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The formal method of regularization of mathematical expressions of sums of products of different types
of é-functions is first applied to the example of vacuum polarization. It is emphasized that only a regular-
ization of the whole expression without factorization leads to gauge invariant results. It is further shown,
that for the regularization of the expression for the magnetic moment of the electron, a single auxiliary
mass is sufficient, provided that different functions of the same particle (e.g., the photon functions D and
D®) are regularized in the same way and that the regularization of products of two electron functions is
never factorized. The result is then the same as that of using Schwinger’s method of introducing suitable
parameters as new integration variables in the argument of 3-functions, without using any auxiliary masses.

§1. INTRODUCTION

N spite of many successes of the new relativistically
invariant formalism of quantum electrodynamics,’
which is based on the idea of “renormalization” of mass
and charge, there are still some problems of uniqueness
left, which need further clarification. The most impor-
tant one seems to us to be the problem of the self-energy
of the photon, which was raised by Wentzel’s? remark
that the formal application of Schwinger’s original
technique of integration to the resulting integral gives
a finite result different from zero for this self-energy.
This problem is formally contained in the more general
problem of the gauge invariance for the resulting current
due to vacuum-polarization by an arbitrary external
field (not necessarily by a light wave). Schwinger? has
shown that this current is given by

1

G =~ [ i), . Do) 4,2
when e(x) =1 for {Z0; 4,°%(x) is the vector potential
of the external field and ([ j.(x), 7,(x) ])o is the vacuum
expectation value of the commulator of j7.(x) with
J»(x'). The condition for the gauge invariance of this
expression for (j,(x)) (which includes the vanishing of
the photon self-energy as a special case) is:

0/9xu{{[ ju(x), (") Doe(x—2a")} =0.

Schwinger tried to prove the validity of this condi-
tion, after reducing it to the form

(Liu(@), 7u(@") Dol de(x—2") /02, ]=0,

1S. Tomonaga, Prog. Theor. Phys. 1, 27 (1946). J. Schwinger,
Phys. Rev. 74, 1439 (1948); Phys. Rev. 75, 651 (1949); Phys.
Rev. 75, 1912 (1949). These papers are quoted in the following
as SI, SII, SIII. Our notations follow as closely as possible those
of these papers. For the definitions and the properties of the
functions A, A: (A is identical with A in SII), and AW see particu-
larly the appendix of SII. In this paper natural units z=c=1 are
used throughout. F. J. Dyson, Phys. Rev. 75, 486 (1949), and
]1;1]1:}75 Rev. 75, 1736 (1949). In the following quoted as DI, and

2 G. Wentzel, Phys. Rev. 74, 1070 (1948).
3STI, Eq. (2.19).

by the argument that a time-like component of the
current commutes with j, at all points of a space-like
surface.* The specialization of the general invariant
form of the commutator to this case, however, gives a
result proportional to

8@ (x—a")(0A® /9x,),

which is indeterminate due to the singularity of
0A® /dx, on the light cone, which has the form
~ux,/(xs%,). The whole expression may therefore be
written as

5@ (x—2) (9AW /3x,),

in agreement with the straightforward computation
(see §2 below).

The occurrence of products of functions with a §-type
singularity and with a pole is typical of the new formal-
ism and seems to be the main source of the remaining
uniqueness problems.

In order to overcome these ambiguities we apply in
the following the method of regularization of A-func-
tions (or products of them) with the help of an intro-
duction of auxiliary masses. This method has already
a long history. Much work has been done to compensate
the infinities in the self-energy of the electron with the
help of auxiliary fields corresponding to other neutral
particles with finite rest-masses interacting with the
electrons.® Some authors assumed formally a negative
energy of the free auxiliary particles, while others did
not need these artificial assumptions and could obtain
the necessary compensations by using the different sign
of the self-energy of the electron due to its interaction
with different kinds of fields (for instance scalar fields
vs. vector fields). We shall denote these theories, in
which the auxiliary particles with finite masses and
positive energy are assumed to be observable in princi-
ple and are described by observables entering the Hamil-

4811, Eq. (2.29).

-5 Compare for older literature (including his own contributions),
A. Pais, The Development of the Theory of the Electron (Princeton
University Press, Princeton, New Jersey, 1948).
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tonian explicitly as “realistic,”” in contrast to ‘“formal-
istic” theories, in which the auxiliary masses are used
merely as mathematical parameters which may finally
tend to infinity. Recently the “realistic” standpoint
was extended to the problem of the cancellation of
the singularities in the vacuum polarization, due to
virtual electron-positron pairs generated by external
fields, by introducing auxiliary pairs of particles with
opposite electric charges and masses different from that
of the electron.® It was shown that the signs of the
polarization effect allow compensation of the singu-
larities only if the auxiliary particles are assumed to
obey Bose-Statistics. Until now it was not possible. to
carry through the “realistic” standpoint to include all
possible effects in higher order approximations in the
fine-structure constant, nor is it proven that this
problem is not overdetermined. Presumably a con-
sistent “realistic’ theory will only be possible if, from
the very beginning, all observables entering the theory
have commutation rules and vacuum expectation values
free from singularities, i.e., different from the A and
A® functions which obey a wave equation correspond-
ing to a given mass value. Until now, however, it has
not been possible to carry through such a program.

At the present stage of our knowledge it is therefore
of interest to investigate further the ‘“‘formalistic” use
of auxiliary masses in relativistic quantum theory.
This was done independently by Feynman’? and by
Stueckelberg and Rivier.® The latter authors use (more
generally) an arbitrary number of auxiliary masses,
while the former introduces only a single large auxiliary
mass, which was sufficient for his particular problem,
the regularization of the self-energy of the electron.
From the well-known expansions of the A- and A®-
functions near the light cone it can easily be seen (see
§2) that in the linear combinations:

Ar(x)=2_;c:A(x;M;)
and
AR(I)(x) =Z¢ CiA(l) (x,Ml))

the strongest singularities cancel, if

Zi6i=0,

and the remaining singularities (finite jumps and
logarithmic singularities) also cancel if in addition the
condition

2ieiM =0

holds. If the first condition alone is sufficient to guaran-
tee the regularity of a certain result, it is obvious that
a single auxiliary mass M (besides the original electron

8 G. Rayski, Acta Phys. Polonica 9, 129 (1948). (Only light
waves as external electromagnetic field are considered in this
paper.) Umesawa, Yukawa, and Yamada, Prog. Theor. Phys. 3,
No. 3, 317 (1948).

?R. P. Feynman, Pocono Conference 1948; Phys. Rev. 74,
1439 (1948). Applications by V. F. Weisskopf and J. B. French,
Phys. Rev. 75, 1240 (1949).

8 E. C. G. Stueckelberg and D. Rivier, Phys. Rev. 74, 218 and
986 (1948). D. Rivier, Helv. Phys. Acta XXII, 265 (1949).
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mass Mo=m) with ;= —c¢o= —11is all that is necessary.
It should not be forgotten, however, that Feynman’s
success in using a single auxiliary mass in the problem
of the self-energy of the electron implies the assumption
that in the corresponding expression® resulting from
the invariant form of perturbation theory the photon
functions D and D® have both to be regularized
with the same auxiliary mass. (A formal alternative
would be to leave the photon-functions unchanged, but
to regularize the electron-functions A and A® with the
same auxiliary mass, or to regularize the whole expres-
sion without factorization and with one auxiliary mass.)

The application of the formal method of mass-
regularization to the problem of vacuum-polarization!®
(§4) shows that not only the use of a single auxiliary
mass is here insufficient, but that any regularization of
A- or A®-functions as separate factors leads to results
that are not gauge invariant. As was shown by Rayski!
only the regularization of the whole expression for the
resulting current (without factorization) gives satisfac-
tory results in this case. The formal use of continuous
mass distributions is here particularly suited to illus-
trate .the connection between the different results of
Wentzel and Schwinger for the photon self-energy.

In §5 the example of the correction to the magnetic
moment of the electron, which is one of the main
results of Schwinger, is treated from the “formalistic”
standpoint of mass regularization. We agree with
Schwinger that the use of auxiliary masses is not
necessary in this case if the computations in momentum
space are made with sufficient care (see additional
remark A). In any case (different from the situation
in the problem of vacuum-polarization), the use of
a single auxiliary mass is here sufficient to avoid any
ambiguity, provided that the same mass is applied
both to the D and the D{-functions of the photon,
analogous to Feynman’s method for the self-energy
of the electron, or that the regularization is applied
to the products of two A- and A®-functions without
factorization!? (see reference 20).

9 SII, Eqs. (3.77) and (3.82).

10 Dyson (see DII) applies to this problem a method of regular-
ization without use of auxiliary masses, which is more similar to
the methods used in the earlier stages of positron theory.

11 Rayski made this proposal in the summer of 1948, during his
investigations on the photon self-energy of Bosons (see reference
6). With his friendly consent we later resumed his work and
generalized the method for arbitrary external fields (not necessarily
light waves).

12 The problem of the magnetic moment of nucleons due to a
mesonic interaction, which shows a close analogy to the problem
of the magnetic moment of the electron due to electromagnetic
interaction, is not treated in this paper. Stueckelberg-Rivier give
(see reference 8) a formula for the magnetic moment of the
neutron which they characterize as not leading to a definite
numerical value. A justification of this may, in principle, be seen
in the fact that the most general form of regularization with
auxiliary masses must always lead to an arbitrary value for
integrals of this type. On the other hand the mentioned general
analogy between the two cases makes it plausible that the same
mathematical methods which lead to an unambiguous definition
of the magnetic moment of the electron will also lead to an

unique definition of the value of the theoretical results for the
magnetic moments of the nucleons (at least for scalar and pseudo-
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Both groups of authors (Stueckelberg-Rivier® and
Feynman-Dyson'®) seem to ascribe to a particular
combination of A-functions, which describes outgoing
waves for the future and incoming waves for the past,
an important or even fundamental significance. As this
question can be left open for the purpose of this paper,
we discuss Dyson’s expression for the magnetic moment
of the electron, in which the function A, for the electron
and D, for the photon alone occur,' only in a brief
additional remark (B; §5). We believe that in order to
investigate the range of applicability of the particular
function- A,, the discussion of more complicated ex-
amples will be necessary.

Summarizing, one must admit that the additional
rules which the “formalistic” standpoint has to use
(e.g., to apply the same mass values for A- and A®-
functions, and not to factorize the regularization of
products of A- and A®W-functions corresponding to
pairs of charged particles) could be immediately under-
stood from the “realistic” standpoint and appears as if
borrowed from the latter.!® It seems very likely that
the “formalistic”’ standpoint used in this paper and by
other workers can only be a transitional stage of the
theory, and that the auxiliary masses will eventually
either be entirely eliminated, or the “realistic” stand-
point will be so much improved that the theory will not
contain any further accidental compensations.

§2. THE BASIC CONCEPTS OF REGULARIZATION

In an invariant perturbation theory, such as the one
introduced by Schwinger into quantum electrody-
namics, the two invariant functions, A and A®, play
an essential role. Vacuum expectation values of properly
symmetrized products of field operators are expressed
in terms of A®), while A appears in connection with the
covariant formulation of commutation rules.

The handling of expressions involving A- and A®-

scalar mesons). Meanwhile K. M. Case, Phys. Rev. 76, 1
(1949), obtains an unambiguous result (from invariant perturba-
tion theory) for the magnetic nucleon moments which agrees
completely with those of Luttinger (Helv. Phys. Acta XXI, 483
(1948)). He does not give the details of his evaluation of the
integrals, for which no auxiliary masses are needed.

13 Compare DI and DII. The function in question is denoted
with D, by Stueckelberg-Rivier, with Dy by Dyson and with Ar
by Case. We use the notation A. and D, for the corresponding
electron and photon functions respectively.

14 DI, Section X, formula for L.

16 The interesting problem of the “self-stress” of the electron
(see A. Pais, reference 5; in an unpublished letter of last year
Pais gave the result that in the theory of holes the value of this
self-stress is finite, namely «/27-m (a=fine-structure constant),
but not zero, as special relativity requires for the total stress of a
closed system) may throw more light on the relations between

the two standpoints. Detailed calculations by one of us (F.V.)

gave the result that a formal regularization with auxiliary masses
does not change the finite value of Pais for the self-stress; one
has therefore either to consider the localization of energy in
space and time as a non-physical concept in quantum theory and
to admit only the energy-momentum vector (which is already
integrated over space-time), or one has to ascribe to the compen-
sating auxiliary masses a physical reality such that their contri-
bution to the stress in the intermediate states compensates the
other part of the self-stress of the electron.
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functions exhibit some characteristic difficulties, which
may be summarized as follows:

(a) The occurrence of indelerminate expressions as a conse-
quence of the coincidence of the §-type singularity of A(x) with
the pole of A®(x) on the light cone. Only a properly defined
limiting process may give them a definite meaning.

(b) The necessity of taking into account, in the course of the
calculation, the “covariance” of some diverging (however formally
covariant) expression in order to split off a finite part. This too
may be done in a proper way only after these expressions have
been made finite by a regularization process.

Since both difficulties are connected with the singular
features of the A- and A®W-functions on the light cone,
an invariant elimination of these singularities may be
helpful in an attempt to escape the above-mentioned
complications. Looking for such a device, one is guided
by the dependence of A and A™W on the rest mass of the
corresponding field. This dependence is exhibited in the
integral representations:

AD (g)= — (m2/27r2)fwda sin[Am?-a+(1/40)], (1)

A(x) = (m?/4x?) fwda cos[ Am?-a+(1/4a)], (1b)

where

A= ——x,pc,,,* (2>
which show that both A® and A are of the form:

m?- fu(Am?).

From this it follows that §-type singularities (§(\))
and first order poles (1/A) are independent of m,
whereas finite jumps and logarithmic singularities are
proportional to m? Since these are the only types of
singularities occurring in A and AW, they may be
avoided by introducing the regularized invariant func-
tions Ag and Ap® is:

AW =3, c,AO(M,), Ar=Y:c:A(M)), 3)

where ¢; satisfies the conditions:
2ici=0 4y
S eiM2=0. (Ta)

In order to exhibit more clearly the efficacy of these
conditions we give the development of A® and A for
small N (omitting all terms vanishing for A=0):

1 (-2 % m?
A“)(’C)T{T*’”z log (Al )= } @

™

1 m?
A<x>=-{a(x>+(—+- : -)wm} 5)
4qr 4
where
0+(x)={(1)} for x=0.

*In the following xs=1ixo=1t.
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It is easily seen that Ag vanishes for A=0, such that
Ax)= —2¢e(x) A(x)

is regularized too. Ag¥, however, takes the value
1
—> iciM2logM; for A=0.
4r

It is the meaning of the regularization prescriptions
that the first term in the series (3) represents the
non-regularized function itself, i.e., that

C()'———-]., M0=m

and that all M; (>0) should finally tend to « (accord-
ing to the “formalistic”’ standpoint, adopted in the
following). The coefficients ¢; need hereby not remain
finite. We shall, however, impose the condition

2 (el /M H—0 (6)
which ensures that
>/ eF(M2)—0 if only

| M2F(M2)| <A forall i>0.

For the purposes of a general discussion it may
sometimes be advantageous to replace the discrete
spectrum of auxiliary masses by a continuous one
(including, or course, the discrete as a special case):

+o0
An(r)= f dep() A K), ete. )

where « has the signification of the square of a mass.
The conditions (I, Ta) now read:

)

(T'a)

On writing p(k) as §(k—m?)+p1(x) condition (6) takes
the form

f dx(| p1() | /)—0. a>0 (®)

a

An alternative possibility of regularization is con-
tained in the prescription

Fa= f dkp(F(AD(x), A (1)) ©)

where F represents some (bilinear or higher order) form
in A, AQ dA/d\, dAD /dX. ,

The use of the prescription (9) needs further expla-
nation: The form F may contain both A-(electron) and
D-(photon) functions. We may then either regularize
the expression F as a whole (both A- and D-functions
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without factorization):

Fg= f drp()F(AD ('), DD (k); A(K), D(x))
K= (m 1)},

or we may also regularize I’ only with respect to the
D-function referring to one type of field, e.g.:

Frp= fdxp(K)F(A‘”(M), DO(x); A(m), D(x)).

Whenever in this latter case [7 is linear with respect to
the D-function to be regularized, (9) reduces to (3).
(i.e., the introduction of individually regularized D-
functions), but implies the important additional rule
that the same regulator p(x) has to be applied to both
D and DO, If, on the contrary, F is bilinear with respect
to the field in question, all these bilinear terms. have to
be regularized without factorization and with the same
regulator. In this latter case the conditions (I'), (I'a)
are then, in general, not sufficient to remove all singu-
larities from (9). They eliminate however the strongest
ones, especially those of the type 6(\)/\.

The rule (9), interpreted in the above-explained sense,
will be adopted in the following throughout. It is this
rule that assures the gauge invariance of the polariza-
tion current in the problem of vacuum polarization—
in contrast to the results of (3).

One may object that this prescription suffers from a
lack of uniqueness, but this apparent deficiency affects
only the mass and charge renormalization terms. Hereby
we mean, more precisely, that after mass and charge
terms have been removed, all additional corrective
terms shall be independent of the way they are regularized,
and shall, of course, be independent of the parameters c;
and M ; in the limit M — o (or pi(x)—0 for any finite ).
This is not the case if in the form F, (9), the individual
summands are regularized independently and differ-
ently:

F=F+F,; FR=fdxpa(K)Fl(K)—{—fdpr(K)Fg(K);

a quite arbitrary result may then be obtained, as will
be shown later on (see §5, additional remark C). The
charge and mass terms themselves, however, depend
on the way they are regularized, since they depend on

> icilogM; or fdxp(x) logk. (10)

In connection with the use of the Fourier-integral
representation of A and A® (as in (1a, b)) for compu-
tational purposes, it is convenient to have conditions
(I’, T'a) expressed in terms of the Fourier transformed

of p(k):

R(a)= fdxp(x)e“i““. (11)
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The conditions (I, I’a) then read

R(0)=0 1)
R'(0)=0 (I"a)
while the integral (10) is transformed into
1 p™da
*Ef.w PR (10)

(e(@)==+1 for a=0).
§3. THE INVARIANT PERTURBATION THEORY

Let ¥(x), ¥(x) =¢*(x)B be the quantized operators of
the electron field and 4,(x) the four potential repre-
senting the radiation field. ¥, ¢ and A4, are supposed
to satisfy the equations of the uncoupled fields:

[v+(0/0x,)+mIy=0, (12)
(09/02,)y’—m=0, (12a)
[P4,=0, (13)
(0A4,/0%,)¥ () =0, (14)
and accordingly, obey the commutation relations:
[4u(x), 4,(x")]=18,,D(x—a") (15)
{Walx), ¥5(x")} = i—.S ap(x—2")
1 ]
=—'('y"——m) Alx—2a'). (16)
i\ 0x, «B

[A, B]=AB—BA, {A,B}=AB+BA.

The auxiliary condition (14) involves the state vector
¥ of the system, whose equation of motion is given by

| i(9/01)=HV. (17)
Herein H represents the interaction energy:
=~ [,
——ie [EpNG) A6, a8)

The solution of (17) may be achieved in successive
approximations by a set of unitary transformations:

V= g iS10F = ¢ iS10g~i8:0W = - . . = U () g, (19)

where ¥k is time-independent in the desired approxi-
mation and thus represents some “free-particle”’-state.

The change in properties of an operator Q referring
say to the field @, due to the interaction of ¢ with the
vacuum of the field b, is then expressed in the vacuum
expectation value (with respect to ) of the transformed
operator €:

<g>vac(b) = <U_1Qu>vac(b)~ (20)

W. PAULI AND F. VILLARS

Sometimes it may be convenient to separate the
electromagnetic field (and its sources) from the system
under consideration and treat it as a given (¢-number)
field: 4,*%(x), satisfying:

[P4 5 (x) = — T .o<4(x). (21)

~ As before, “states” are represented by a time-inde-

pendent state vector ¥x and a transformation formally
analogous to (19), introducing ¥ g, exhibits the change,
induced by the presence of A4,°xt in the expectation
value of an operator Q.

The transformation #, (19), shall be written, more
precisely, as

u(t)= —iS1(8) [ 1 g— 182D . - ° (22)

where S1(?) is thought to remove the first-order coup-
ling, S2(/) the remaining second-order interaction, etc.
Between these steps may take place renormalization
transformations NV, defining new matter field operators
which obey equations with adjusted mass.

According to this program, .S is defined by:

Si=H
leaving for ¥, the equation of motion

i(0%1/0t)=(i/2[S1, H1+ - )¥1.

S2=i/2[S1, H]‘—Hself (24)

leading thus to a state vector ¥, which is constant in
time up to and including terms in ¢?, provided a mass
renormalization has taken place, removing Hg; from
1/2[S1, H].

Restricting ourselves to this order of approximation,
a transformed operator , according to (20), may be
written as follows:

Q=Q-+i[ Sy, @]—3[S1[S1, QT]+4[S., @]

(23)
Then.

Q) =2()+i f WTHW), 20)]
3 o f WTHWHE, 207
¢ 7
+if dt'[—[sla'), HE)Y-H.0), sz(t)]
2
or , .
Q) =0()+i f AWTH ), 20)]

_ f at f dWTHEHE),20)]]

~; f GTH(0), Q0] (25)™

** To obtain this latter form a simplification due to Schwinger
has-been used, which employs Jacobi’s identity.
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With the help of the commutators (15), (16) and the
derived relation:

[P (@)v4 (), )y (x)]
=1/i{d(x)v*S(@—a")v¢(x)

Y@ )y S —x)y(x)}, (26)
the transformed operator Q is easily evaluated. To
have its expectation value for a definite state (for
instance the vacuum with respect to one of the fields

in question) we need still know the vacuum expectation
values of the properly symmetrized products:

({4u(x), 40(a)})o= 8D (x— ') (27)
(W), P5(#) Do= —Sus® (x—2"). (28)

As examples which will be discussed later on, we give:

(a) The current induced in the (matter-) vacuum by
an external electromagnetic field A4,°, or its source
Juoxt, The desired approximation is achieved with S,
and yields immediately:

Gua)=i [ a T, 5@ Do

— 4 f 0 K (=) A, ) (29)
where

1
K(x—a") =—([Ju(®), 5,(x") Doe(w—2a"). (30)***
8ie?

(b) The e*radiative correction to the expression for
the current associated with the matter field. According
to (25) this correction is contained in

Aju(x)=— f ar f dt”{CH(E")LH('), ju(®) T D pnot vae

i f A THoai(?), ju®)]. (31)

The one particle part (for the definition of the concept
of the one particle part of an-operator, see SII, page
671) of Aj,u(x) includes a term of the form

i}
]'“(8) (x) = const.;;—(\/./(x)tf""ll/(x)); (32)

describing an anomalous g-factor of the electron.

§4. VACUUM POLARIZATION AND
PHOTON SELF-ENERGY

In this section the tensor K,,(x—=x’) (30) shall be
investigated. Invariance of the induced current with

*** The factor e(x—«’) is introduced by writing:
¢ oo +oo
Soar=3 ara-oy+3 ) ar;

the second integral vanishes, if no real transition is induced by
the external field.
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respect to the gauge transformation 4,—4,4+ (8A/dx,)
gives

0= f a4 K, (x— ') (0A/ox,),

which requires:

9K, (x)
=0. (33)
ax,
In momentum space, where (29) reads:
<]u(P))= —468 K .,(p)A.(p), (34)
the condition (33) is equivalent to
Ku(p)-p»=0. (33)
On writing: :
Ku(p)=KipuprtKaduprpr. (35)
Equation (33’) is equivalent to the condition
K 1= — K 2 (36)

(both K and K are still functions of the invariant pxpy).
Since A4,** and the current J,*** generating this
external field are connected through

]ueXt(P) = (SMVP)\P)\- pup v)A ueXt(P),

condition (36) assures that:

(Ju(@))=4K Ty 4(p). - @7
An evaluation of K,, with the help of relations (26)
and (28) gives:

dA IAD

dx, Ox,

dA 0AD
K,(x)=—-+
0x, 0w,

dA 9AW
- uy( +m2A(1>A). (383)

890)\ 6x>\

From the expansions (4, 5) it follows that this expression
is indeterminate on the light cone, due to terms of the
type 8(\)/A, and the relation (33) yields, on account of

F—m)a®=0, (P—nt)a=—a(x);
AK,,(x)  9A®
= —‘6(“’)7
ax, 0w,

which is indeterminate, too.
In momentum space, where K,, is given by

1 6(k>\k>\—i—m2)
Knlp)=— [ a%
(27r)3 (kx——p))”—m?

{ 2kukv_ k#[’”

"‘kva_ ayy(_kxp)\"i‘k)\k)\‘i"n’ﬁ)} (38b)
this ambiguity is less manifest, since
1
Kolp)-po=— [akbatobitm) (39
(2m)?



440

(hereby terms of the form §(k\kx+m?) - (kxkx+m?) have
been omitted), an expression which may well be put
equal to zero for symmetry reasons. Since, however,
K,.(p) is represented by a divergent Fourier-integral,
this property may be lost in the course of a direct
computation of K,,. Note that conditions (I,I a) are
just those necessary to make the integral (39) con-
vergent ! ’

An evaluation of K,, is most conveniently done with
the help of the Fourier-integral representations:1

A(D (k) = 27r6(k>\kx+m2)

o0
= f da exp[ia(kykrt+m?)]  (40)

—00

A(k)=P——
kxk)\'f-mQ

1 pte
=§; j: i} dBe(B) exp[iB(krkr+m?)] (41)

(P=nprincipal value). After introducing a new variable

=k—(B/a+pB)-p

and with

f d*k exp(iakrky) = (ir%/a?)e(a)

f Ak, exp(iakn) = — b, (/209 €(a),

we are left (after symmetrizing the integrand with

16S. T. Ma (Phys. Rev. 75, 1264 (1949)) has evaluated Ky, ()
by means of elementary momentum-space integrations, using the
method due to Pauli and Rose (Phys. Rev. 49, 462 (1936)). His
results are neither gauge nor Lorentz-invariant, due to the
presence of an additional constant term I' in his expression for
K (3=1, 2, 3). As a consequence, this term appears also in the
trace of Ky,:

K= —3pupuK:1+3T,

whereas, accordmg to (35) and (36) K, should be proportional
to (p,‘p,,) But it is easily shown that the introduction of a regu-
lator in his calculations makes the additional term I' vanish.
Indeed, we have

- -3 o | g4 P M_)
K= m) i dka(kxkx+M,)( A2 1),

It follows for a time like vector (pr=0,7pq) :

gt © dkk?  2Q.2— M2
(Knr=pe@2m) 2 o1 ] Qi (k) Q2(po*—

4Q;:?)
©b2
—2m) oo, ok

It is this second term that destroys covariance and gauge invari-
ance; but since it can be written as

—(1/2m)3)Z; ci(K2—IM Dk o
we see that it vanishes on account of the two conditions (I, Ta).

[Q.' = (k>+ ﬂf{")*].
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respect to @ and 3) with

e(atB)
K/.w = dad €\ €
0= ff Bl
Xexp[' b ptiletB) 2” b
¥ a m uPv
atg (atB)°

+s, ( o8 ' )} 42)
—mi—— ).
s T s

It is at this step that our regularization device comes
into play, replacing exp[i(a+B)m¥] by R(a+8), ac-
cording to (9) and (11), and m?exp[i(a+B)m?] by
(l/i)R’(a—i—ﬁ).” The regularized Eq. (42) reads then:

e(atB)

a)+
( +8)

af 203
Xex (i*“*ﬁ ? ){ R(a+8)
b atp (atB)?

af
n ﬁ)2PAPAR(a+ﬁ)

X (—PMPV+5MVP)\P)\) - 5;4»[(

R(at6)
H iR )|
+8

Expressed in terms of the variables
z=a+p
y= 1/ 2 (a_ﬁ) ’
which give
e(a)+e(B)=2¢(z) for
and 0 elsewhere; and
dedB=1%|z|dzdy

[y[=1,

KR(,“,) reads .

2

. +1 +o
KR(LW) = 4(27[-)4‘[ yf —e(z) eXpl}—(l 3’2)%2’%]

2

y
(_ Pnpv+ 6#VPXP>\)

X [R(z)

1—12

- 6,»[13(2) PAPVF*R(Z)‘“ iR’ (Z)] ] (43)

171t may perhaps be helpful to show how a factorized regulator
destroys gauge invariance. Taking a discrete spectrum of auxiliary
masses, we have:

algk(uv) Seic cici _é_ M?A (1)+M.2A
Xy ij

BA,(U

(1)
———(M;M,-A;A,»m) —s(w)?8 }
dxy

A 6A,~(U}

M) M, A —MA; "
m

= 2656{ (M b
)

which never vanishes 1dent1ca]1y.
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The contribution of the last term in the bracket may

be written as
2

T +1 -+o00
Our f dyf dze(z)
402m)t o

{Ri(z—)t exs 01 yﬁmm]}

p

X_
dz

sl PC0) G

According to our regularization condition (I'"’a) this
term is equal to zero and we are therefore left with an
expression that has the required form (compare (35)
and (36)):

Kran (p)=K1(papn) {pupr—

where K is given by:

—72 TP dz
—e(2)R
4(2#)4»[00 Z ERE)

Ho{—
X f dy
—1
The first term in the expansion of (45) in powers of papx,

Kipapr) = K1 O+ pp K1 O+ -

gives the charge renormalization (compare (37)):

(44)

5WP>\17)\}

Ki(papr)=

exp[ii(l - yﬂpx?x]- (45)

e pteds
pem A O =—— = f ZRE).  (46)
3 2nd_» 2

This may again be expressed, according to (10) and

(10"), as
a
56=—~f dkp(x) log|«|.
37 _

The connection with Wentzel’s result for the photon
self-energy is now most easily established. Since the
field of a light wave is not connected with any current,
(7u(x))ina vanishes according to (37), unless K, has not
the required form (35), (36). From (43) and (44) it is
made clear that in this case the induced current is
given by

Gu(®))ina= —4e*-

(46)

.TZR’(O)A 4(x).
ra X
(2m)*

The photon self-energy, defined as

(ph)

Hoeri= ""%fdsx[(ju(x»ind/lnm‘l(x)jlph—ODh
becomes thus:
(ph)

82
Hyii=(~iR 0) f B[ A,(x) - A,7() Teom oo
Y8

Since R’(0) is zero, the regularized photon self-energy
vanishes, as it should; without regularization R’'(0)
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=1m?, which gives, together with
S @[ A4 (x) - A () Jiphopn=1/| k|
for a photon of momentum %
Hert =/ 2m-m*/ | k|
which is exactly Wentzel’s result.
ADDITIONAL REMARKS

(A) In (38) we may be tempted to omit the term
d(kakr—+m?)

1(p)= f g T
(kx—pr)*+

which means putting A(x)(—D%‘U (%) +m2AD (x))
equal to zero, or its regularized counterpart:

( ext+m?)

f dp() A (r; 1) (—[PAD (x; )+ kA (; 1)) =0.  (47)

An evaluation of Iz(p) along the lines of the above
calculations yields:

e gy p
)=~ | d — —(1— 97
2(9) f_ ly f_ ) Ze(z)exp[z4< ymm]
—2 1492l ¥
x[ —ti : pm)R(z)JrR’(z)]
p4

@ o dg
i [ an [ =R
1 — B

Xexp[ii(l— yz)m;bx] (48)

- "y I Cdse(e)” [Jexp[¢—<1 y )m]}
+f e —e<z>R<z> f &y
(ol o))

=2R’(0)40=0 on account of (IT"a).

Thus it may be seen that the identity (47) holds only
because of our stronger regularization condition. It is of
special interest to mention that it holds for a zero
vector (ppr=0) only if the limit papy—0 is carried
through after the integration. Putting pxpr=0 in I(p),
(48), from the very beginning gives rise to an additional
term

+a0
Nf (dz/zQ)e(z)R(z).

In consequence of this the non-regularized expression
I(0) becomes then infinite, whereas I(0) is zero only
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if we put:

f (dz/#%)e(z)R(z)=0 (49)

or

fdxp(x)x log|«| = (49"
Thus Wentzel’s result may as well have been infinite.
From a physical point of view it appears, however,
more natural to consider the case pppx=0 as a limiting
case of a non-zero vector, than to mtroduce the new
condition (49) or (49’).18

(B) At this point we shall briefly consider the case of
the electron self-energy. In terms of A(k), A®(k),
D(k), D®(k) the operator Am reads:

o
m=—fd4k(i'yk+m)
2m?

8(kakr) 8((xtqn)*+m?)
X( + - )(Qu9x=—m2)-
(Ba4qr)2+m? ErE

This expression is readily transformed into

Sl )]

d
1 i’ 2

Regularization of both D- and A-functions without
factorization corresponds to the introduction of a
regulator R(z). R(z) here reduces to 1 in the case of
non-regularization, in contrast to the definition of
R(z) previously used; in the case considered here, the
expression to be regularized contains both D- and
A- functions, and « takes the signification of an addi-
tional contribution to the square of the mass; the mass
attributed to D is therefore «?, to A however (m*+«)?).
Am shall now be written as

oo (ol ) )

ma rds _ +1
= f —e@eR() f_ =),

ma 1 dz +1
Am=— —e(2)
8rJ_p 2z

Am=H
167

Since the first integral converges, no regulator is
introduced. With the help of the formula

o0
logla| = —} f (d3/2)e(e) (60— )

we have at once:

— (mae/8) £ J:ldy(S—-y) log( —2—3)2:5- (me/dr).

18 The situation is exactly the same in the case of the evaluation
of the trace K)\ by elementary K-space integrations (compare
footnote (16)). The constant T' vanishes only if the additional
assumption (which corresponds to (49'))

2Zi M2 logM ;=0
is made, unless this particular case is again considered as the
limiting case of a non-zero vector.
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If, in the second, divergent integral we introduce the
special regulator

ko e 1)

(which satisfies (I""): R(0)=0, but not R’ (b)=0), we

obtain
ma rdz 1 6ma 1
-3 — -e(z) exp(zz—)—e“)=——~ log|—
8w Ywo 8 Ywo
and thus

Am=3ma/2m (5 log|1/vwo| +3),

which is Schwinger’s result (SII, Eq. (3.97)).

An alternative possibility is to regularize the photon-
D-functions alone, as was done by Feynman.” In this
case it is more convenient to introduce a regulator p(«);
(Am)r may then be written as

(Am) = f dp(1)Am(x),

and

ma 1 dz
am(9 === f_ R f )

cofo(eoon ()]

(k is a dimensionless mass parameter, i.e., m(k)* is the
auxiliary mass.) Taking into account condition (I’),
we can omit all terms independent of «; it follows
therefore that

_ K 1_ 2
)= (Gara+(5))
—_ +1 K+ (y_ 1)
= dy(y—35)(y—1)
8 L yo=35)0 "2(149)+ (1—y)
—m
F(x)
87
—10+4r()H0() kK1
F(k)=

1
6 logk— 7+0(~ lOgK) >>1.
K

With the help of one auxiliary mass:

p<x>=a<x>—a( iﬂf)

which is sufficient to satisfy (I’), we obtain then

3ma M 1
Am=— log—+—)
4

2T m

which is Feynman’s result.
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§5. THE MAGNETIC MOMENT OF THE ELECTRON

The ¢* radiative correction Aj, to the current, as
given by (31) may be written as

1
S O=F) [arato+geate

.
e f Bga(p+-gy*iulg), (50)

here %(q), 4(q’) are the F ourler—amphtudes of ¥ and
¥ respectively, and v = (yry”—yryk).

For small values of p, F and G may be developed in
powers of ppy (note that p is the difference in momen-
tum ascribed to ¥ and ¢, respectively). Whereas F(0)
describes again a charge renormalization, the term
corresponding to G(0) exhibits an extra current, which,
in x-space, has the more familiar form (32), and de-
scribes the radiative correction to the electron’s mag-
netic moment in a homogeneous external field.

From the well-known decomposition of the current
due to Gordon®

iet(p+q) v u(q) = e/2m{ (pu+2q.)Ya(p+q)u(q)
—pa(p+g)y™Nu(g)}  (51)

it is seen that the radiative correction to the magnetic
moment may be expressed in terms of an anomalous
g-factor .

Ag=—(4m/e)G(0), (52)

since the unperturbed electron is characterized by g=2.
The relevant terms-of (31) (containing G(papr)) can be
written as follows:
~ /2 [ [ atsttnd et e TDE=mS@as (-
+D(E=n)SP(Ev*S(—n)
+ DD (g~ mSEVS(— ) Ty (x-+n)
or, in momentum space (writing ¢’ for p+¢),

E“u(q ) f ILRIDEAG= A (=)

+D(k)AD (k—q)A(k—q')

+DO(R)A(k—q)A(k—q) Ju(g) (53)

where
Qu(k) = 2ik,(iy-k—m) — 2i(q./+q,.) (@y - k) +~-

Let us introduce

Ta'r:' fd4kkakT[D] (54)

V,= f d*kk[D].

T Compare Handbuch der Physik XXIV/l. 238.

(54a)
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([D] is the bracket in (53}.) Since [D] depends on

the two parameters ¢ and ¢, or on
p=¢'—q and Q=¢+yq,

Ts» and V, may be written as:
Tor=bsrlot-poprl1+QoQr 1 (55)
Ve=0QsJ2. ‘ (55a)

All invariants thus introduced are still to be considered
as functions of papx (the invariant QxOx reduces to the
former by O\Qh= — (4m*+prpr)). With the help of (51)
and the relations:

a(q')y-Qu(g) =2ima(q)u(g), u(g)y-pu(g)=0
we obtain from (54) and (55):
i 3

(2m)3
thus yielding
G 2me?
b= (2r)3

(= 2im) 2L>(p) — T2 (p)) o (p+ )y N u(g)+-~vu

() —J(p))

and, according to (52):
(a=e*/4m=1/137)
Ag= —4m?/m(21,(0)— J2(0)) (/7). (56)
The computation of the integrals involved in I, and J,
may be carried through in different ways. A regular-
ization device which guarantees the convergence of

the expressions (54) for 7',. and V, allows the intro-
duction of a special coordinate system, characterized by

=0, Q=/(o, 2im)
in which
I(0)=1/4m*(T1—Tw), J2(0)=(1/2m)Vs. (57)

The most convenient regularization method is that
which regularizes [ D] as a whole:

((DDr=2ic{D]i

(accordlng to (9)).20 The evaluation of Eq. (57) in
k-space is elementary. With the notations

a=k/m, pi=M/m, Q=(+upd} i=(1+x2+m)z
we are led to:

Qﬁ—‘r—%oﬁ

T ° 24-Q2+ 342
(12(0))76:‘_‘[ x2dx2i0i! - ‘(58}
4m2J, Q3 QB i
T r* 1
(T p=—o | 22dx3; ci—. (58a)
2m2J SQ8

Equation (58a) converges without regularization and
yields
J 2(0) = / 2m?
a value which remains unaltered under regularization,
20 A control calculation, carried through with a regulator

affecting only the electron A-functions in [D7] gave exactly the
same results.
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since all terms ¢>0 vanish at least as ¢i/M 2 (compare
(6)). This is not the case, however, for (58), which
becomes

(12<0>>R=3—(22i:c1-—% )% )

12m? (>0

(59)

The expression (58) proves thus to be convergent with-
out regularization; we need only put ¢o=1, ¢,(3>0)=0,
to obtain

1 2 (0) =T / Oom?

whereas the properly regularized expression yields

(I(0))p=1m/8m?.
Therefore
21,(0)—J5(0) = —7/6m?,
whereas
2(]2(0))13—]2(0) = '—71'/477112.

The regularized value, introduced in (56), gives
Ag=a/m

in agreement with Schwinger’s result.?

From this example it should be made clear how
cautious one should be in handling divergent “covari-
ant” expressions. Indeed, any decomposition, as done
in (55), is by no means ‘“‘covariant,” as long as the
expressions under discussion has not been made con-
vergent by some invariant regularization. Once this
has been done, one may quietly enjoy of all the facilities
presented by a properly chosen coordinate system, as
was done in (57).

ADDITIONAL REMARKS

(A) The various possibilities of evaluating the inte-
grals I, and J, arise from the different possibilities of
rewriting the [D7]-bracket in (54), (54a). It is easily
seen from the definitions (40), (41) that for g=g¢:/, [D]
may be written as

1
[D]= f dund"” (knkr— 2kagaat) 2 (60)
0

The regularization of [ D], as a whole, as was done in
the above calculations, consists then in replacing (60)

by
1
((D]r= f duny_; c:8” (knkrn— 2kxgu+M ). (61)
0

Equation (61) may now be introduced into (54):

1
(T,,)R = f duufd‘*kk‘,k,zi Ciau(k)\k)\— 2k>\q>‘u+Mf)
0

1
= f dun f a*k(kokr+1429,qr)
0

X2 i ¢ (knknt+mP+ M 2).

2t J. Schwinger, Phys. Rev. 73, 416 (1948).
22 This method is due to Schwinger; (SIII).

(62)
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Thus 7,(0) is immediately isolated :

1
[2(0) = if dmﬁ}:i Cifd4k5l,(k)\k)\+m2u2+M¢2)
0

T 1 1 T Ci
=—Zicif duud = f 0( ) .
4 o miP+M32  8m? M3 0

The use of a regulator appears to be superfluous in this
case, but from a general point of view it is doubtful

whether a transformation of variables as needed to

obtain (62) can be justified a priori.
(B) [D] may, according to Dyson, also be written as

—1Re(D.(k)A(k—q)A(k—q'))
where
A (k) =A1—2t1A=278, (k*+m?), (and D,=DW—-2{D).

With the elementary (complex) k-space integration,
however, one immediately falls back on the formula
(58), (58a).

(C) Finally we illustrate the possibility of obtaining
a quite arbitrary result by regularizing in a different
way different terms of a form F(A,A®). Let us just
take, as an example, the bracket [ D], which for ¢'=g¢
may be written as follows:

0 L b ) =[D D]
—(kagx)2 INN o ML =

We need now only note that if R; and R, are two
regulators, the operation R=%(R;+R,) is a regulator
too, whereas R=21(R;—R,) is an operator, correspond-
ing to a mass spectrum which satisfies (I, Ia), but
contains only auxiliary masses M ;; we may now write

Ri[DyJ+RJDs]=R[ D]+ R ([Dy1-[D:).

The additional terms depending on R are by no means
zero in general, but depend on the structure of R
which shall be characterized by a spectrum M; and
coefficients v;. In evaluating 7(0) (54), (55), as an
example, the additional terms due to R are:

w/4m* (3 v logui—3),
an expression which is completely indeterminate.
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