-dimensional syntax, it will be a box or an 
enclosure. As we discuss in subsequent sections, we use boxes 
to represent quantifications. Aggregation requires a scoping 
operator when it appears in certain conditions, as exemplified 
in [lo]. 

A pioneering work in two-dimensional representation of 
database queries is Query-by-Example (QBE) [17]. A lan- 
guage based on the relational model, it supports aggregation 
and existential quantification (with negation). It also supports 
universal quantification by using a set notation. Due to the lack 
of the scoping operator (i.e., subqueries cannot be defined), 
however, ambiguity can arise if aggregation appears in a 
condition or if quantification involves more than one relation. 

We describe our technique using the entity-relationship model because 
of its elegance in representing the relationship. Nonetheless, the technique is 
equally applicable to the relational model where relationships are replaced 
with join conditions. 
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CUPID [lo] is also based on the relational model and has 
features similar to QBE’s. However, it does not provide the 
mechanisms for specifying quantification, although it does 
provide a scoping operator for specifying subqueries involving 
aggregation. GUIDE [ 151 is based on the entity-relationship 
model, but does not support aggregation or quantification. 
Elmasri and Larson [4] also proposed a language based on 
the entity-relationship model. It provides set operators and 
aggregation operators, but does not provide explicit scoping 
operators. However, it is possible to resolve ambiguity in 
scoping by rephrasing the queries in English and asking the 
user to verify them. PICASSO [7] uses the universal relation 
model [9] as its basis and supports set operators as well 
as a scoping operator io  be used for each maximal object. 
The scoping operator can be used for aggregation, but not 
for quantification. Quantification can be handled through set 
operators, although this aspect was not discussed explicitly 
in the paper. GQL/ER [16] combines the features of the 
entity-relationship modzl and the universal relation model. 
This language does not support aggregation or quantification. 
Finally, Ozsoyoglu [1 11 proposed a linear syntax language 
called RC/S*. RC/S“ is a variation of relational calcu- 
lus that replaces universal quantification with operations on 
sets. 

Our query language supports aggregation, universal quan- 
tification, and existential quantification (with negation). In this 
paper we concentrate on the facilities for quantifications and 
do not discuss aggregation in depth. Here, we identify two 
distinct contributions of this paper. First, we claim that our 
quantification scheme is easy to use. Traditionally, universal 
quantification has been considered a difficult concept for 
typical database programmers. Substantiating this claim, we 
present a simple and easy guideline for constructing uni- 
versally quantified queries. This guideline works for most 
of the commonly encountered queries. Second, we believe 
that the direct representation (without using set operators) of 
universal quantification in a two-dimensional language is new 
and contributes to the understanding of universal quantifica- 
tion in database query languages. The class of universally 
quantified queries that can be expressed in out language is 
formally defined in Stction V. We believe that it includes 
most of the queries commonly encountered in practical sit- 
uations. 

The organization of the paper is as follows. Section I1 
briefly introduces our two-dimensional query language. 
Section I11 presents the syntactic constructs for composing 
queries with universal quantification. Similarly, Section IV 
presents the constructs for existential quantification with 
negation. Section V formally defines the class of universally 
quantified queries that we handle and presents the algorithm 
for transforming a universally quantified query to an 
existentially quantified query with negation. Section VI 
presents the algorithm for transforming an existentially 
quantified query to a relational calculus query. We present 
a simple guideline for composing universally quantified 
queries in Section VI1 and discuss a more complex 
case in Section VIII. Finally, we conclude the paper in 
Section IX. 

11. A TWO-DIMENSIONAL QUERY LANGUAGE 

In this section we briefly introduce our two-dimensional 
database query language. We present only those features that 
are relevant for the discussions in this paper. A full description 
of the language will be presented in a future paper. 

A query is a specification of conditions according to which 
entities are selected from among those contained in the data- 
base. We define a schema diagram as a graph that represents 
the structure of a database. We use the entity-relationship (ER) 
model [l] for its basis. A schema diagram consists of three 
constructs: entity sets, one-to-many (including one-to-one) 
relationship sets, and many-to-many (including nonbinary) 
relationship sets. An entity set appears as a rectangular node 
with the name of the entity set in it.  A one-to-many relationship 
set appears as an arc, with the name of the relationship in 
the middle. An end of the arc adorned with the symbol “*” 
represents a cardinality of “many,” while an unadorned end 
represents a cardinality of “one.” A many-to-many relationship 
set or a nonbinary relationship set appears as a rhombus node 
with the name of the relationship in it.  We draw unadorned 
arcs between the rhombus and the entity sets participating in 
the relationship. 

A query graph is a subgraph of the schema diagram, with 
possibly certain nodes and arcs replicated. In addition, each 
node of the query graph can have logical conditions and 
projection information associated with it. There is also a global 
condition box in which complex conditions can be specified. 
We classify logical conditions into three categories: a selection 
condition that applies to a single node, a join condition 
that applies to a set of nodes, and an aggregation condition 
that involves an aggregation operation. These conditions are 
specified in an area called a query box. For each node, one 
or more query boxes can be created by clicking the mouse 
with the cursor positioned on the node. For the purpose of 
this paper, however, we simply write the condition next to the 
node without using a query box. Thus, we write a selection 
condition next to the node representing the entity set to which 
the condition applies. Similarly, we write a join condition next 
to any one of the nodes representing the entity sets to which the 
condition applies. We do not discuss aggregation conditions, 
because they are beyond the scope of this paper. We select 
a projection attribute by clicking on the attribute name in 
the query box. Selected projection attributes are shown in 
reverse video. In this paper, for simplicity and without loss 
of generality, we assume that all the attributes of the entity 
set (rather than a subset of the attributes) are projected. We 
indicate projection by writing the symbol “proj.” next to the 
entity set. 

In Fig. 1 we illustrate the use of these constructs by us- 
ing a simple query. The query states: “List the employees 
whose salaries are more than one-tenth of the budget of 
their department and who participate in a project that has 
more than ten members.” The query contains three entity 
sets; Dept, Emp, and Project; a one-to-many relationship set, 
employ; and a many-to-many relationship set, Participate. A 
selection condition is specified for the entity set Project, and 
a join condition is specified for the entity sets Emp and 
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Fig. 1. An example of two-dimensional query. 

Fig. 2. A query with universal quantification 

Dept. The result of the query is projected from the entity set 
Emp. 

Fig. 3. Another query with universal quantification 
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111. UNIVERSALLY QUANTIFIED QUERIES Fig. 4. A universally quantified query with one-to-many relationship sets, 

In this section we present how universally quantified queries 
are expressed in our two-dimensional query language. Con- 
sider the following query: “List the departments that sell all the 
items supplied by the supplier Parker.” In relational calculus, 
the query is represented in (1). 

For convenience, we assume in this section that an entity set 
or a relationship set is mapped to a relation. In Section VI, we 
relax this restriction by mapping a one-to-many relationship 
set to a foreign key without representing it as a separate 
relation. The query is represented in Fig. 2, where a universal 
quantification box (U-box) drawn with bold lines encloses 
universally quantified variables: I (for Item), Su (for Supply), 

different from the query in Fig. 3, which says, “List the 
departments such that all the items they sell are supplied by the 
supplier Parker.” In relational calculus this query is represented 
in (2). In query (1) the phrase “they sell” modifies the noun 
(items) that is universally quantified, thus composing a noun 

pro]. Supplier wl Type-A 3 Supply Company Loc-New York 

Fig. 5. A universally quantified query with a ternary relationship set. 

phrase. In the relational calculus representation, the variables 

Item). These variables are universally quantified, because they 
quantified noun and the conditions 

associated with it. Thus, we enclose Sell and Item in a U-box. 
In Figs. 4 and 5 we present two additional examples 

of universally quantified queries. The schema diagrams in 

and S (for Supplier). Note that the query in this figure is to this noun phrase are (for and I (for 

the 
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these examples contain one-to-many and ternary relationship 
sets, whereas those in Figs. 2 and 3 contain many-to-many 
relationship sets. We use these schema diagrams throughout 
the paper for illustrativz purposes. 

The query in Fig. 4 states: “List the divisions where all 
the departments they own have at least one employee whose 
salary is greater than 50 000 dollars.” In relational calculus, i t  
is represented by (3). Note that the universally quantified noun 
phrase is, “the departments they own.” Thus, we enclose the 
entity set Dept and the relationship own in the U-box. 

The query in Fig. 5 states: “List the suppliers that supply 
all the parts of type A to companies located in New York.” 
The universally quantified noun phrase is, “the parts of type 
A.” Thus, the U-box encloses the entity set Item with the 
condition Type = A. 

Iv. EXISTENTIAL QUANTIFICATION AND NEGATION 

We discuss in this section how existential quantification is 
specified in our two-dimensional query language. Existential 
quantification is implicirly supported by many relational query 
languages. For examplt , consider the SQL query, “SELECT 
dept.* FROM dept, emp WHERE dept.dno = emp.dno AND 
empsalary > 50000.” This query can be represented in rela- 
tional calculus as follows: 

{ T I ~ D T , E ( & ~ ~ ( D T )  A ( D T  = T )  A rrnp(E) A DT[1] 
= E[3] A E[2] > 50000)). 

Note that the existential quantification on DT and E is im- 
plicit in the SQL quer). In these query languages, however, 
existential quantification is made explicit when negation is 
involved. For example, consider a SQL query, “SELECT * 
FROM dept X WHERE NOT EXISTS (SELECT * FROM 
emp WHERE X.dno = emp.dno AND empsalary > 50000).” 
This query returns the dept tuples only when there is no 
employee in the dept who earns more than 50000 dollars. 
The query is represented in relational calculus as follows: 

{T 1 3 ~ ~ ( d P p t ( D T )  A ( D T  T )  A 73E(P?n,D(E) A DT[1] 
= E[3] A E[2] > 50000))). (4) 

SQL supports explicit existential quantification even without 
negation. For example, consider the query, 

SELECT 
FROM partsl 
WHERE EXISTS ’SELECT * 

supnum, partr um, shiptime, onorder 

FROM parts2 
WHERE supnum = suppnum AND 

partnum = parttnum) 

This type of query has an explicit existential quantifier, but 
it can be easily translated to a join query without explicit 
existential quantification [6]. For example, the query can be 
translated as follows: 

SELECT supnum, partnum, shiptime, onorder 
FROM partsl, parts2 
WHERE supnum = suppnum AND 

partnum = parttnum 

With an existential quantifier, associated is a scope within 
which the quantification is effective. For example, in the 
query, 

{TI 31.1 [ C (  V1) A ( V I  = T )  A 731-2,\.3 [A(  V 2 )  A B (  V3) AV1 [ 11 
= V2[3] A v 2 [ l ]  = v3[2]]]} 

the scopes of existential quantification are enclosed by the 
brackets. In a two-dimensional language we represent a scope 
by a two-dimensional bracket; i.e., a box. In our language, we 
allow use of explicit existential quantification2 only when it 
is used in conjunction with negation. Thus, a box for negated 
existential quantification (NE-box) represents NOT EXISTS (a 
subquery) in the SQL syntax. The use of this NE-box (drawn 
with broken lines) is illustrated in examples 1 and 2. 

Example 1 

Consider the query, “List the departments where none of 
the employees in the department has a salary of more than 
50 000 dollars.” In our two-dimensional query language, the 
query is expressed as in Fig. 6. 

Example 2 

Consider the query, “List the divisions that do not own a 
department where none of the employees has a salary of more 
than 50 000 dollars.” This example shows nested existential 
quantification with negation. The query is shown in Fig. 7. 

V. TRANSLATION OF A UNIVERSALLY QUANTIFIED TWO- 
DIMENSIONAL QUERY TO AN EXISTENTIALLY QUANTIFIED 

TWO-DIMENSIONAL QUERY 

In this section we describe how we translate automatically 
a universally quantified query that the user composes into 
an existentially quantified query. We present a translation 
algorithm and show its correctness. 

Universally quantified queries in our language are in the 
following general form: 

{T13\-I(P(V1.!!’) A’dl.2(Q(Vl,V2) + 

31.3(R(V13 V2, V3) ) ) ) )  ( 5 )  

where P ,  Q, and R are formulas, V1. V2, and V3 are sets of 
tuple variables, and T is a set of free variables3 Free variables 
represent the tuples that appear in the result of the query; i.e., 

’If there is no quantified variable within the NE-box, it represents simply 
NOT (a condition) in the SQL syntax. 

We do not allow free variables inside universal quantification (i.e., 
projection inside the U-box) for the safety of the query. The safety is briefly 
discussed in the appendix. 
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I 

Fig. 6. A query with an NE-box. 

I 1  
I 1  
I 1  
1 1  I Salary  > 50000 I 

) I  

Fig. 7. A query with nested existential quantification with negation. 

the tuples that are projected. For example, the query in Fig. 2 
was expressed as in (1). 

We define a scope to be a set of entity sets, relationship sets, 
and conditions. In (5) ,  a scope corresponds to a set of tuple 
variables and formulas. We define three different scopes. For 
convenience, we define an entity set, a relationship set, or a 
logical condition as an element. 

1) Scope 1: This includes the entity sets that are projected, 
plus any other elements that are not included in scopes 2 
and 3. In (9, scope 1 includes the tuple variables in V1 
and T ,  plus the formula P (V1 ,  T ) .  

2) Scope 2: This includes the elements enclosed by the 
U-box (i.e., universally quantified elements). In (9, 
scope 2 includes the tuple variables in V2, plus the 
formula Q(V1, V2). 

3) Scope 3: Consider a reduced graph where the projected 
entity sets are eliminated. Scope 3 includes the elements 
that are directly or indirectly connected to those in 
scope 2 in the reduced graph. In (9, scope 3 includes the 
tuple variables in V3, plus the formula R(V1, V2, V3). 

Example 3 illustrates how we identify different scopes. 

Example 3 

In Fig. 4 the entity set Div belongs to scope 1, the entity set 

1 Emp 1 Salary > 50000 

Fig. 8. An example query for identifying scopes. 

Dept and the relationship set own belong to scope 2, and the 
entity set Emp, the relationship set employ, and the condition 
Salary > 50000 belong to scope 3. Suppose the query is 
slightly modified as in Fig. 8. Then the relationship set re1 
and the entity set Ent also belong to scope 1. Note that they 
do not belong to scope 3. 

We now present the algorithm for translating a universally 
quantified query to an existentially quantified query. 

Algorithm I (U-to-E Translation) 

1) Put an NE-box around all the elements in scopes 2 
and 3. 

2) Put an NE-box around all the elements in scope 3.  Note 
that this box is completely enclosed by the NE-box in 
step 1. If no element exists in scope 3, create an element 
with the value of “true” and put an NE-box around it. 

Correctness of the Translation: Algorithm 1 essentially re- 
flects the following equality: 

V(A 4 33) z V(7A V 3B) E i 3 ( A  A -3B). (6) 

Using this equality, (5) can be transformed as follows: 

which indicates that an NE-box is applied to all the elements 
in scopes 2 and 3. In addition, another NE-box is applied to 
all the elements in scope 3. This proves the correctness of the 
translation algorithm. 

We illustrate this translation in examples 4 and 5. 

Example 4 

The query in Fig. 4 is transformed from (3) as indicated 
in (S), which corresponds to the equivalent existential query 
in Fig. 7. 
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Fig. 9. An existentially quantified query with a ternary relationship set 

Example 5 

The query in Fig. 5 is translated into an existentially quan- 
tified query in Fig. 9. The query states: “List the suppliers for 
which there are no parts af type A that they do not supply to 
companies located in New York.” 

VI. TRANSLATION OF AN EXISTENTIALLY QUANTIFIED 
TWO-DIMENSIONAL QUERY TO A RELATIONAL 

CALCULUS QUERY 

In Section V we discussed how a universally quantified 
query can be translated to an existentially quantified query with 
negation. In this section “e present an algorithm for translating 
an existentially quantified query to a tuple relational calculus 
query. Using this transformation, a universally quantified 
query can be easily implemented by using existing relational 
database systems that support only existential quantification 
with negation. 

To translate the query, we first need to translate the schema 
according to the underlying data model. The translation of 
an entity-relationship model schema to a relational model 
schema is well known [13]. Here, we adopt a translation 
technique using system-generated identifiers; i.e., surrogates. 
We briefly review basic tcchniques for schema translation, and 
then present query transiation. 

A .  Schema Translation 

For schema translation, we introduce two types of relations: 
entity relations and relationship relations. First, for each entity 
set, we create a relation scheme (entity relation) that consists of 
all the attributes of the entity set plus a surrogate attribute and 
foreign key attributes. The surrogate uniquely determines the 
tuple. A foreign key attribute is added for each one-to-many 
relationship set in which this entity set is on the many-side 
of the relationship. The foreign key attribute is the surrogate 
attribute of the relation on the one-side of the relationship. 
We treat a one-to-one relationship set like a one-to-many 
relationship set, adding .i foreign key attribute to one of the 
entity sets. We treat thc entit) set so chosen as if it were 
the one on the many-side of the one-to-many relationship. 
Second, for each many-to-many or nonbinary relationship set, 
we create a relation scheme (relationship relation) that consists 
of the surrogate attributes of the entity sets participating in the 
relationship. 

Fig. 10. A query with a ternary relationship set. 

B. Query Translation 

We now present the query translation algorithm. We describe 
it  in  two steps: first we consider queries without NE-boxes, 
then we consider queries containing NE-boxes. 

1)  Queries Without NE-Boxes: 

Algorithm 2 (Simple-Translation) 

Input: A two-dimensional query without NE-boxes 

Output: A tuple relational calculus query 

Constructing a relational query in this case is straightfor- 
ward; thus, we only sketch the algorithm. First, we construct 
an atom of the form R ( V )  for each entity set, many-to-many 
relationship set, or nonbinary relationship set, where R is the 
name of the relation corresponding to the entity set, many- 
to-many relationship set, or nonbinary relationship set, and V 
is the tuple variable. We say that the formula R(V) defines 
the tuple variable V. Second, we construct a formula of the 
form, V l [ A l ]  = V2[A2], for each one-to-many relationship 
set, where V1, V2 are tuple variables for the relations on 
either side of the relationship, ill is the positional index for 
the surrogate attribute of the relation on the one-side of the 
relationship, and A2 is the positional index for the foreign 
key attribute of the relation on the many-side of the relation- 
ship. Similarly, we construct two equality formulas for each 
many-to-many relationship set, equating the tuple variable for 
each of the two entity relations, and the tuple variable for 
the relationship relation via the surrogate and foreign key 
attributes. For a nonbinary relationship set involving n3 entity 
sets, we construct 7) equality formulas. Third, we construct 
an appropriate formula for each condition specified. Fourth, 
all these formulas are logically ANDed, and the result is 

we equate each tuple variable to be projected with a free 
variable, T;. Example 6 illustrates this algorithm. 

quantified by gall t i i p l c ,  i , a r i a h l r s  d ~ f i n r d  in thr, f o r m u l a s .  Last, 

Example 6 

Consider the query in Fig. 10: “List the suppliers who 
supply a part of type A to a company located in New York.” 
The corresponding relational query is as follows: 

(T13s c p . ~ ~ ( s u p p l i e ~ s ( s )  A company(C) A Pnr f (P)  
A s u p p l y ( s u )  A ( s  = T )  A s[1] = S U ( ~ ]  A c[1] = s~[2]  

A P [ l ]  = Su[3] A C[2] = New York A P[2] = A ) } .  

Here, S, C,  P ,  and SIL are tuple variables, S[l], C[1], P[1] 
represent surrogate attributes of relations Supplier, Company, 
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and Part, and Su[l] ,  Su[2], Su[3] represent foreign key 
attributes of the relation Supply. The first three equality 
formulas come from the ternary relationship set Supply, and 
the last two come from the conditions for the entity sets 
Company and Part. 

2) Queries with NE-Boxes: We use the notation Qouter to 
represent the part of the query Q that is outside the outermost 
NE-boxes within Q. We call the part of the query within an 
NE-box as Qinner. If a relationship name appears within the 
NE-box, the relationship set is part of Qinner, even if it may be 
connected to an entity set outside the NE-box. The parameter 
n is the number of outermost NE-boxes in Q. 

Algorithm 3 (Translation) 

NE-boxes 

Begin 

Input: A two-dimensional query Q with zero or more 

Output: A tuple relational calculus query 

G = Simple-Translation(Q.,ter) 
For each outermost NE-box, of Q 

= l 3 a l l  t u p l e  variables d e f z n e d  in (Q ,nner , , ) , , , , ,  Trans- 
lation (Qinner,i) 

Output = G A Fl A Fz A . . . A F, 
End 

In a formula F; we do not generate existential quantification 
if (Qznner,i)outer has no tuple variables defined in it. In this 
case, the subquery simply becomes a condition. Note that 
algorithm 3 is called recursively for the subqueries within 
NE-boxes. In translating a subquery, all the tuple variables 
defined outside its scope can be referenced. For example, in 
example 7 the tuple variable DT is referenced within the 
innermost subquery. 

Example 7 

calculus query is as follows: 
Consider the query in Fig. 7. The translated tuple relational 

{ T I ~ ~ ~ ( D ~ w ( D V )  A (Dv = T ) A  

1 3 o ~ ( D e p t ( D T )  A Dv[1] = D T [ 2 ] A  

1 3 ~ ( E m p ( E )  A DT[1] = E[3] A E[2]  > 50000)))) 

where DV[1] is the surrogate of Div, DT[1] and DT[2] are 
the surrogate and the foreign key of Dept, E[3]  is the foreign 
key of Emp, and E[2] is the Salary attribute. 

VII. A GUIDELINE FOR COMPOSING A UNIVERSALLY 
QUANTIFIED QUERY 

Writing a universally quantified query is often not intuitively 
obvious. Thus we present a simple guideline for composing a 
universally quantified query. We present this guideline for the 
following reasons: 

1) The concept of universal quantification is more complex 
than most other concepts in a query language. We 
believe that this complexity is inherent and is not specific 
to a query language. 

2) Even when a query does not involve universal quantifi- 
cation, the flexibility of a natural language (e.g., words 

I 
nun 

Fig. 11. A query becomes ambiguous if implicit projection is allowed. 

like “all”) can give the impression that the query does 
involve universal quantifications, as we explain in the 
guideline below. 

Guideline (U-query) 

1) Rewrite the query in English by eliminating any occur- 
rences of “all” (or “each,” “every,” “at least”) where 
the elimination does not alter the meaning of the query. 
For example, consider the query, “List all the divisions 
where all departments they own have an employee 
whose salary is greater than 50000 dollars.” In this 
query, the first “all” can be removed without altering 
the meaning of the query, but the second “all” cannot. 
Thus the reduced query is, “List the divisions where 
all the departments they own have an employee whose 
salary is greater than 50000 dollars.” 

2) Identify the noun phrase that is quantified by the word 
“all.” A noun phrase includes the noun quantified by 
the word “all” and the phrase (if any) that modifies the 
quantified noun. In the example above, the noun phrase 
is “the departments they own.” 

3) Compose a query as if the word “all” were replaced by 
an indefinite article. In the example above we construct 
the query, “List the divisions where a department they 
own has an employee whose salary is greater than 50 000 
dollars.” Construct the corresponding query graph. 

4) Put a U-box around the entity sets, relationship sets, and 
logical conditions that correspond to the noun phrase 
identified in step 2. Thus the example query is repre- 
sented as in Fig. 4. 

VIII. QUERIES WITH IMPLICIT PROJEaION 

In Section VI1 we discussed a basic guideline for composing 
a universally quantified query. In this section we discuss a 
case that needs special attention. 

A query may have different meanings depending on whether 
certain elements belong to scope 1 or scope 3. For example, 
consider the query in Fig. 11. The query states: “List the 
divisions such that for each blue item there is a department 
in the division that sells the item.” Note that the query 
( Q u e r y l )  is different from the following query ( Q u e r y 2 ) :  
“List the divisions owning a department that sells all the blue 
items.” Queryl qualifies a division if the departments it owns 
collectively cover all the blue items, while Query2 requires 
that a single department cover all the blue items. 
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{Tl3\71(P(Vl) A V\’z(Q( V1. V2, T )  -+ 3\.3(R(V1. V 2 .  V 3 ) ) ) ) )  

= {TpLT1(P(V1) A V ~ ~ ~ ( T Q ( V ~ .  V2.T)  v 31,3(R(V1. V2. V3)))))  (AI) 

{T13111(P(V1) A VI-2(Q(V1. V2) + 31-3(R(Vl. V2. V 3 . T ) ) ) ) )  
= {T(3\.1(P(VI) A V ~ - ~ ( ~ Q ( V ~ .  V2) V 3r.j(R(V1, V2. V3.T))))) (A2) 

The scoping rules in Section V interpret the query as 
Queryl, since the entity set Dept and the relationship set own 
are contained in scope 3. To interpret the query as Query2 
we have to assume that there is an implicit projection on the 
entity set Dept, which will put the entity set Dept and the 
relationship set own in scope 1. 

Implicit projection makes the query ambiguous. To disam- 
biguate i t  we have two alternatives: 1) to provide a syntactic 
construct to distinguish scope 1 from scope 3 explicitly, or 
2) to disallow implicit projection by requiring that the entity 
set Dept be projected as well. We chose the latter option for the 
simplicity of the scoping rules and for ease of use. We believe 
that this requirement is reasonable, since in Query2 the user 
would quite likely be interested in having in the query result 
the specific department that covers all the blue items. 

IX. SUMMARY 
We have presented a technique for specifying universal 

quantification and existenrial quantification (with negation) in 
a two-dimensional database query language. Our technique 
allows a direct representation of universal quantification in 
a two-dimensional manner without using set operators. We 
have also presented a two-dimensional algorithm to transform 
a universally quantified query to a query with existential quan- 
tification and negation, and showed its correctness. Finally, we 
have presented an algorithm to transform an existentially quan- 
tified query to a relational calculus query. This transformation 
allows the universally quantified queries to be easily processed 
by many existing database management systems that support 
existential quantification with negation. 

Universal quantificatioii has been considered a difficult con- 
cept in database query languages. We claim that our technique 
renders the concept cas)' to understand. Substantiating this 
claim, we have presented a simple, easy-to-follow guideline 
for constructing queries with universal quantification. 

We believe that the technique of directly representing uni- 
versal quantification without using sets in a two-dimensional 
query language is new ard that its ease of use will contribute 
to bringing the concept of universal quantification more into 
the world of database query languages. 

APPENDIX 
SAFI.TY OF QUERIES 

In this appendix we briefly discuss the safety issue, which 
has been discussed extensively in [3],  [14], [SI, [12]. We 
omit detailed proofs and discussions on safety, since they are 
beyond the scope of the paper. 

A query (or a formula) is safe if it has a finite result. A class 
of formulas called evaluu ble formulas defined by Demolombe 

[3] and refined by Van Gelder and Topor [14] is by far the 
largest known decidable subset of safe formulas. A class of 
allowed formulas is a subset of evaluable formulas whose 
intermediate results are finite as well. Thus allowed queries 
ensure safe execution to produce the results. 

It can be shown that any relational calculus formula in 
the form of (5) is not evaluable if a free variable appears 
in scopes 2 or 3; i.e., in formulas Q and R .  For example, 
queries (9) and (10) are not evaluable (and in this case unsafe). 
In (Al)  the universally quantified subformula is satisfied 
regardless of T values if the second disjunct is satisfied. 
It is also satisfied for all (and possibly an infinite number 
of) T values that do not satisfy the formula Q(V1. V2.T) .  
(According to the formalism in [14], yerr(T. lQ(Vl .172 .  T ) )  
and yc7i(T.  R(V1. V2. V 3 ) )  fail.) Similarly, in (A2) the uni- 
versally quantified subformula is satisfied regardless of T 
values if the first disjunct is satisfied. (According to [14], 
gm(T .  -Q(V1, V 2 ) )  fails.) Thus both queries can produce 
an infinite number of values for T and therefore are unsafe. 

It can also be shown that a formula in the form of ( 5 )  
is allowed (and therefore safe) if i t  satisfies the following 
conditions: 

1) For every quantified subformula, each quantified vari- 
able appears in a base formula that is not contained 
in a nested quantification. A base formula is an atomic 
formula whose predicate symbol represents a database 
relation. 

2) The subformulas P.Q. and R are conjuncts of base 
formulas, atomic formulas that are conditions, and uni- 
versally quantified formulas of the form in ( 5 )  that 
satisfy condition 2 recursively. 

We note that the definition of the allowed class of formulas 
presented in [14] does not have to be extended for equality, 
since all the variables appear in base formulas that form 
conjunctions in the formulas P.Q. and R .  

The two-dimensional query language we present in this 
paper, when mapped to the relational model, satisfies the two 
properties with one exception. This exception is the treatment 
of the set of free variables T ;  i.e., the variables in T do not 
appear in base formulas. Nevertheless, since they are always 
equated to variables in the base formulas, they do not affect 
the safety of the query. Hence, we can treat the queries as if 
they did not include these free variables. Therefore, the queries 
in our query language are allowed, and safe. 
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