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We investigate the effect of shear in the flow of charged particle equilibria that are unstable to the
coherent synchrotron radiation (CSR) instability. Shear may act to quench this instability because it acts to
limit the size of the region with a fixed phase relation between emitters. The results are important for the
understanding of astrophysical sources of coherent radiation where shear in the flow is likely.
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I. INTRODUCTION

When the wavelength of synchrotron radiation emitted
by a bunch of relativistic particles is comparable to the size
of the bunch, the particles may radiate coherently. The
coherent emission produces significantly greater power
than the incoherent emission. Coherent synchrotron emis-
sion is seen from different astrophysical sources but most
notably from the rotationally powered radio pulsars (e.g.,
[1]). In particle accelerators the coherent synchrotron
emission is usually undesirable because it causes very
rapid energy loss. In this context we would also like to
mention efforts to study coherent curvature radiation as a
pulsar emission mechanism in the laboratory [2].

Several effects may act to stabilize a system unstable to
the coherent synchrotron radiation (CSR) instability. In [3]
the authors analyzed the influence of a small energy spread
in a beam of charged particles in approximately circular
motion. A distribution function with a single value of the
canonical angular momentum was considered. The radial
width of the beam was given by the amplitude of the
betatron oscillations which is nonzero for a nonzero energy
spread. It was shown that the decoherence introduced by
the betatron oscillations leads to a characteristic frequency
spectrum, whereas the dependence on the Lorentz factor
and the number density remains unaffected.

In this paper we relax the assumption of zero spread in
the canonical angular momentum P� of the equilibrium
distribution. In general, this leads to shear in that the
average angular velocity becomes dependent on the radius
of the orbit. In practice, the requirement of a small spread
in the canonical angular momentum may be harder to
satisfy than a small energy spread. Shear is expected in
astrophysical sources of coherent emission [4].

Shear itself can be the cause of instabilities, for example,
the ‘‘diocotron instability’’ [5], but this is not the focus of
the present paper. In the case of CSR it is reasonable to

expect that the shear acts to stabilize the CSR instability
due to particles with different radii ‘‘slipping away.’’ Using
a linear perturbation analysis of the fluid equations for a
laminar Brillioun flow, we show that even with a spread of
the canonical angular momentum �P� > 0, previous re-
sults for equilibria with constant P� can be recovered
treating the plasma as a relativistic cold fluid. Computer
simulations of CSR emission in Brillioun flows [6] are
compatible with this picture. With the cold fluid approxi-
mation adopted here, the stability depends on the number
density and the angular velocity which depends on the
radius. The azimuthal velocity is approximately equal to
the speed of light.

The problem of CSR emission has been investigated by
several authors. Goldreich and Keeley [7] considered the
stability of a charge distribution whose motion is confined
to a thin ring with the particle motion being one-
dimensional. This calculation led to confusion as to how
the proposed CSR mechanism works in detail (cf. [8]).

As proposed in [3], the CSR instability is related to the
classical negative mass instability [9–12] in the sense that
an increase in particle energy leads to a decrease in its
angular velocity. While the classical negative mass insta-
bility is caused by the Coulomb part of the electromagnetic
potential, the CSR instability is caused by the radiation
field. The negative mass effect is not immediately apparent
in a one-dimensional treatment based on conservation of
energy and charge. Heifets and Stupakov [13] effectively
built in the negative mass effect by hand having a con-
strained radius and particle energy.

The treatments [3,7,13] give the growth rate in the
absence of an energy spread. However, considering a non-
zero energy spread requires a truly two-dimensional
model. Larroche and Pellat investigated the effect of steep
boundaries in the particle distribution function [14].

Section II describes the assumed models, and Sec. III
approximate solutions of the equations. Section IV derives
a dispersion relation for the considered perturbation.
Section V discusses the results.
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II. THEORY

We consider two cases illustrated in Fig. 1. The first case
(a) corresponds to a thin layer of relativistic electrons
gyrating in a uniform external magnetic field, an ‘‘E-
layer.’’ The second case (b) corresponds to the electrons
moving almost parallel to a toroidal magnetic field.

A. Case a

We consider a laminar Brillioun-type equilibrium of a
long, non-neutral, cylindrical relativistic electron (or posi-
tron) layer in a uniform external magnetic field Be � Beẑ,
where we use a nonrotating cylindrical �r;�; z� coordinate
system. The electron velocity is v � v��r��̂ � r��r��̂.
The self-magnetic field is in the z-direction while the self-
electric field is in the r-direction. The radial force balance
of the equilibrium is

 � ��2r �
q
me
�E� vB�; (1)

where � � �1� v2
��
�1=2 is the Lorentz factor with veloc-

ities measured in units of the speed of light, B � Be � Bs
is the total (self plus external) axial magnetic field, E is the
total ( � self) radial electric field, and q and me are the
particle charge and rest mass. We have

 

1

r

d�rE�
dr

� 4��e;
dB
dr
� �4��ev; (2)

where �e�r� is the charge density of the electron layer.

We consider weak layers in the sense that the ‘‘field
reversal‘‘ parameter

 � � �
4�
Be

Z r2

r1

dr�ev (3)

is small compared with unity, �2 � 1. Under this condi-
tion, Eq. (1) gives � � �qBe=�me��. Here, we have
assumed that the layer exists between r1 and r2. We also
consider that the Lorentz factor is appreciably larger than
unity in the sense that �2 � 1. Furthermore, we consider
radially thin layers

 � �
�r
r0
� 1: (4)

We consider general electromagnetic perturbations of
the electron layer with the perturbations proportional to

 f��r� exp�im�� i!t�; (5)

where � � 1; 2; . . . for the different scalar quantities, m �
integer, and ! the angular frequency of the perturbation.
Thus the perturbations give rise to field components �Er,
�E�, and �Bz. The perturbed equation of motion is

 

�
@
@t
� v 	 r

�
�v��� ��v� � �v 	 r��v�

�
q
me
��E� v
 �B� �v
 B�; (6)

where the deltas indicate perturbation quantities. This
equation can be simplified to give
 

�i��! ����1� �2� � q
me
B

��� ���r�0 � q
me
B �i�3�!

24 35 �vr
�v�

" #

�
q
me

�Er � v�Bz
�E�

" #
; (7)

where the prime denotes a derivative with respect to r, and

 �!�r� � !�m��r�

is the Doppler shifted frequency seen by a particle rotating
at �. We also define the dimensionless quantity

 � ~! �
�!
m�

(8)

which will turn out to be useful later.
Using the equilibrium equation (1) and the condition

�2 � 1, the matrix in Eq. (7) is approximately

 D �
�i��! ��3�
�3��r�0 �i�3�!

� �
; (9)

We have used the fact that ���r�0 � �3��r�0. For �2 � 1
we have ��r�0 � �=�2 and �0 � �v2�=r. In the absence
of shear the latter quantity would be zero. Consequently,

 det�D� � �4��2 � �!2�: (10)
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FIG. 1. Panel (a) shows the geometry of a relativistic E-layer
for the case of a uniform external axial magnetic field. Panel (b)
shows the second case of a relativistic E-layer in an external
toroidal magnetic field and an external radial electric field.
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Inverting Eq. (7) gives

 �vr �
q�3

me det�D�
��i�!��Er � v�Bz� ���E��; (11)

and

 �v� �
q�

me det�D�
��i�!�E� ����Er � v�Bz��:

(12)

Here, q�e�3�=�me det�D�� has the role of the distribution
function of angular momentum [15].

B. Case b

Here we consider an equilibrium with the same number
density and velocity profile as before but with different
external fields as shown in Fig. 1(b). Instead of an external
magnetic field in the z-direction, we consider an equilib-
rium with an azimuthal magnetic field acting as a guiding
field and a radial electric field. The latter is included in the
equilibrium condition and therefore does not enter the
linearized Euler equation. Be� would only enter if we
considered motion in the axial direction and nonzero axial
wave numbers.

Thus, we obtain the matrix D again without the B0

terms, i.e., for �� 1

 D �
�i��! ��3�

2�� �i�3�!

� �
; (13)

with

 det�D� � �4�2�2 � �!2�: (14)

We obtain

 �vr �
q�3

me det�D�
��i�!��Er � v�Bz� ���E��; (15)

and

 �v� �
q�

me det�D�
��i�!�E� � 2���Er � v�Bz��:

(16)

Such a configuration is a more realistic possibility for the
magnetosphere of a radio pulsar. The conclusions for the
two configurations do not differ significantly, and we will
proceed analyzing case a.

III. APPROXIMATE SOLUTION

Using Eqs. (11) and (12), the linearized continuity equa-
tion gives

 

i�!�� � �
im
r

�
q��0

me det�D�
��i�!�E� ����Er � v��Bz��

�

�
1

r
@
@r

�
r

q�3�0

me det�D�
��i�!��Er � v��Bz� ���E��

�
; (17)

where we used �Jr � �0�vr and �J� � v���� �0�v�.
We consider conditions where �Er � v��Bz terms can be
neglected. The sufficient conditions are

 

���������!
�

��������
 1; (18)

and

 j�Er � v�Bzj �
���������!

�

��������j�E�j: (19)

We estimate the relative magnitude of the field components
using the Maxwell equations. From Faraday’s law we
obtain the relation

 Dr��E�� � ik��Er � i!�Bz; (20)

where Dr�. . .� � r�1@=@r�r . . .� � ikr assuming the radial
dependence exp�ikrr� for the perturbed quantities as well
as thin layers with �� 1. We have

 kr�E� � k���Er � v��Bz� � k�v�� ~!�Bz; (21)

with �Bz � Dr�A�, �A� � v���, and �E� �
�imr�1��� i!�A�:

 �Er � v��Bz �
kr
k�
�E� � v

3
�� ~!kr

�E�
�!�!=�2

�
�kr
m
�E�: (22)

Inequality (19) turns into

 

�k r � m
�!
!
� m2� ~!; (23)

where �kr � krr0. We will always assume radial wave
numbers kr that are sufficiently small such that the latter
condition is met. A consequence of inequality (19) is that

 �v� � ��2 �!
�

�vr: (24)

Making use of approximation (19), Eq. (11) can be
entirely written in terms of �E�. Note that the resonant
term due to det�D� (the Lindblad resonance) is canceled in
the limit �v� ���! 0. In general, we will have to invoke the
assumptions (18) and (19), though. Neglecting the small
�v� term, the linearized continuity equation gives
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1

r

@
@r
�r�Jr� � i�!��: (25)

Thus,

 r�� �
�i
�!

@
@r

�
qr�0

me��
�E�

�
: (26)

Integrating over dr and integrating by parts gives

 

Z
rdr�� � �

Z
dr
im�=r

��!�2
qr�0

me��
�E�: (27)

In the Lorentz gauge

 �E� � �
im
r
��� i!�A�

�Er � �
@
@r
��� i!�Ar �Bz �

1

r
@
@r
�r�A��:

(28)

For ��r=r�2 � 1 we have the approximation
r�1@�r�@ . . . =@r�� � @�. . .�=@r. Assuming the radial de-
pendence �� / exp�ikrr�, we obtain from the gauge con-
dition

 ikr�Ar �
im
r
�A� � i!�� � 0 (29)

and �Az is negligible because of the symmetry of the
problem. �Ar is nonzero since �Jr � �0�vr � vr�� � 0
and j�v�j � ��2j�!=�jj�vrj. �A� can be computed
from the Green’s function (cf. Appendix) to give �A� �
v���. Fortunately, we only need �E�. Note that

 �E� � �imr�1��=�2 �O�� ~!�: (30)

IV. DISPERSION RELATION

The derivation of the Green’s function can be found in
the Appendix:

 ���r� � 2�2i
Z 1

0
r0dr0Jm�!r<�Hm�!r>����r0�: (31)

The argument of the Bessel functions is assumed to be
independent of r and r0 in the important region 1� � <
r=r0 < 1� � which we will justify later. Thus,

 ���r� � �
2�2ie2m2

H�2 JmHm

Z 1
0
dr0

n�r0����r0�

r0�!�m��r0��2
;

(32)

where Eq. (26) has been used and H � me�. Since the
right-hand side of the last equation is independent of r,
��r� has to be constant and we obtain with ��r� � 1=r

 1 � �
2�2ie2m2

H�2 JmHm

Z 1
0
dr0

n�r0�

r0�!�m=r0�2
; (33)

where the Bessel functions are evaluated at m�1�
1=�2�2��. The remaining integral can be evaluated if
the Gaussian number density profile n�r� �
n0 exp���r2=2��r�2� is replaced by a rectangle with width
2�r and height n0

���������
�=2

p
:

 

Z 1
0
dr0

n�r0�

r0�!�m=r0�2
�
Z r0�1���

r0�1���
dr0n0

���������
�=2

p
r0�!�m=r0�2

� n0

����
�
2

r �
ln�!r0 �m�

!2 �
m

!2�!r0 �m�

�
r0�1���

r0�1���

� n0

����
�
2

r
2r0�
!

m

�!r0 �m�2 �!2r2
0�

2 : (34)

The logarithm can be neglected because we are interested
in the resonant case. With � � 4�e2n0

���������
�=2

p
r2

0�=me� we
obtain the dispersion relation

 1 � ���Z��2 1

�� ~!�2 � �2 ; (35)

where Z � iJmHm. Thus,

 � ~! � �
�����������������������������
�2 � ��Z=�2

q
: (36)

The Bessel functions can be expressed in terms of Airy
functions for m� 1:

 Jm�z� � 21=3m�1=3Ai�w� (37)

 Ym�z� � �21=3m�1=3Bi�w�; (38)

where

 w � �21=3m2=3

�
z
m
� 1

�

�

�
m
2

�
2=3
���2 � 2� ~!� 2��� 1�� (39)

with � � r=r0 which at the outer edge is �� 1� �.
Assuming m� 2�3 � m2, ��2 � 1, j� ~!j � ��2 (as-
suming that the layer essentially exists in the region 1�
� < r=r0 < 1� �), and 21=3�� m�2=3, we can consider
Z to be a pure function of m since jwj2 � 1:

 Z � �0:347� 0:200i�=m2=3: (40)

Therefore, the Bessel functions do not depend on r and r0

anymore. For jwj � 1 the Airy functions can be approxi-
mated to give

 Z �
1

2�
����
w
p

�
2

m

�
2=3
; (41)
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but we additionally have to demand �� ��2 in order for
Z to remain independent of r and r0. For zero energy spread
the condition j� ~!j � ��2 is equivalent to m� �3�3=2 �
m1. As we will discuss in Sec. V this condition may be too
strict.

Some results are plotted in Fig. 2. For zero energy spread
we recover the usual scaling relation Im�!�=��r0� / m2=3

for m< 2�3 [3,7,13] and Im�!�=��r0� / m
1=3 for m>

2�3 [3] with the jwj � 1 approximation of the Airy func-
tions. The most dramatic consequence of a nonzero energy
spread is the presence of a very sudden and steep cutoff.
Pushing the cutoff to higher values of m requires increas-
ingly small energy spreads. For large energy spreads the
growth rate Im�!�=��r0� scales as m1=3 if the jwj � 1
approximation is used. Retaining the Airy function the
growth rate grows more slowly. According to Fig. 2 the
scaling relation for � � 1=�2 is in the order ofm1=4 before
the cutoff is reached. This power law has been derived
before in [3] where the decoherence is due to betatron
oscillations instead of a nonzero spread in the average
angular velocity. Note that these two results also agree
with computer simulations that were carried out for
Brillioun [6] flows.

V. RESULTS AND DISCUSSION

In order for the growth rate to vanish the expression
inside the root must be real and non-negative. Using our
approximations for the Bessel functions it is seen immedi-
ately that the former condition is satisfied if m>m2. This
explains why the drop off occurs at m � m2 regardless of
the value of � as long as the remaining real part is positive.
This is the case if the field reversal parameter does not
exceed the critical threshold

 � > m��2: (42)

If the last inequality is not satisfied, complex roots can only
exist if Z is complex which is the case for m<m2. If
however this inequality is satisfied, the expression inside
the root becomes negative for m>m2 and an unstable
solution exists, but the sharp cutoff is replaced by Eq. (42).

As discussed in the last section the azimuthal mode
number m resulting in the largest growth rate is either
given by m � 2�3 or m � ���1��2 whatever is greater.
This guarantees that �� ~!�2 is either still complex or real
and negative with both leading to an unstable mode. For
our allowed parameter range 2�3 is typically larger. Thus,

 Im �!� 
 22=3 _��
���
�

p
� ��1=2!p; (43)

where !p is the nonrelativistic plasma frequency.
Finally, let us consider small values of the azimuthal

mode number m. So far we have approximated the Bessel
functions by Airy functions which makes them easier to
compute especially for large orders. For small m this
approximation cannot be justified and the Bessel functions
have to be retained. In Fig. 3 we solved the dispersion
relation in the small m regime. Also, their arguments
depend on � ~! since m<m1. An accurate calculation of
the growth rates of modes with azimuthal mode numbersm
is important for the determination of the total power radi-
ated, because the latter decreases with increasing m. Even
for m � 1, Eqs. (37) and (38) give excellent results, pre-
sumably because the argument of the Bessel functions is
close to their order for �� 1 and Z is independent of w if
jwj2 � j�m2�

2=3���2 � 2� ~!� 2��� 1��j2 � 1. The latter
condition may be satisfied even if j� ~!j violates our as-
sumption j� ~!j � ��2.
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FIG. 2. Growth rates as a function of azimuthal mode m for
� � 0:02, � � 30, and various energy spreads.
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functions were retained in order to compute the growth rates
in the low m regime correctly.
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Looking at Eq. (34) we conclude that the quenching of
the instability, i.e., the existence of the additional �2 term
in the denominator, is due to both the nonzero thickness of
the layer and �0 � 0. However, it is important to note that
the instability relies on the negative mass effect and would
not exist in the absence of shear in our model.
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APPENDIX A: GREEN’S FUNCTION

The Green’s function for the potentials gives

 ���r; t� �
Z
dt0d3r0G�r� r0; t� t0����r0; t0�;

�A�r; t� �
Z
dt0d3r0G�r� r0; t� t0��J�r0; t0�;

(A1)

where
 �
r2 �

@2

@t2

�
G�r; t� � �4���t���r�;

~G�k; !� �
4�

k2 �!2 ;

G�r; t� � 4�
Z
C
d!

Z
d3k

exp�ik 	 r� i!t�
k2 �!2 ;

(A2)

where ~G is the Fourier transform of the Green’s function.
The ‘‘C’’ on the integral indicates an!-integration parallel
to but above the real axis, Im�!�> 0, so as to give the
retarded Green’s function.

Because of the assumed dependences of Eq. (5), we have
for the electric potential
 

��!mkz�r� � 2
Z 1

0
r0dr0

Z 1
0
	d	

Z 2�

0
d���!mkz�r

0��	 	 	�

� 4�
Z 1

0
r0dr0

Z 1
0
	d	

Jm�	r�Jm�	r
0�

	2 � �!2 � k2
z�


 ��!mkz�r
0�; (A3)

where

 �	 	 	� �
exp�im��J0f	�r

2 � �r0�2 � 2rr0 cos��1=2g

	2 � �!2 � k2
z�

;

where 	2 � k2
x � k2

y. Because ! has a positive imaginary
part, this solution corresponds to the retarded field. Also
because Im�!�> 0, the 	-integration can be done by a
contour integration as discussed in [16] which gives

 ��!mkz�r� � 2�2i
Z 1

0
r0dr0Jm�kr<�H

�1�
m �kr>���!mkz�r

0�;

(A4)

where k � �!2 � k2
z�

1=2, where r< (r>) is the lesser
(greater) of �r; r0�, and where H�1�m �x� � Jm�x� � iYm�x�
is the Hankel function of the first kind. Because
��A�; �J�� � ���Ax; �Jx� cos�� ��Ay; �Jy� sin�, we
have instead of Eq. (A4),

 ��!mkz�r� � r�A!mkz� � �2ri
Z 1

0
r0dr0�J!mkz� �r0��	 	 	�;

(A5)

where

 �	 	 	� � Jm�1�kr<�H
�1�
m�1�kr>� � Jm�1�kr<�H

�1�
m�1�kr>�:

For m� 1, one can show that in this equation
�Jm�1H

�1�
m�1 � Jm�1H

�1�
m�1�=2 � JmH

�1�
m to a good approxi-

mation. Equations (A4) and (A5) are useful in subsequent
calculations.
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