
216 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 3, MARCH 1992

Two-Dimensional Specification of Universal
Quantification in a Graphical Database

Query Language
Kyu-Young Whang, Senior Member, ZEEE, Ashok Malhotra, Gary H. Sockut, Luanne Burns, and Key-Sun Choi

Abstract -We propose a technique for specifying universal
quantification and existential quantification (combined with nega-
tion) in a two-dimensional (graphical) database query language.
Unlike other approaches that provide set operators to simulate
universal quantification, this technique allows a direct repre-
sentation of universal quantification. We present syntactic con-
structs for specifying universal and existential quantifications,
two-dimensional translation of universal quantification to existen-
tial quantification (with negation), and translation of existentially
quantified two-dimensional queries to relational queries. The
resulting relational queries can be processed directly by many
existing database systems. Traditionally, universal quantification
has been considered a difficult concept for typical database
programmers. We claim that this technique renders universal
quantification easy to understand. To substantiate this claim, we
provide a simple, easy-to-follow guideline for constructing univer-
sally quantified queries. We believe that the direct representation
of universal quantification in a two-dimensional language is new
and that our technique contributes significantly to the under-
standing of universal quantification in the context of database
query languages.

Index Terms- Universal quantification, existential quantifica-
tion, graphical query languages, databases, relational calculus,
entity-relationship model.

I. INTRODUCTION

NIVERSAL quantification is an important element in U relational calculus [2]. Yet it has not been fully in-
tegrated in many practical database query languages. There
are two possible reasons: 1) in a linear-syntax language,
complex syntax is needed to support universal quantification,
and 2) universal quantification can be replaced with exis-
tential quantification and negation, which many languages
provide. Some approaches support universal quantification by
using set operators [17], [l l] . However, in these approaches
the user has to transform a universally quantified query to
multiple subqueries connected by set operators. Oftentimes,
the transformation is a nontrivial task for average database
programmers. SQL [5] supports universal quantification that
can be specified in the form, expression = ALL (subquery).

Manuscript received November 6, 1989; revised December 6, 1991. Rec-
ommended by T. Ichikawa. This work was supported in part by the Korean
Ministry of Science and Technology under Contract No. N07450.

K.-Y. Whang and K . 4 . Choi are with the Department of Computer Science,
Korea Advanced Institute of Science and Technology, Daejeon, Korea.

A. Malhotra, G.H. Sockut, and L. Burns are with the IBM Thomas J.
Watson Research Center, Yorktown Heights, NY 10598.

IEEE Log Number 9 106476

However, only very limited cases of universal quantification
can be represented in this form.

In this paper we present a simple elegant technique for
specifying universal quantification. Our technique employs
a two-dimensional representation of queries.' Unlike other
set-oriented approaches, this technique allows a direct repre-
sentation of universal quantification. We first present syntactic
constructs for specifying universal quantification and exis-
tential quantification (with negation). We then present an
algorithm for transforming automatically a universally quanti-
fied query to an existentially quantified query. Next, we present
an algorithm to transform an existentially quantified query to
a relational calculus query. This sequence of transformations
proves that the universally quantified query specified in our
two-dimensional language can be easily implemented by using
any of many existing relational database systems, provided
that it supports negation and existential quantification. (Many
database systems support existential quantification implicitly
or explicitly. See Section IV for more discussion on this
aspect.)

Many two-dimensional query languages have been proposed
in the literature [17], [lo], [15], [16], [4], [7]. We exam-
ine these languages by classifying their features into three
categories: the data model, aggregation, and quantification.
We pay special attention to aggregation and quantification,
because these features require a scoping operator to define
parts of the query (i.e., subqueries) to which they apply. In
a linear syntax, the scoping operator is a parenthesis or a
keyword. In a two-dimensional syntax, it will be a box or an
enclosure. As we discuss in subsequent sections, we use boxes
to represent quantifications. Aggregation requires a scoping
operator when it appears in certain conditions, as exemplified
in [lo].

A pioneering work in two-dimensional representation of
database queries is Query-by-Example (QBE) [17]. A lan-
guage based on the relational model, it supports aggregation
and existential quantification (with negation). It also supports
universal quantification by using a set notation. Due to the lack
of the scoping operator (i.e., subqueries cannot be defined),
however, ambiguity can arise if aggregation appears in a
condition or if quantification involves more than one relation.

We describe our technique using the entity-relationship model because
of its elegance in representing the relationship. Nonetheless, the technique is
equally applicable to the relational model where relationships are replaced
with join conditions.

0098-5589/92$03.00 0 1992 IEEE

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on July 23, 2009 at 08:23 from IEEE Xplore. Restrictions apply.

WHANG el al.: TWO-DIMENSIONAL SPECIFICATION OF UNIVERSAL QUANTIFICATION 217

CUPID [lo] is also based on the relational model and has
features similar to QBE’s. However, it does not provide the
mechanisms for specifying quantification, although it does
provide a scoping operator for specifying subqueries involving
aggregation. GUIDE [151 is based on the entity-relationship
model, but does not support aggregation or quantification.
Elmasri and Larson [4] also proposed a language based on
the entity-relationship model. It provides set operators and
aggregation operators, but does not provide explicit scoping
operators. However, it is possible to resolve ambiguity in
scoping by rephrasing the queries in English and asking the
user to verify them. PICASSO [7] uses the universal relation
model [9] as its basis and supports set operators as well
as a scoping operator io be used for each maximal object.
The scoping operator can be used for aggregation, but not
for quantification. Quantification can be handled through set
operators, although this aspect was not discussed explicitly
in the paper. GQL/ER [16] combines the features of the
entity-relationship modzl and the universal relation model.
This language does not support aggregation or quantification.
Finally, Ozsoyoglu [1 11 proposed a linear syntax language
called RC/S*. RC/S“ is a variation of relational calcu-
lus that replaces universal quantification with operations on
sets.

Our query language supports aggregation, universal quan-
tification, and existential quantification (with negation). In this
paper we concentrate on the facilities for quantifications and
do not discuss aggregation in depth. Here, we identify two
distinct contributions of this paper. First, we claim that our
quantification scheme is easy to use. Traditionally, universal
quantification has been considered a difficult concept for
typical database programmers. Substantiating this claim, we
present a simple and easy guideline for constructing uni-
versally quantified queries. This guideline works for most
of the commonly encountered queries. Second, we believe
that the direct representation (without using set operators) of
universal quantification in a two-dimensional language is new
and contributes to the understanding of universal quantifica-
tion in database query languages. The class of universally
quantified queries that can be expressed in out language is
formally defined in Stction V. We believe that it includes
most of the queries commonly encountered in practical sit-
uations.

The organization of the paper is as follows. Section I1
briefly introduces our two-dimensional query language.
Section I11 presents the syntactic constructs for composing
queries with universal quantification. Similarly, Section IV
presents the constructs for existential quantification with
negation. Section V formally defines the class of universally
quantified queries that we handle and presents the algorithm
for transforming a universally quantified query to an
existentially quantified query with negation. Section VI
presents the algorithm for transforming an existentially
quantified query to a relational calculus query. We present
a simple guideline for composing universally quantified
queries in Section VI1 and discuss a more complex
case in Section VIII. Finally, we conclude the paper in
Section IX.

11. A TWO-DIMENSIONAL QUERY LANGUAGE

In this section we briefly introduce our two-dimensional
database query language. We present only those features that
are relevant for the discussions in this paper. A full description
of the language will be presented in a future paper.

A query is a specification of conditions according to which
entities are selected from among those contained in the data-
base. We define a schema diagram as a graph that represents
the structure of a database. We use the entity-relationship (ER)
model [l] for its basis. A schema diagram consists of three
constructs: entity sets, one-to-many (including one-to-one)
relationship sets, and many-to-many (including nonbinary)
relationship sets. An entity set appears as a rectangular node
with the name of the entity set in it. A one-to-many relationship
set appears as an arc, with the name of the relationship in
the middle. An end of the arc adorned with the symbol “*”
represents a cardinality of “many,” while an unadorned end
represents a cardinality of “one.” A many-to-many relationship
set or a nonbinary relationship set appears as a rhombus node
with the name of the relationship in it. We draw unadorned
arcs between the rhombus and the entity sets participating in
the relationship.

A query graph is a subgraph of the schema diagram, with
possibly certain nodes and arcs replicated. In addition, each
node of the query graph can have logical conditions and
projection information associated with it. There is also a global
condition box in which complex conditions can be specified.
We classify logical conditions into three categories: a selection
condition that applies to a single node, a join condition
that applies to a set of nodes, and an aggregation condition
that involves an aggregation operation. These conditions are
specified in an area called a query box. For each node, one
or more query boxes can be created by clicking the mouse
with the cursor positioned on the node. For the purpose of
this paper, however, we simply write the condition next to the
node without using a query box. Thus, we write a selection
condition next to the node representing the entity set to which
the condition applies. Similarly, we write a join condition next
to any one of the nodes representing the entity sets to which the
condition applies. We do not discuss aggregation conditions,
because they are beyond the scope of this paper. We select
a projection attribute by clicking on the attribute name in
the query box. Selected projection attributes are shown in
reverse video. In this paper, for simplicity and without loss
of generality, we assume that all the attributes of the entity
set (rather than a subset of the attributes) are projected. We
indicate projection by writing the symbol “proj.” next to the
entity set.

In Fig. 1 we illustrate the use of these constructs by us-
ing a simple query. The query states: “List the employees
whose salaries are more than one-tenth of the budget of
their department and who participate in a project that has
more than ten members.” The query contains three entity
sets; Dept, Emp, and Project; a one-to-many relationship set,
employ; and a many-to-many relationship set, Participate. A
selection condition is specified for the entity set Project, and
a join condition is specified for the entity sets Emp and

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on July 23, 2009 at 08:23 from IEEE Xplore. Restrictions apply.

218

1

IEEE TRANSACTIONS ON SOFIWARE ENGINEERING, VOL. 18, NO. 3, MARCH 1992

w(No-Henber>lO

emr
p r o j .m Salary>O.lrOept.Budget

P a r t i c i p a t e v
Fig. 1. An example of two-dimensional query.

Fig. 2. A query with universal quantification

Dept. The result of the query is projected from the entity set
Emp.

Fig. 3. Another query with universal quantification

p r o) . O i v P

I
employ

111. UNIVERSALLY QUANTIFIED QUERIES Fig. 4. A universally quantified query with one-to-many relationship sets,

In this section we present how universally quantified queries
are expressed in our two-dimensional query language. Con-
sider the following query: “List the departments that sell all the
items supplied by the supplier Parker.” In relational calculus,
the query is represented in (1).

For convenience, we assume in this section that an entity set
or a relationship set is mapped to a relation. In Section VI, we
relax this restriction by mapping a one-to-many relationship
set to a foreign key without representing it as a separate
relation. The query is represented in Fig. 2, where a universal
quantification box (U-box) drawn with bold lines encloses
universally quantified variables: I (for Item), Su (for Supply),

different from the query in Fig. 3, which says, “List the
departments such that all the items they sell are supplied by the
supplier Parker.” In relational calculus this query is represented
in (2). In query (1) the phrase “they sell” modifies the noun
(items) that is universally quantified, thus composing a noun

pro]. Supplier wl Type-A 3 Supply Company Loc-New York

Fig. 5. A universally quantified query with a ternary relationship set.

phrase. In the relational calculus representation, the variables

Item). These variables are universally quantified, because they
quantified noun and the conditions

associated with it. Thus, we enclose Sell and Item in a U-box.
In Figs. 4 and 5 we present two additional examples

of universally quantified queries. The schema diagrams in

and S (for Supplier). Note that the query in this figure is to this noun phrase are (for and I (for

the

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on July 23, 2009 at 08:23 from IEEE Xplore. Restrictions apply.

WHANG et al .: TWO-DIMENSIONAL SPECIFICATION OF UNIVERSAL QUANTIFICATION 219

these examples contain one-to-many and ternary relationship
sets, whereas those in Figs. 2 and 3 contain many-to-many
relationship sets. We use these schema diagrams throughout
the paper for illustrativz purposes.

The query in Fig. 4 states: “List the divisions where all
the departments they own have at least one employee whose
salary is greater than 50 000 dollars.” In relational calculus, i t
is represented by (3). Note that the universally quantified noun
phrase is, “the departments they own.” Thus, we enclose the
entity set Dept and the relationship own in the U-box.

The query in Fig. 5 states: “List the suppliers that supply
all the parts of type A to companies located in New York.”
The universally quantified noun phrase is, “the parts of type
A.” Thus, the U-box encloses the entity set Item with the
condition Type = A.

Iv. EXISTENTIAL QUANTIFICATION AND NEGATION

We discuss in this section how existential quantification is
specified in our two-dimensional query language. Existential
quantification is implicirly supported by many relational query
languages. For examplt , consider the SQL query, “SELECT
dept.* FROM dept, emp WHERE dept.dno = emp.dno AND
empsalary > 50000.” This query can be represented in rela-
tional calculus as follows:

{ T I ~ D T , E (& ~ ~ (D T) A (D T = T) A rrnp(E) A DT[1]
= E[3] A E[2] > 50000)).

Note that the existential quantification on DT and E is im-
plicit in the SQL quer). In these query languages, however,
existential quantification is made explicit when negation is
involved. For example, consider a SQL query, “SELECT *
FROM dept X WHERE NOT EXISTS (SELECT * FROM
emp WHERE X.dno = emp.dno AND empsalary > 50000).”
This query returns the dept tuples only when there is no
employee in the dept who earns more than 50000 dollars.
The query is represented in relational calculus as follows:

{T 1 3 ~ ~ (d P p t (D T) A (D T T) A 73E(P?n,D(E) A DT[1]
= E[3] A E[2] > 50000))). (4)

SQL supports explicit existential quantification even without
negation. For example, consider the query,

SELECT
FROM partsl
WHERE EXISTS ’SELECT *

supnum, partr um, shiptime, onorder

FROM parts2
WHERE supnum = suppnum AND

partnum = parttnum)

This type of query has an explicit existential quantifier, but
it can be easily translated to a join query without explicit
existential quantification [6]. For example, the query can be
translated as follows:

SELECT supnum, partnum, shiptime, onorder
FROM partsl, parts2
WHERE supnum = suppnum AND

partnum = parttnum

With an existential quantifier, associated is a scope within
which the quantification is effective. For example, in the
query,

{TI 31.1 [C (V1) A (V I = T) A 731-2,\.3 [A(V 2) A B (V3) AV1 [11
= V2[3] A v 2 [l] = v3[2]]]}

the scopes of existential quantification are enclosed by the
brackets. In a two-dimensional language we represent a scope
by a two-dimensional bracket; i.e., a box. In our language, we
allow use of explicit existential quantification2 only when it
is used in conjunction with negation. Thus, a box for negated
existential quantification (NE-box) represents NOT EXISTS (a
subquery) in the SQL syntax. The use of this NE-box (drawn
with broken lines) is illustrated in examples 1 and 2.

Example 1

Consider the query, “List the departments where none of
the employees in the department has a salary of more than
50 000 dollars.” In our two-dimensional query language, the
query is expressed as in Fig. 6.

Example 2

Consider the query, “List the divisions that do not own a
department where none of the employees has a salary of more
than 50 000 dollars.” This example shows nested existential
quantification with negation. The query is shown in Fig. 7.

V. TRANSLATION OF A UNIVERSALLY QUANTIFIED TWO-
DIMENSIONAL QUERY TO AN EXISTENTIALLY QUANTIFIED

TWO-DIMENSIONAL QUERY

In this section we describe how we translate automatically
a universally quantified query that the user composes into
an existentially quantified query. We present a translation
algorithm and show its correctness.

Universally quantified queries in our language are in the
following general form:

{T13\-I(P(V1.!!’) A’dl.2(Q(Vl,V2) +

31.3(R(V13 V2, V3))))) (5)

where P , Q, and R are formulas, V1. V2, and V3 are sets of
tuple variables, and T is a set of free variables3 Free variables
represent the tuples that appear in the result of the query; i.e.,

’If there is no quantified variable within the NE-box, it represents simply
NOT (a condition) in the SQL syntax.

We do not allow free variables inside universal quantification (i.e.,
projection inside the U-box) for the safety of the query. The safety is briefly
discussed in the appendix.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on July 23, 2009 at 08:23 from IEEE Xplore. Restrictions apply.

220 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 3, MARCH 1992

I

Fig. 6. A query with an NE-box.

I 1
I 1
I 1
1 1 I Salary > 50000 I

) I

Fig. 7. A query with nested existential quantification with negation.

the tuples that are projected. For example, the query in Fig. 2
was expressed as in (1).

We define a scope to be a set of entity sets, relationship sets,
and conditions. In (5) , a scope corresponds to a set of tuple
variables and formulas. We define three different scopes. For
convenience, we define an entity set, a relationship set, or a
logical condition as an element.

1) Scope 1: This includes the entity sets that are projected,
plus any other elements that are not included in scopes 2
and 3. In (9, scope 1 includes the tuple variables in V1
and T , plus the formula P (V1 , T) .

2) Scope 2: This includes the elements enclosed by the
U-box (i.e., universally quantified elements). In (9,
scope 2 includes the tuple variables in V2, plus the
formula Q(V1, V2).

3) Scope 3: Consider a reduced graph where the projected
entity sets are eliminated. Scope 3 includes the elements
that are directly or indirectly connected to those in
scope 2 in the reduced graph. In (9, scope 3 includes the
tuple variables in V3, plus the formula R(V1, V2, V3).

Example 3 illustrates how we identify different scopes.

Example 3

In Fig. 4 the entity set Div belongs to scope 1, the entity set

1 Emp 1 Salary > 50000

Fig. 8. An example query for identifying scopes.

Dept and the relationship set own belong to scope 2, and the
entity set Emp, the relationship set employ, and the condition
Salary > 50000 belong to scope 3. Suppose the query is
slightly modified as in Fig. 8. Then the relationship set re1
and the entity set Ent also belong to scope 1. Note that they
do not belong to scope 3.

We now present the algorithm for translating a universally
quantified query to an existentially quantified query.

Algorithm I (U-to-E Translation)

1) Put an NE-box around all the elements in scopes 2
and 3.

2) Put an NE-box around all the elements in scope 3. Note
that this box is completely enclosed by the NE-box in
step 1. If no element exists in scope 3, create an element
with the value of “true” and put an NE-box around it.

Correctness of the Translation: Algorithm 1 essentially re-
flects the following equality:

V(A 4 33) z V(7A V 3B) E i 3 (A A -3B). (6)

Using this equality, (5) can be transformed as follows:

which indicates that an NE-box is applied to all the elements
in scopes 2 and 3. In addition, another NE-box is applied to
all the elements in scope 3. This proves the correctness of the
translation algorithm.

We illustrate this translation in examples 4 and 5.

Example 4

The query in Fig. 4 is transformed from (3) as indicated
in (S), which corresponds to the equivalent existential query
in Fig. 7.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on July 23, 2009 at 08:23 from IEEE Xplore. Restrictions apply.

WHANG et al .: TWO-DIMENSIObAL SPECIFICATION OF UNIVERSAL QUANTIFICATION

~

22 1

p r o I

I
I
I

Fig. 9. An existentially quantified query with a ternary relationship set

Example 5

The query in Fig. 5 is translated into an existentially quan-
tified query in Fig. 9. The query states: “List the suppliers for
which there are no parts af type A that they do not supply to
companies located in New York.”

VI. TRANSLATION OF AN EXISTENTIALLY QUANTIFIED
TWO-DIMENSIONAL QUERY TO A RELATIONAL

CALCULUS QUERY

In Section V we discussed how a universally quantified
query can be translated to an existentially quantified query with
negation. In this section “e present an algorithm for translating
an existentially quantified query to a tuple relational calculus
query. Using this transformation, a universally quantified
query can be easily implemented by using existing relational
database systems that support only existential quantification
with negation.

To translate the query, we first need to translate the schema
according to the underlying data model. The translation of
an entity-relationship model schema to a relational model
schema is well known [13]. Here, we adopt a translation
technique using system-generated identifiers; i.e., surrogates.
We briefly review basic tcchniques for schema translation, and
then present query transiation.

A . Schema Translation

For schema translation, we introduce two types of relations:
entity relations and relationship relations. First, for each entity
set, we create a relation scheme (entity relation) that consists of
all the attributes of the entity set plus a surrogate attribute and
foreign key attributes. The surrogate uniquely determines the
tuple. A foreign key attribute is added for each one-to-many
relationship set in which this entity set is on the many-side
of the relationship. The foreign key attribute is the surrogate
attribute of the relation on the one-side of the relationship.
We treat a one-to-one relationship set like a one-to-many
relationship set, adding .i foreign key attribute to one of the
entity sets. We treat thc entit) set so chosen as if it were
the one on the many-side of the one-to-many relationship.
Second, for each many-to-many or nonbinary relationship set,
we create a relation scheme (relationship relation) that consists
of the surrogate attributes of the entity sets participating in the
relationship.

Fig. 10. A query with a ternary relationship set.

B. Query Translation

We now present the query translation algorithm. We describe
it in two steps: first we consider queries without NE-boxes,
then we consider queries containing NE-boxes.

1) Queries Without NE-Boxes:

Algorithm 2 (Simple-Translation)

Input: A two-dimensional query without NE-boxes

Output: A tuple relational calculus query

Constructing a relational query in this case is straightfor-
ward; thus, we only sketch the algorithm. First, we construct
an atom of the form R (V) for each entity set, many-to-many
relationship set, or nonbinary relationship set, where R is the
name of the relation corresponding to the entity set, many-
to-many relationship set, or nonbinary relationship set, and V
is the tuple variable. We say that the formula R(V) defines
the tuple variable V. Second, we construct a formula of the
form, V l [A l] = V2[A2], for each one-to-many relationship
set, where V1, V2 are tuple variables for the relations on
either side of the relationship, ill is the positional index for
the surrogate attribute of the relation on the one-side of the
relationship, and A2 is the positional index for the foreign
key attribute of the relation on the many-side of the relation-
ship. Similarly, we construct two equality formulas for each
many-to-many relationship set, equating the tuple variable for
each of the two entity relations, and the tuple variable for
the relationship relation via the surrogate and foreign key
attributes. For a nonbinary relationship set involving n3 entity
sets, we construct 7) equality formulas. Third, we construct
an appropriate formula for each condition specified. Fourth,
all these formulas are logically ANDed, and the result is

we equate each tuple variable to be projected with a free
variable, T;. Example 6 illustrates this algorithm.

quantified by gall t i i p l c , i , a r i a h l r s d ~ f i n r d in thr, f o r m u l a s . Last,

Example 6

Consider the query in Fig. 10: “List the suppliers who
supply a part of type A to a company located in New York.”
The corresponding relational query is as follows:

(T13s c p . ~ ~ (s u p p l i e ~ s (s) A company(C) A Pnr f (P)
A s u p p l y (s u) A (s = T) A s[1] = S U (~] A c[1] = s~[2]

A P [l] = Su[3] A C[2] = New York A P[2] = A) } .

Here, S, C, P , and SIL are tuple variables, S[l], C[1], P[1]
represent surrogate attributes of relations Supplier, Company,

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on July 23, 2009 at 08:23 from IEEE Xplore. Restrictions apply.

222 IEEE TRANSACTIONS ON SOFIWARE ENGINEERING, VOL. 18, NO. 3, MARCH 1992

and Part, and Su[l] , Su[2], Su[3] represent foreign key
attributes of the relation Supply. The first three equality
formulas come from the ternary relationship set Supply, and
the last two come from the conditions for the entity sets
Company and Part.

2) Queries with NE-Boxes: We use the notation Qouter to
represent the part of the query Q that is outside the outermost
NE-boxes within Q. We call the part of the query within an
NE-box as Qinner. If a relationship name appears within the
NE-box, the relationship set is part of Qinner, even if it may be
connected to an entity set outside the NE-box. The parameter
n is the number of outermost NE-boxes in Q.

Algorithm 3 (Translation)

NE-boxes

Begin

Input: A two-dimensional query Q with zero or more

Output: A tuple relational calculus query

G = Simple-Translation(Q.,ter)
For each outermost NE-box, of Q

= l 3 a l l t u p l e variables d e f z n e d in (Q ,nner , ,) , , , , , Trans-
lation (Qinner,i)

Output = G A Fl A Fz A . . . A F,
End

In a formula F; we do not generate existential quantification
if (Qznner,i)outer has no tuple variables defined in it. In this
case, the subquery simply becomes a condition. Note that
algorithm 3 is called recursively for the subqueries within
NE-boxes. In translating a subquery, all the tuple variables
defined outside its scope can be referenced. For example, in
example 7 the tuple variable DT is referenced within the
innermost subquery.

Example 7

calculus query is as follows:
Consider the query in Fig. 7. The translated tuple relational

{ T I ~ ~ ~ (D ~ w (D V) A (Dv = T) A

1 3 o ~ (D e p t (D T) A Dv[1] = D T [2] A

1 3 ~ (E m p (E) A DT[1] = E[3] A E[2] > 50000))))

where DV[1] is the surrogate of Div, DT[1] and DT[2] are
the surrogate and the foreign key of Dept, E[3] is the foreign
key of Emp, and E[2] is the Salary attribute.

VII. A GUIDELINE FOR COMPOSING A UNIVERSALLY
QUANTIFIED QUERY

Writing a universally quantified query is often not intuitively
obvious. Thus we present a simple guideline for composing a
universally quantified query. We present this guideline for the
following reasons:

1) The concept of universal quantification is more complex
than most other concepts in a query language. We
believe that this complexity is inherent and is not specific
to a query language.

2) Even when a query does not involve universal quantifi-
cation, the flexibility of a natural language (e.g., words

I
nun

Fig. 11. A query becomes ambiguous if implicit projection is allowed.

like “all”) can give the impression that the query does
involve universal quantifications, as we explain in the
guideline below.

Guideline (U-query)

1) Rewrite the query in English by eliminating any occur-
rences of “all” (or “each,” “every,” “at least”) where
the elimination does not alter the meaning of the query.
For example, consider the query, “List all the divisions
where all departments they own have an employee
whose salary is greater than 50000 dollars.” In this
query, the first “all” can be removed without altering
the meaning of the query, but the second “all” cannot.
Thus the reduced query is, “List the divisions where
all the departments they own have an employee whose
salary is greater than 50000 dollars.”

2) Identify the noun phrase that is quantified by the word
“all.” A noun phrase includes the noun quantified by
the word “all” and the phrase (if any) that modifies the
quantified noun. In the example above, the noun phrase
is “the departments they own.”

3) Compose a query as if the word “all” were replaced by
an indefinite article. In the example above we construct
the query, “List the divisions where a department they
own has an employee whose salary is greater than 50 000
dollars.” Construct the corresponding query graph.

4) Put a U-box around the entity sets, relationship sets, and
logical conditions that correspond to the noun phrase
identified in step 2. Thus the example query is repre-
sented as in Fig. 4.

VIII. QUERIES WITH IMPLICIT PROJEaION

In Section VI1 we discussed a basic guideline for composing
a universally quantified query. In this section we discuss a
case that needs special attention.

A query may have different meanings depending on whether
certain elements belong to scope 1 or scope 3. For example,
consider the query in Fig. 11. The query states: “List the
divisions such that for each blue item there is a department
in the division that sells the item.” Note that the query
(Q u e r y l) is different from the following query (Q u e r y 2) :
“List the divisions owning a department that sells all the blue
items.” Queryl qualifies a division if the departments it owns
collectively cover all the blue items, while Query2 requires
that a single department cover all the blue items.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on July 23, 2009 at 08:23 from IEEE Xplore. Restrictions apply.

WHANG er al.: TWO-DIMENSlONl\L SPECIFICATION OF UNIVERSAL QUANTIFICATION 223

{Tl3\71(P(Vl) A V\’z(Q(V1. V2, T) -+ 3\.3(R(V1. V 2 . V 3)))))

= {TpLT1(P(V1) A V ~ ~ ~ (T Q (V ~ . V2.T) v 31,3(R(V1. V2. V3))))) (AI)

{T13111(P(V1) A VI-2(Q(V1. V2) + 31-3(R(Vl. V2. V 3 . T)))))
= {T(3\.1(P(VI) A V ~ - ~ (~ Q (V ~ . V2) V 3r.j(R(V1, V2. V3.T))))) (A2)

The scoping rules in Section V interpret the query as
Queryl, since the entity set Dept and the relationship set own
are contained in scope 3. To interpret the query as Query2
we have to assume that there is an implicit projection on the
entity set Dept, which will put the entity set Dept and the
relationship set own in scope 1.

Implicit projection makes the query ambiguous. To disam-
biguate i t we have two alternatives: 1) to provide a syntactic
construct to distinguish scope 1 from scope 3 explicitly, or
2) to disallow implicit projection by requiring that the entity
set Dept be projected as well. We chose the latter option for the
simplicity of the scoping rules and for ease of use. We believe
that this requirement is reasonable, since in Query2 the user
would quite likely be interested in having in the query result
the specific department that covers all the blue items.

IX. SUMMARY
We have presented a technique for specifying universal

quantification and existenrial quantification (with negation) in
a two-dimensional database query language. Our technique
allows a direct representation of universal quantification in
a two-dimensional manner without using set operators. We
have also presented a two-dimensional algorithm to transform
a universally quantified query to a query with existential quan-
tification and negation, and showed its correctness. Finally, we
have presented an algorithm to transform an existentially quan-
tified query to a relational calculus query. This transformation
allows the universally quantified queries to be easily processed
by many existing database management systems that support
existential quantification with negation.

Universal quantificatioii has been considered a difficult con-
cept in database query languages. We claim that our technique
renders the concept cas)' to understand. Substantiating this
claim, we have presented a simple, easy-to-follow guideline
for constructing queries with universal quantification.

We believe that the technique of directly representing uni-
versal quantification without using sets in a two-dimensional
query language is new ard that its ease of use will contribute
to bringing the concept of universal quantification more into
the world of database query languages.

APPENDIX
SAFI.TY OF QUERIES

In this appendix we briefly discuss the safety issue, which
has been discussed extensively in [3], [14], [SI, [12]. We
omit detailed proofs and discussions on safety, since they are
beyond the scope of the paper.

A query (or a formula) is safe if it has a finite result. A class
of formulas called evaluu ble formulas defined by Demolombe

[3] and refined by Van Gelder and Topor [14] is by far the
largest known decidable subset of safe formulas. A class of
allowed formulas is a subset of evaluable formulas whose
intermediate results are finite as well. Thus allowed queries
ensure safe execution to produce the results.

It can be shown that any relational calculus formula in
the form of (5) is not evaluable if a free variable appears
in scopes 2 or 3; i.e., in formulas Q and R . For example,
queries (9) and (10) are not evaluable (and in this case unsafe).
In (Al) the universally quantified subformula is satisfied
regardless of T values if the second disjunct is satisfied.
It is also satisfied for all (and possibly an infinite number
of) T values that do not satisfy the formula Q(V1. V2.T) .
(According to the formalism in [14], yerr(T. lQ(Vl .172 . T))
and yc7i(T. R(V1. V2. V 3)) fail.) Similarly, in (A2) the uni-
versally quantified subformula is satisfied regardless of T
values if the first disjunct is satisfied. (According to [14],
gm(T . -Q(V1, V 2)) fails.) Thus both queries can produce
an infinite number of values for T and therefore are unsafe.

It can also be shown that a formula in the form of (5)
is allowed (and therefore safe) if i t satisfies the following
conditions:

1) For every quantified subformula, each quantified vari-
able appears in a base formula that is not contained
in a nested quantification. A base formula is an atomic
formula whose predicate symbol represents a database
relation.

2) The subformulas P.Q. and R are conjuncts of base
formulas, atomic formulas that are conditions, and uni-
versally quantified formulas of the form in (5) that
satisfy condition 2 recursively.

We note that the definition of the allowed class of formulas
presented in [14] does not have to be extended for equality,
since all the variables appear in base formulas that form
conjunctions in the formulas P.Q. and R .

The two-dimensional query language we present in this
paper, when mapped to the relational model, satisfies the two
properties with one exception. This exception is the treatment
of the set of free variables T ; i.e., the variables in T do not
appear in base formulas. Nevertheless, since they are always
equated to variables in the base formulas, they do not affect
the safety of the query. Hence, we can treat the queries as if
they did not include these free variables. Therefore, the queries
in our query language are allowed, and safe.

REFERENCES

[l] P. Chen, “The entity-relationship model-toward a unified view of
data,” ACM Trans. Database Syst., vol. 1, no. 1, pp. 9-36, Mar. 1976.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on July 23, 2009 at 08:23 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 3, MARCH 1992

E. F. Codd, “Relational completeness of data base sublanguages,”
in Data Base Systems (Proc. 6th Courant Computer Science Symp.,
May 1971), R. Rustin, Ed. Englewood Cliffs, NJ: Prentice-Hall, 1972,

R. Demolombe, “Syntactical characterization of a subset of domain-
independent formulas,” ONERACERT, Tech. Rep., 1982.
R.A. Elmarsi and J.A. Larson, “A graphical query facility for ER
databases,” in Proc. 4th IEEE Int. Conf on Entity-Relationship Ap-
proach, 1985, pp. 236-245.
“IBM database 2 reference,” 3rd ed., IBM, Mar. 1986.
W. Kim, “On optimizing an SQL-like nested query,’’ ACM Trans.
Database Syst., vol. 7, no. 3, pp. 443-469, Sept. 1982.
H. J . Kim et al., “PICASSO: a graphical query language,” Software
Pract. Experience, vol. 18, no. 3, pp. 169-203, Mar. 1988.
R. Krishnamurthy and C. Zaniolo, “Safety and optimization of horn
clause queries,” in Proc. Foundations of Deductive Databases and Logic
Program. (Washington, DC), Aug. 1986, J. Minker, Ed.
D. Maier and J.D. Ullman, “Maximal objects and the semantics of
universal relation databases,” ACM Trans. Dafabase Syst., vol. 8, no. 1,
pp. 1-14, Mar. 1983.
N. McDonald and M. Stonebraker, “CUPID-the friendly query lan-
guage,” in Proc. ACMPacific Conf: (San Francisco), 1975, pp. 127- 13 1.
G. Ozsoyoglu and H. Wong, “A relational calculus with set operators:
its safety, and equivalent graphical languages,” Dept. Comp. Eng. and
Sei., Case Western Reserve Univ., Cleveland, OH, Tech. Rep., 1987.
J. C. Shepherdson, “Negation in logic programming,” in Proc. Founda-
tions of Deductive Databases and Logic Program. (Washington, DC),
1986, J . Minker, Ed.
J. D. Ullman, Principles of Database Systems, 2nd ed. Rockville, MD:
Comput. Sci. Press, 1982.
A. Van Gelder and R. W. Topor, “Safety and correct translation of
relational calculus formulas,” in Proc. ACM Symp. on Principles of
Database SyJt., 1987, pp. 313-326.
H. K. T. Wong and I. Kuo, “GUIDE: graphical user interface for database
exploration,” in Proc. 8th Int. Conf on Very Large Data Bases (Mexico
City), Sept. 1982, pp. 22-32.
Z.-Q. Zhang and A.O. Mendelzon, “A graphical query language for
entity-relationship databases,” in Entity Relationship Approach to Soft-
ware Engineering, C. G. Davis et al., Eds. New York: Elsevier Science,
1983, pp. 441-448.
M. M. Zloof, “Query by example,” in Proc. Nut. Comput. Con$, 1975,
pp. 431-438.

pp. 65-98.

Kyu-Young Whang (S’73-M’75-SM’88) gradu-
ated (Summa Cum Laude) from Seoul National
University in 1973, and received the M.S. degrees
from the Korea Advanced Institute of Science and
Technology (KAIST) in 1975, and Stanford Uni-
versity in 1982. He earned the Ph.D. degree from
Stanford University in 1984.

From 1975 to 1978, he was a Senior Research
Engineer at the Agency for Defense Development,
Korea. From 1983 to 1991, he was a Research Staff
Member at the IBM T. J. Watson Research Center,

Yorktown Heights, NY, where he performed various research projects in
databases, office systems (including Office-by-Example), and expert systems.
He is now an Associate Professor in the Computer Science Department
of KAIST, and the Director of the Database and Knowledge Engineering
Laboratory of the Center for Artificial Intelligence Research. His research
interests encompass multimedia databases, object-oriented databases, engi-
neering databases, expert systems, and office systems.

Dr. Whang served as an IEEE Distinguished Visitor from 1989 to 1990,
received the Best Paper Award from the 6th IEEE International Conference
on Data Engineering, served the 5th IEEE International Conference on Data
Engineering as a Program Co-chair, and has served on program committees
of numerous international conferences, including ACM SIGMOD and VLDB.
He twice received the External Honor Recognition from IBM. He is on
the editorial boards of VLDB Journal, Distributed and Parallel Databases:
An International Journal, and the IEEE Data Engineering Bulletin. He is a
member of the ACM.

Ashok Malhotra received the Ph.D. degree from
the Massachusetts Institute of Technology He has
been a Research Staff Member in the Computer Sci-
ence Department at the IBM Thomas J. Watson Re-
search Center since 1975. He has managed several
projects related to entity-relationship systems: an
entity-relationship database, an entity-relationship
language and application development system, and
a visual interface to entity-relationship databases
His current research interests include application
development technology, graphical interfaces for

application development, and object-oriented systems and databases. Prior
to joining IBM he worked for several years as a Management Consultant, and
has made contributions to a methodology for designing application systems
and databases based on the business needs of the company.

Gary H. Sockut received the B.S. degree in ap-
plied mathematics from Brown University, the M.S.
degree in electrical engineering from the Massachu-
setts Institute of Technology, and the Ph.D. degree
in applied mathematics from Harvard University.

He is an Advisory Programmer at the IBM Santa
Teresa Laboratory, and earlier worked at BGS Sys-
tems, the National Institute of Standards and Tech-
nology, and the IBM T. J. Watson Research Center.
His main areas of research interest are in database
management, office systems, and operating systems.

Dr. Sockut is a member of tKe IEEE Compiter Society and ACM:

Luanne Burns received the M.S. degree in com-
puter science from Columbia University, where her
main concentration was in artificial intelligence and
expert database systems. She is currently pursuing
the Ph.D. degree in cognitive science, also at Co-
lumbia University.

She has been with IBM at the Thomas J . Watson
Research Center since 1984. Her primary research
interests have been entity-relationship database sys-
tems, user interfaces, and most recently, graphical
interface design and development for relational data-
base systems.

Key-Sun Choi received the B.S. degree in mathe-
matics from Seoul National University, and the M.S.
and Ph.D. degrees in computer science from the
Korea Advanced Institute of Science and Technol-
ogy.

He is an Assistant Professor at the Korea Ad-
vanced Institute of Science and Technology. Pre-
viously, he worked at the Hankuk University of
Foreign Studies, and the C&C Information Research
Laboratory of NEC in Japan. His main areas of
research interest are in natural language processing,

Dr. Choi is a member of the IEEE Computer Society, ACM, ACL, AAAI,
information retrieval, office systems, and computational logic.

KISS, and IPSJ.

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on July 23, 2009 at 08:23 from IEEE Xplore. Restrictions apply.

