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Bifurcating entanglement-renormalization group flows of fracton stabilizer models
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We investigate the entanglement-renormalization group flows of translation-invariant topological stabilizer
models in three dimensions. Fracton models are observed to bifurcate under entanglement renormalization,
generically returning at least one copy of the original model. Based on this behavior, we formulate the notion
of bifurcated equivalence for fracton phases, generalizing foliated fracton equivalence. The notion of quotient
superselection sectors is also generalized accordingly. We calculate bifurcating entanglement-renormalization
group flows for a wide range of examples and, based on those results, propose conjectures regarding the
classification of translation-invariant topological stabilizer models in three dimensions.
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I. INTRODUCTION

The renormalization group (RG) is a ubiquitous concept
throughout theoretical physics. Intuitively, real-space renor-
malization [1] involves the rescaling of a system such that
the short-distance correlations are integrated out. At the scale-
invariant fixed points of an RG transformation, the system
has either zero or infinite correlation length, corresponding to
gapped or critical phases, respectively. As such, RG serves as
an important tool for the analysis of long-wavelength physics
in a given theory.

Since rescaling transformations increase the local Hilbert
space dimension, conventional RG approaches have relied
on truncating the local Hilbert space in a manner that does
not affect long-range correlations. To further ensure that
the long-range entanglement structure is preserved, which
is particularly crucial for the classification and character-
ization of quantum matter, a more careful approach must
be taken. A real-space renormalization procedure that ex-
clusively removes short-range entanglement consists of ap-
plying local unitary circuits and projecting out degrees of
freedom that have been completely disentangled into trivial
states only [2]. Along with the coarse-graining of degrees of
freedom to rescale the system, such a procedure is referred
to as entanglement renormalization (ER) [3]. Stable fixed
points under ER are identified as representatives of quantum
phases of matter. For many exactly solvable models with zero
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correlation length, ER can be implemented directly at the level
of the Hamiltonian [4,5].

In this paper, we apply ER to study the long-range entan-
glement structures of topological stabilizer models. In two
dimensions, every translation-invariant topological stabilizer
model is equivalent to copies of the 2D toric code [6–8] and
hence their classification is complete. The 2D toric code is a
fixed point under ER. Hence, under ER, any 2D translation-
invariant topological stabilizer model flows towards copies of
the 2D toric code. In contrast, translation-invariant topological
stabilizer models in three dimensions exhibit a rich variety of
quantum phases due to the existence of fracton topological
order [9–29]. While no systematic classification theorem or
procedure has yet been established for these models, they can
be organized into broad classes [30] based on the properties
of their excitations and compactifications [31].

In Ref. [2], it was found that Haah’s cubic code, the
canonical example of a type-II fracton topological order with
no string operators, bifurcates under ER. More precisely,
under ER the cubic code splits into two decoupled models
on a coarse-grained lattice: the original cubic code and cubic
code B. The possibility of bifurcating ER was previously
envisioned in Refs. [32–34] with the goal of describing critical
states that violate the area law in two or more dimensions.
Our goal is to extend the classification of topological phases
in terms of ER fixed points to models that may bifurcate under
ER. This approach faces an immediate conceptual hurdle:
bifurcating models are not scale-invariant. In fact, under the
conventional notion of quantum phase [35], a bifurcating
model defined on a lattice of spacing a and the same model
defined on a lattice of spacing 2a belong to different phases
of matter. Therefore one needs to revisit the definition of
thermodynamic quantum phases under such circumstances.

Fracton models are examples of bifurcating models. Under
ER they may self-bifurcate or bifurcate into distinct models.
Since self-bifurcating models give rise to an arbitrarily large
number of copies of themselves under repeated ER, it is
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TABLE I. Entanglement renormalization group (ERG) flows and quotient superselection sectors (QSS) of 3D stabilizer models.

Model Particle mobilities Type ER ER of the B models QSS group

3DTC 3 TQL 3DTC Z2

X-cube 0,1,2 foliated type-I X-cube+STC STC + STC Z2 ⊕ Z2
2

CC1 0 type-II CC1 + CCB1 CCB1 + CCB1 Z2 ⊕ Z2

CC2,3,4,7,8,10 0 type-II CCi + CCi 0
CC5,6,9 0,1 fractal type-I CCi + CCi 0
CC11–17

a,c 0,1,2 fractal type-I CCi + CCBi + STC CCBi + CCBi Z2 ⊕ Z2
b

CC14
c 0,1,2 fractal type-I CC14 + CC14 0

First-order FSL model dependent model dependent FSL+FSL 0

aThe ER results shown require an initial coarse-graining step for CC13 and CC17.
bThis QSS was calculated for CC11 in Sec. VI 3. The QSS of CC12–17 can be calculated similarly.
cCC14 shows both self-bifurcating and bifurcating ERG behavior.

reasonable to consider them as free resources in the infrared
limit. One can then formulate a generalized notion of fixed
point where such free resources, i.e., the self-bifurcating
models, are quotiented out. This generalizes the usual disen-
tangling and projection steps in conventional ER where trivial
product state degrees of freedom, which are the simplest
example of a self-bifurcating state, serve as the free resource.
The classification of bifurcating models via ER is then divided
into two steps: first the classification of self-bifurcating fixed
points and then the classification of quotient fixed points. The
classification of self-bifurcating fixed points was previously
studied from a resource oriented renormalization group per-
spective in Refs. [36,37].

A similar point of view on fixed points of bifurcating ER
has already played a key role in the understanding of foliated
fracton models [38–42]. The notion of foliated equivalence,
local unitary equivalence up to adding stacks of 2D toric code,
is rooted in the ER flow of foliated fracton models which
produce stacks of 2D toric codes when they bifurcate. A stack
of 2D toric codes is the simplest nontrivial self-bifurcating
topological state in 3D. It is easy to see that it self-bifurcates
under coarse-graining in the direction orthogonal to the toric
code planes. The X-cube model is the canonical example with
nontrivial foliated fracton order: under ER that coarse-grains
by a factor of two along any axis it bifurcates, returning a copy
of itself and a stack of 2D toric codes orthogonal to the axis.
This reveals the X-cube model’s foliation structure and that
it is a foliated fixed point, as it is foliated equivalent to itself
after coarse-graining.

In this work, we propose to generalize the notion of foliated
fracton equivalence to bifurcated equivalence which allows
any self-bifurcating state as a resource, thus providing an
equivalence relation that is relevant for all fracton models. We
study the ER of a large range of fracton models, including
17 of Haah’s cubic codes [43] and all of Yoshida’s first-order
fractal spin liquids [44], and find that they are all bifurcating
fixed points. That is, under ER they either self-bifurcate,
producing several identical copies, or they bifurcate into a
copy of themselves along with some distinct models, referred
to as B models. We demonstrate that the B models are self-
bifurcating for all the examples considered. Our ER results are
presented in Table I. Moreover, we find that the form of the
B models is constrained by the mobilities of the topological
quasiparticles in the original models. For instance, the pres-
ence of a planon in the original model causes a stack of 2D

toric codes to appear amongst the B models. Such constraints
on the B models motivate us to put forward several conjectures
concerning the structure of 3D topological stabilizer models
that have implications for their classification.

The paper is laid out as follows. In Sec. II B, we introduce
ER for gapped quantum phases of matter, discuss conven-
tional and bifurcating ER fixed points, and define bifurcated
equivalence and quotient superselection sectors. In Sec. III,
we review Haah’s polynomial framework [60] which we use
to efficiently represent the stabilizer models and do entan-
glement renormalization. In Sec. IV, we explicitly identify
bifurcating behavior in the ERG flows of a large range of
models including 17 cubic codes [43] and all first-order fractal
spin liquids [44]. In Sec. V, we discuss possible ERG flows
for the distinct classes of topological order [30]. In Sec. VI,
we study quotient superselection sectors in several examples.
In the Appendix, we provide numerical results for the number
of encoded qubits for all models discussed, complimented by
derivations of analytical expressions for a select few. We also
present the ER for the X-cube model explicitly. The explicit
ER process for all other models as listed is shown in the
MATHEMATICA file SMERG.nb provided in Ref. [45].

II. ENTANGLEMENT RENORMALIZATION
AND PHASE EQUIVALENCE

In this section, we introduce the notions of quantum phase
of matter and entanglement renormalization. We discuss how
the definition of phase equivalence is informed by ERG fixed
points. We then introduce the more general notion of bifur-
cated equivalence based upon bifurcating ERG fixed points.
We also discuss how the notion of superselection sector is
generalized to quotient superselection sector for bifurcating
ERG fixed point models.

A. Gapped quantum phases of matter

Throughout the paper we consider lattice Hamiltoni-
ans in 3D with short-range interactions. We only consider
translation-invariant Hamiltonians defined on cubic lattices.

A model is in a zero temperature gapped quantum phase if,
in the energy spectrum, there is a finite gap between a nearly
degenerate ground-state subspace and the first excited state.
Technically the energy gap must be uniformly lower bounded
by a positive constant for a sequence of increasing system
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sizes approaching the thermodynamic limit [46]. The energy
splitting for the nearly degenerate ground-state subspace must
also vanish super-polynomially in the thermodynamic limit.
The thermodynamic limit is approached as the ratio of system
size L to the lattice constant, or the short-distance cutoff length
scale, a goes to infinity L/a → ∞. Two Hamiltonians are in
the same phase if they are connected by a path of uniformly
gapped Hamiltonians, possibly after adding in additional spins
governed by the trivial paramagnetic Hamiltonian whose
ground state is a product state. The addition of trivial degrees
of freedom serves to stabilize the equivalence relation and
allows for the comparison of models with a different number
of spins per unit cell. In particular, models with the same L
but different a can be meaningfully compared. Conversely, a
quantum phase transition between gapped phases necessarily
involves the gap closing.

The physical characteristics of zero temperature gapped
phases can be studied via their ground states. Such ground
states are in the same phase if and only if they are related
by a quasiadiabatic evolution [47], possibly after stabilization
by adding spins in a trivial product state. Constant-depth local
unitary circuits are often used as a proxy for phase equivalence
[35], although strictly speaking they provide only a sufficient
condition [48]. To compare bulk phase equivalence more gen-
erally one should consider stabilized (approximate) locality-
preserving unitary maps, or quantum cellular automata. For
dispersionless commuting projector Hamiltonians it appears
sufficient to consider stabilized exact locality-preserving uni-
tary maps, up to a change in the choice of local Hamiltonian
terms that preserves the ground space and gap but may shift
higher energy levels.

Throughout this work, topological orders are stable gapped
quantum phases defined by a topological degeneracy on torus
and characterized by the existence of nontrivial quasipar-
ticles. This includes (1) topological quantum liquid (TQL)
phases [49], whose ground-state degeneracies on the torus
have a constant upper bound. It is widely believed that these
phases can be described by topological quantum field theories
(TQFT) at low energy. Hence, for such phases, the details of
lattice geometry become unimportant in the long wavelength
limit.

(2) Fracton phases whose ground-state degeneracies do not
have a constant upper bound. The details of lattice geometry
play an important role for the properties of these phases, even
in the long wavelength limit. Hence, the low-energy behaviors
of these phases are not described by any conventional TQFTs.

B. Entanglement renormalization transformations

We now describe ER transformations following the pio-
neering work [2]. Given a gapped Hamiltonian, an ER trans-
formation consists of the following steps. (1) Coarse-grain the
system by enlarging the unit cell by a factor c > 1. (2) Apply
local unitary transformations to the Hamiltonian to remove
short-range entanglement. (3) Project out local degrees of
freedom that are completely disentangled into a trivial state.
The result is a new Hamiltonian in the same phase of matter,
defined on the coarse-grained lattice.

In order to maintain a well-defined notion of phase
throughout a renormalization procedure, we fix the ratio L/a

FIG. 1. Conventional RG flows within gapped phases. Hi indi-
cate different models that flow towards fixed points models HFPi .
Here, H1–4 are in one phase while H5–9 are in another. These phases
are represented by regions in parameter space, separated by a dotted
phase transition line.

to be infinite by taking an infinite system size L while suc-
cessively coarse-graining a finite lattice constant a by a factor
c > 1. For a system of finite size, coarse-graining amounts
to reducing the number of unit cells in the system. In the
thermodynamic limit, this remains true, as the ratio L1/a1

L2/a2
of the

number of unit cells before and after coarse graining is equal
to c even though both numerator and denominator diverge.

Conventionally it is expected that ERG flows within a
gapped phase carry models towards a representative fixed
point model that is invariant under the ERG flow. We depict
such a situation schematically in Fig. 1, which shows Hamilto-
nians flowing towards RG fixed points in two gapped phases.
The set of stable ERG fixed points then suffice to classify the
gapped phases.

We remark that under ER copies of the trivial Hamiltonian
are produced at an exponential rate, as the trivial Hamiltonian
in D spatial dimensions splits into cD copies of itself under
coarse-graining by a factor c. Hence to find any fixed points
we must mod out by this self-replicating trivial model. Fur-
thermore, for an ERG fixed point model to lie in the same
phase after a change of scale, the trivial Hamiltonian must
also be modded out in the definition of phase. This is clearly a
necessary condition for the definition of a phase that does not
rely on a choice of lattice scale, as is commonly desired.

Conventional fixed point Hamiltonians under the form of
ER we consider here must satisfy

UH (a)U † ≡ H (ca), (1)

for some finite-depth quantum circuit U , where c is the coarse-
graining factor. The Hamiltonian H (ca) has the same local
terms as the original Hamiltonian H (a), but the degrees of
freedom sit on the sites of a coarse-grained lattice with spac-
ing ca. The equivalence ≡ denotes equality up to the addition
of disentangled spins governed by the trivial Hamiltonian to
either side, and changing the choice of local Hamiltonian
terms in a way that preserves the ground space. In particular,
this implies that H (a) and H (ca) are in the same phase.
This relation holds for commuting projector Hamiltonians that
describe TQL phases [50–54], and hence they are fixed points
under ER [4,5]. This allows the lattice scale to be ignored in
the definition of TQL phases.
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FIG. 2. An illustration of bifurcating ER for a 1D model. We
start with a translation-invariant spin chain, perform coarse-graining
by grouping pairs of spins into new sites and then apply a local
unitary consisting of two-spin gates that is translation-invariant on
the coarse-grained lattice. This disentangles two decoupled copies of
the original spin chain on the coarse-grained lattice.

C. Bifurcating entanglement renormalization
and bifurcated equivalence

Models that are governed by conventional ERG fixed point
Hamiltonians with topological order fall into the category of
TQL phases. All known two-dimensional fixed point models
are of this type. However, in three dimensions, fracton models
with topological order have been discovered that bifurcate
under ER. This means that performing one step of ER on a
model produces multiple nontrivial decoupled models. That
is, for some finite-depth quantum circuit U , we have

UH (a)U † ≡ H1(ca) + H2(ca) + · · · + Hb(ca), (2)

where c is again the coarse-graining factor and b is the number
of nontrivial decoupled models, or branches, which is sensi-
tive to c. We remark that this decomposition into decoupled
models may not be unique. An illustration of a bifurcating ER
transformation is shown in Fig. 2.

A model H (a) is a bifurcating fixed point if b > 1 and if
any of the resulting models on the right hand side of Eq. (2) are
equivalent to it, i.e., H1(a) = H (a) without loss of generality.
In particular, all of the examples that appear in this work are
bifurcating fixed points. Bifurcating fixed points can be either
self-bifurcating fixed points or quotient fixed points which are
defined as follows.

(1) A model H (a) is a self-bifurcating fixed point with
branching index logc b if all of the resulting models on the
right hand side of Eq. (2) are equivalent to it, i.e., Hi(a) =
H (a) for i = 1, . . . , b. For example, a self-bifurcating fixed

FIG. 3. Bifurcating RG flow. (a) HSB denotes self-bifurcating
fixed point models. (b) HB denotes bifurcating fixed point model
while HSB1 and HSB2 denote self-bifurcating fixed point models.

point with branching number b = 2 satisfies

UHSB(a)U † ≡ HSB(ca) + HSB(ca) . (3)

(2) A bifurcating fixed point model H (a) is a quotient fixed
point if the models Hi(a) for i � 2 are self-bifurcating fixed
points that are not equivalent to H1(a). More specifically we
may refer to such an H (a) as a quotient fixed point with
respect to the self-bifurcating Hamiltonian

∑
i�2 Hi(a). An

example of a quotient fixed point model, with respect to two
decoupled b = 2 self-bifurcating fixed points, is given by

UHB(a)U † ≡ HB(ca) + HSB1(ca) + HSB2(ca) , (4)

where HSB1 and HSB2 both satisfy Eq. (3).
In Fig. 3, we represent the above self-bifurcating and

quotient ERG fixed point examples using a diagrammatic
notation. In our bifurcating ERG fixed point diagrams, the
models resulting from one step of ER, corresponding to the
right hand side of Eq. (2), are found by following all arrows
leaving a model, corresponding to the left hand side of Eq. (2).
Such a diagram represents a generalized fixed point when all
arrows leaving models in the diagram return to the models
within the diagram. This captures conventional fixed points,
bifurcating fixed points and limit cycles, which can be re-
moved by increasing the amount of coarse-graining performed
during one step of ER. Further examples of bifurcating ERG
fixed point models are presented in Sec. IV, with the results
summarized in Table I. We remark that since Eq. (2) is not
unique for a given Hamiltonian H (a) it is possible for a model
to be a self-bifurcating fixed point under one ERG flow, and a
quotient fixed point under another, see Sec. IV C for a possible
example.

In contrast to conventional ER fixed points, bifurcating
ER fixed point Hamiltonians on different lattices are not in
the same phase, i.e., H (a) is not phase equivalent to H (ca).

033021-4



BIFURCATING ENTANGLEMENT-RENORMALIZATION … PHYSICAL REVIEW RESEARCH 2, 033021 (2020)

FIG. 4. Under one step of ER indicated by an arrow, a nontrivial
self-bifurcating model denoted HSB with a lattice constant a becomes
two copies of the model on the coarse-grained lattice HSB(2a). Since
HSB(2a)⊗2 is not in the same phase as HSB(2a), HSB(a) is not in the
same phase as HSB(2a). A conventional phase boundary is indicated
by a dotted line.

This is evident from the presence of nontrivial models Hi with
i � 2 on the right-hand side of Eq. (2). For a self-bifurcating
model, HSB(a), that satisfies Eq. (3) with c = 2 the reason for
this inequivalence is especially clear: two copies of HSB(2a)
cannot be equivalent to a single copy unless HSB is in the
trivial phase. This is depicted in Fig. 4.

Self-bifurcating fixed point models produce copies of
themselves at an exponential rate under ERG flow. This rate
is given by the branching number, which obviously satisfies
b � cD, but can be further shown to satisfy b < cD−1 for states
that satisfy an area law [2], which are the relevant ones in the
study of gapped phases. This is analogous to the exponential
splitting of trivial models in the ERG flow of a conventional
fixed point model. Inspired by the modding out of trivial
models in the definition of gapped phase equivalence, here
we introduce the notion of bifurcated equivalence where all
self-bifurcating models are quotiented out. This new notion
of equivalence breaks up the classification problem of ERG
fixed points for TQL phases into that of self-bifurcating and
quotient fixed points for fracton phases, see below.

More specifically, we write H1(a1) ∼HB H2(a2) if H1(a1)
stacked with some number of copies of HB lies in the same
conventional phase as H2(a2) stacked with some number of
copies of HB. This is bifurcated equivalence with respect
to a self-bifurcating fixed point model HB. When HB is a
trivial Hamiltonian we recover the conventional phase equiv-
alence and when HB is a stack of 2D topological orders we
recover the foliated fracton equivalence. Similarly we write
H1(a1)HB1

∼HB2
H2(a2) if H1(a1) stacked with copies of HB1 is

equivalent to H2(a2) stacked with copies of HB2 . More gen-
erally we denote bifurcated equivalence by H1(a1) ∼ H2(a2)
whenever there exist self-bifurcating models HB1 , HB2 such
that H1(a1)HB1

∼HB2
H2(a2). See Fig. 10(b) for a nontrivial

example involving both foliated fracton equivalence and the
more general bifurcated equivalence.

The bifurcated equivalence relation serves to essentially
remove dependence on the lattice scale from the equivalence
class of a quotient fixed point Hamiltonian since H (a) ∼
H (ca) in that case. We remark that models may be bifurcated

equivalent, even when they are not in the same conventional
gapped phase. In particular, any self-bifurcating model is in
the trivial bifurcated equivalence class, even though the model
may be in a nontrivial conventional phase. In Fig. 4, the
dotted line denotes a conventional phase boundary, whereas
the whole diagram lies in the same trivial bifurcated equiv-
alence class. It is also useful to generalize the equivalence
relation ≡ accordingly by allowing for stacking with arbitrary
self-bifurcating models, which we denote ∼=. With this defini-
tion in hand the condition for a quotient fixed point resembles
the conventional fixed point condition

UH (a)U † ∼= H (ca) . (5)

D. (Quotient) superselection sectors

A nontrivial superselection sector on some region R is an
excitation that can be supported on R but cannot be created
by any operator within a neighborhood of R. Superselection
sectors are equivalent if they are related by the application
of an operator within a neighborhood of R, or equivalently
fusion with a local excitation in R. Under ER excitations may
split due to a change in the choice of local Hamiltonian terms
allowed in the ≡ relation. This may create local excitations in
the trivial Hamiltonians that are modded out by the ≡ relation.
Hence for superselection sectors to be invariant under ER,
local excitations must be modded out in their definition.

For the same reason, to define quotient superselection
sectors (QSS) that are invariant under quotient ER we must
mod out any excitations that can flow into a self-bifurcating
fixed point model, as these models are modded out by the ∼=
relation. Representatives of potential QSS are then given by
the fixed point excitations under quotient ER. This captures
the notion of QSS for foliated fracton models as a special case
when the self-bifurcating model is taken to be a stack of 2D
topological orders [42].

III. ENTANGLEMENT RENORMALIZATION
IN THE POLYNOMIAL FRAMEWORK

In this section, we introduce translation-invariant stabilizer
models, Clifford ER transformations and phase equivalence
relations, along with their descriptions in the language of
polynomial rings from commutative algebra.

A. Translation-invariant stabilizer models

Translation-invariant stabilizer Hamiltonians are specified
by a choice of mutually commuting local Pauli stabilizer
generators h(i). The generators become the interaction terms
in a Hamiltonian,

H =
∑

�v

(
1 − h(i)

�v
)
, (6)

where �v are lattice vectors. In the above equation, h(i)
�v indi-

cates a local generator h(i) after translation by a lattice vector
�v. The local generator h(i) is a tensor product of local Pauli
operators acting on a set of qubits or qudits. Without loss of
generality, we consider stabilizer models on a cubic lattice.
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Clifford phase equivalence and entanglement renormalization

Maps between translation-invariant stabilizer Hamiltoni-
ans are given by locality-preserving Clifford operations,
which map local Pauli operators to local Pauli operators.
These Clifford operations include local Clifford circuits which
are generated by CNOT, Phase and Hadamard gates, and non-
trivial Clifford cellular automata, which are required to dis-
entangle certain invertible phases [48]. In addition, locality-
preserving automorphisms of the lattice, such as the redefi-
nition of coordinates via modular transformations and coarse
graining, are also included.

Phase equivalences of translation-invariant stabilizer
Hamiltonians are given by locality-preserving Clifford oper-
ations up to stacking with trivial models. For our Clifford ER
transformations, we restrict to local Clifford circuits, coarse-
graining, and discarding trivial models, as the modular trans-
formations and other nontrivial locality-preserving operations
can be moved to a single final step when comparing models.
A change in the choice of local stabilizer generators that
preserves the stabilizer group is also allowed when comparing
two models, as in the ≡ relation above. As CNOT, Phase
and Hadamard gates generate the Clifford group, they are
sufficient to implement ER of Pauli stabilizer codes.

In 2D, all translation-invariant topological stabilizer mod-
els were classified and shown to be equivalent, under locality-
preserving Clifford operations, to copies of the 2D toric code.
This implies that all translation-invariant topological stabilizer
models in 2D flow to ER fixed points. Conversely in 3D
examples of translation-invariant topological stabilizer mod-
els that bifurcate under ER are known, and the classification
problem remains completely open, due to the existence of
fracton models. Our goal is to study the bifurcating ERG flows
of known fracton stabilizer models to gain clues about the 3D
classification problem.

The examples considered in this work are all in CSS
form [55,56], which should be preserved under ER, hence
we have found it sufficient to consider Clifford circuits that
consist of CNOT gates alone. In particular, the unitaries used
in the ER of our examples are given by Clifford circuits
U = U1U2 . . .UN , where N is finite and each layer of gates
Ui is a translation-invariant tensor product of CNOT gates.

B. The polynomial framework

Translation-invariant stabilizer Hamiltonians can be con-
veniently expressed in terms of polynomials. The use of a
polynomial description in a similar context dates back to work
on classical cyclic codes [57–59]. The polynomial approach
for quantum codes on a lattice was primarily developed by
Haah. Interested readers are directed to Ref. [60] for further
details. We proceed by introducing several definitions from
the polynomial language that are necessary and sufficient to
describe ER. These definitions are demonstrated via exam-
ples.

1. The stabilizer map

For a stabilizer model on a cubic lattice, the stabilizer
generators supported on a cubic unit cell can be expressed
in terms of the position labels of the vertices on the cube as

shown below

(7)

The canonical example of a type-II model is Haah’s code,
also called cubic code 1 [43], which has the following stabi-
lizer generators

(8)

In the X -stabilizer generator, the sites on which the first qubit
is acted upon by the Pauli X operator are at positions 1,
xy, xz, and yz of the unit cell. We take this set of positions
(1, xy, xz, yz) and write a polynomial corresponding to this
set 1 + xy + xz + yz. Similarly, the polynomial corresponding
to the action of the Pauli X operator on the second qubit
on vertices in the unit cell is given by 1 + x + y + z. The
polynomials corresponding to the action of the Z operator
on the first and second qubits on each site involved in the
Z-stabilizer generator are given by xy + xz + yz + xyz and
x + y + z + xyz. The coefficients of the terms in the poly-
nomials refer to exponents of Pauli operators, and hence the
addition of polynomials corresponds to the multiplication of
operators. One can consider this polynomial representation
to be a map from the position labels to the set of Pauli
operators. This map is called the stabilizer map which can be
written as a 2q × t matrix where q is the number of qubits on
each vertex in the unit cell and t is the number of stabilizer
generators per unit cell in the translation-invariant stabilizer
Hamiltonian. The columns of such a matrix represent the
generating terms in the Hamiltonian and the translates of the
full stabilizer map or the individual terms can be generated
by multiplication of monomials of translation variables to
the map or individual columns respectively. We illustrate the
polynomial representation for a non-CSS model using the
example of Wen’s plaquette model in Fig. 5.

In this paper, we focus on CSS models for which the
stabilizer map takes the form

σ =
(

σX 0
0 σZ

)
, (9)

where σX (Z ) is the map for the X (Z ) sector. Each column,
labeled Ci, specifies a stabilizer generator. The rows of the
σX (Z ) block are labeled RX

i (RZ
i ), where the row index i is the

index of the qubit in the unit cell. For example, the stabilizer
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FIG. 5. The stabilizer map of Wen’s plaquette model. The
qubit positions are expressed in terms of the translation variables
x, y, and z in blue. The polynomial representation for each plaquette
stabilizer generator is written in purple, where the first (second)
row contains the positions acted upon by the X (Z) operator. These
representations can be obtained by applying the stabilizer map σ

to monomials that specify the positions of the respective stabilizer
generators.

map for cubic code 1 is

σ =

⎛
⎜⎝

1 + xy + xz + yz 0
1 + x + y + z 0

0 xy + xz + yz + xyz
0 x + y + z + xyz

⎞
⎟⎠. (10)

We remark that all stabilizers of the model can be generated
by the action of the stabilizer map on a column of translation
variables. The translation action can be expressed in terms
of the position variables x, y, and z. For example, the X
stabilizer on the unit cell at position x relative to the origin
is denoted ⎛

⎜⎝
(1 + xy + xz + yz)x

(1 + x + y + z)x
0
0

⎞
⎟⎠ . (11)

Using this, or any other translation of the X -stabilizer gen-
erator in Eq. (10) lead to the same Hamiltonian. Hence,
multiplying columns by monomials results in an equivalent
stabilizer map. For example, we could divide the second
column of the cubic code stabilizer map by xyz, corresponding
to a unit translation in the negative direction along each axis.
The resulting equivalent stabilizer map can be written as

σ =

⎛
⎜⎝

1 + xy + xz + yz 0
1 + x + y + z 0

0 1 + x + y + z
0 1 + xy + xz + yz

⎞
⎟⎠, (12)

where we have introduced the inverse variables x, y, and z,
which satisfy xx = 1, yy = 1, and zz = 1. In the terminol-
ogy of commutative algebra, introducing negative powers for
translation variables involves going from a polynomial ring to
a Laurent polynomial ring.

2. Entanglement renormalization in the polynomial language

As discussed above, in the Clifford ER procedure after
coarse-graining certain operations are allowed. These op-
erations consist of acting on the stabilizer generators with
Clifford gates, changing the choice of generators for the same
stabilizer group and shifting the lattice sites. In the polynomial
language, these operations are represented by matrices acting
on the stabilizer map, from the left for Clifford gates and qubit
shifts, and from the right for the shifting of lattice sites and
redefinition of stabilizer generators. These operations were
described in Ref. [2]. As our focus is on CSS models, we
restrict our discussion to Clifford circuits made up of CNOT
gates. In which case the action of ER operations on the
stabilizer map are as follows.

(1) Row operations.
Elementary row operations. An elementary row operation

on a stabilizer map with rows RX (Z )
i is specified by two row

indices a 	= b and a monomial f and acts as follows in the X
sector:

CNOT(a, b, f ) : RX
a 
→ RX

a + f (x, y, z)RX
b . (13)

This operation corresponds to a translation-invariant imple-
mentation of CNOT gates between the target qubits specified
by a and f with the control qubits specified by b. The
corresponding action in the Z sector is given by

CNOT(a, b, f ) : RZ
b 
→ RZ

b + f (x, y, z)RZ
a . (14)

Row multiplication by a monomial. Multiplying the rows
in the stabilizer map corresponding to a particular qubit by a
monomial corresponds to shifting that qubit in some direction.
There are two rows corresponding to a particular qubit in
the stabilizer map. For example, for a � q, Ra and Ra+q

correspond to the X action and Z action on qubit a in the
unit cell. Shifting the qubit a amounts to the transformation
Ra → xiy jzkRa, Ra+q → xiy jzkRa+q, where i, j, k are finite
integers specifying the shift in a certain direction.

(2) Column operations.
Elementary column operations. An elementary column

operation on a stabilizer map with columns Ci is specified
by two column indices a 	= b and a monomial f and acts as
follows:

Col(a, b, f ) : Ca 
→ Ca + f (x, y, z)Cb . (15)

This changes the choice of stabilizer generators by replac-
ing those corresponding to Ca by products of themselves
with translates of the generator corresponding to Cb. Such a
change of choice of generators results in a phase equivalent
Hamiltonian with the same ground space and possibly shifted
excitation energy levels.

Column multiplication by a monomial. This corresponds to
changing the choice of a stabilizer generator, translating it by a
monomial. This has no effect on the Hamiltonian described by
the stabilizer map, as it already specifies all translations of the
generators. For example, we used such a transformation above
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to modify the polynomial representation for the Z-stabilizer
term of the cubic code to go from Eq. (10) to Eq. (12).

3. Modular transformations

The Clifford ER process only involves equivalences be-
tween models generated by coarse-graining, local Clifford
gates, shifting the lattice sites and changing the choice of
column generators. More generally modular transformations,
which are locality-preserving automorphisms of the cubic
lattice including shear transformations, preserve the bulk
properties of a model. Hence, when deciding phase equiva-
lence, modular transformations need to be taken into account.
Formally, they correspond to the redefinition of translation
variables (x, y, z) to ( f1(x, y, z), f2(x, y, z), f3(x, y, z)), where
fi(x, y, z) for i = 1, 2, 3 are monomials in the translation
variables that induce a bijection of the lattice sites.

Modular transformations are not used during our ER pro-
cess. However, they are used when checking the equivalence
of models that result from ER. We have also used them to find
equivalences between some of the cubic codes. For example,
cubic code 5 is related to cubic code 9 (and cubic code 15
is related to cubic code 16) via a modular transformation and
hence they are in the same phase [30].

4. The excitation map

The excitations created by the action of a Pauli operator can
be found by applying the excitation map ε to the polynomial
representation of that Pauli operator. The map ε is expressed
in terms of the stabilizer map σ via

ε := σ †λ, where λ =
(

0 1
−1 0

)
(16)

is a 2q × 2q antisymmetric matrix and 1 denotes the q × q
identity matrix. The rows in the excitation map correspond
to excitations of different stabilizer generators. The operators
that do not excite a particular stabilizer generator are repre-
sented by column vectors that give 0 when acted upon by the
corresponding row of ε. For example, one can see from the
form of λ that no X stabilizer generators are excited by
the action of a Pauli X operator, as expected. More generally,
the kernel of ε contains the operators that commute with
all local Hamiltonian terms. In particular, the condition that
the Hamiltonian terms themselves commute can be recast
as εσ = 0, i.e., Im σ ⊆ ker ε. This containment is saturated,
Im σ = ker ε, for infinite boundary conditions if and only
if the Hamiltonian described by σ is topologically ordered
[60,61]. Since ker ε consists of operators of finite extent
in the polynomial formalism, Im σ = ker ε implies that any
operator that commutes with the Hamiltonian is in the span
of the stabilizer group and thus can be written as a sum of
products of generators. This implies that any local operator
must act as the identity on the degenerate ground space of
the Hamiltonian with periodic boundary conditions, up to a
proportionality constant that may be 0.

In Fig. 6, we depict how the excitation map gives the
positions of excited stabilizers due to the action of a local
operator Z on a qubit at position xy in the Wen-plaquette
model. Another phase equivalent example is the Z2 toric code

FIG. 6. Excitation map for Wen’s plaquette model. The positions
of stabilizer generators are written on the dual lattice. All but one
of the labels for qubits and Pauli operators have been omitted for
simplicity. A local operator Z acting at position xy and its polynomial
column representation are depicted. The first (second) row of the col-
umn contains the position where X (Z) acts. Applying the excitation
map ε, also depicted, to the polynomial column returns the positions
of excited stabilizers 1 + xy (indicated by shaded circles).

whose stabilizer map is given by

σ =

⎛
⎜⎝

1 + y 0
1 + x 0

0 1 + x
0 1 + y

⎞
⎟⎠ (17)

and whose excitation map is given by

ε =
(

0 0 1 + y 1 + x
1 + x 1 + y 0 0

)
. (18)

Considering the action of a local Z operator on the first qubit
at position x. The action of this local operator is represented
by the following column

ô =

⎛
⎜⎝

0
0
x
0

⎞
⎟⎠ (19)

and the action of the excitation map on this operator gives

εô =
(

0
x + xy

)
. (20)

This implies that the Z stabilizers at positions x and xy are
excited due to the action of ô on Z2 toric code. Similar to
the polynomial description of Pauli operators, addition of
excitation polynomials corresponds to fusion of excitations.

The image of the excitation map im(ε) contains topolog-
ically trivial configurations of excitations. For cubic code
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stabilizer maps, which take the following form:

σ =

⎛
⎜⎜⎝

f 0
g 0
0 g
0 f

⎞
⎟⎟⎠. (21)

The excitation map is given by

ε =
(

0 0 f g
g f 0 0

)
. (22)

For any CSS model, the X and the Z generator excitation
sectors are decoupled, and in the case of the cubic codes they
are related by a spatial inversion transformation. For cubic
codes, the polynomials in the image of the excitation map
for Z generators belong to the ideal1 generated by f (x, y, z)
and g(x, y, z), i.e., p(x, y, z) f + q(x, y, z)g where p(x, y, z)
and q(x, y, z) are arbitrary finite-degree polynomials with Z2

coefficients. We refer to this ideal, 〈 f , g〉, as the stabilizer ideal
[60].

5. Coarse-graining the stabilizer and excitation maps

Coarse-graining by a factor of c enlarges the unit cell by
the same factor. Consider c = 2. After coarse-graining, the
original translation variables x2, y2, and z2 are transformed
to x′, y′ and z′ on the new lattice. Coarse-graining in all
three directions by a factor of 2 makes the number of qubits
per site and the number of stabilizer generators eight times.
This coarse-graining transformation is implemented by the
transformation of the original translation variables

x 
→
(

0 x′
1 0

)
, y 
→

(
y 0
0 y

)
, z 
→

(
z 0
0 z

)
, (23)

where x′ = x2 is a new translation variable. For example, this
coarse-graining sends the stabilizer map of the 2D toric code
from Eq. (17) to

σ ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + y 0
0 1 + y
1 x′
1 1

1 1
x′ 1

1 + y 0
0 1 + y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (24)

It is shown below in Sec. III A 1 that after the application
of local CNOT gates, column operations and the removal
of qubits in the trivial state, the original stabilizer map is
recovered.

The coarse-grained excitation map is defined in terms of
the coarse-grained stabilizer map via ε′ = σ ′†λ.

6. Coarse-graining factor and trivial charge configurations

For the qubit-stabilizer models studied in this paper, we
consider coarse-graining by factors of 2, i.e., c = 2. It was
shown in Refs. [2,61] for cubic code 1 that the set of triv-
ial charge configurations referred to as the annihilator of

1An ideal I of a polynomial ring R contains elements rI such that
rI r ∈ I for all r ∈ R and all rI ∈ I .

the charge module [61], denoted A, shows self-reproducing
behavior under coarse-graining by a factor of 2. The an-
nihilator of the cubic code 1, A, is given by the ideal
〈1 + x + y + z, 1 + xy + yz + xz〉. Here, for example, 1 +
x + y + z specifies a trivial charge configuration with the
stabilizers excited at positions 1, x, y, and z under the action
of a local operator. After coarse-graining, the annihilator Ac

is given by 〈1 + x′ + y′ + z′, 1 + x′y′ + y′z′ + x′z′〉 in terms
of the coarse-grained variables x′ = x2, y′ = y2, z′ = z2, and
hence has the same form as A. This suggests that cubic
code 1 renormalizes into a model similar to itself. In fact,
the annihilators of the charge modules for the two codes that
are extracted after ER of cubic code 1, i.e., itself and cubic
code 1B, are exactly the same. We find this self-reproducing
behavior for all the cubic codes and the corresponding B
models; the form of the annihilator after coarse-graining by
a factor of 2, Ac retains the original form as A just like in
the case of cubic code 1. Conversely, under coarse-graining
by a factor of 3, the annihilator does not retain the original
form. For any self-bifurcating fixed point model, it obviously
follows that the models extracted after ER retain the same
annihilator. For the bifurcating quotient fixed point models,
which split into a copy of themselves and some B models
under ER, having the same form of annihilator after coarse-
graining implies that the annihilators of the B models contain
the original annihilator A.

IV. EXAMPLES OF BIFURCATING ENTANGLEMENT
RENORMALIZATION

In this section, we find bifurcating ERG flows for explicit
examples of fracton models. Some of the fracton models
treated are found to be self-bifurcating fixed points while
others are quotient bifurcating fixed points. Moreover, we find
that some models may admit several qualitatively different
ERG flows. In Sec. IV C, we discuss an example that could
possibly have two flows: either a self-bifurcating fixed point
or a quotient bifurcating fixed point, depending on the ER
transformation chosen.

The models we consider include several examples with
known ERG flows: the 3D toric code (3DTC), a stack of
2D toric codes along an axis î (STCî), the X-cube model
(X-cube), and Haah’s cubic codes 1 (CC1) and 1B (CCB1).
Beyond these known examples we also find the ERG flows
of the 16 other CSS cubic codes [43,61] 2-17 (CC2–17) and
the B codes thus produced (CCB11–17), as well as all first-
order fractal spin liquids [44] (FSL), a simple example of
which is the Sierpinski fractal spin liquid [12] (SFSL). In the
next section we put the ERG flows found for these examples
into context by organizing them according to the type of 3D
topological order each model displays [30].

We have followed a simple heuristic to find ER transfor-
mations for the example models listed in Table I. We outline
this process in Appendix B, and apply it to the X-cube model
as a demonstrative example.

A. Self-bifurcating fixed points

The coarse-graining step of the ER procedure can involve
one, two or all three lattice directions. Self-bifurcating models
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FIG. 7. Self-bifurcating ERG flow diagrams. (a) ER of a stack
of 2D toric codes along the ẑ direction, parallel to the xy plane,
denoted by STCẑ. The arrows labeled x̂ and ŷ indicate directions
in which the model is invariant under coarse-graining. Conversely,
under coarse-graining along ẑ, STCẑ self-bifurcates into two copies,
which is indicated by a pair of arrows labeled ẑ. An arrow with
no label, in general, indicates coarse-graining in all three lattice
directions and in this case of STCẑ, that produces the same result as
coarse-graining in ẑ. (b) ER of a lineon model, denoted LMx̂ , where
the topological excitations of the model can all move along x̂. Cubic
codes 5, 6, and 9 are examples of similar lineon models. (c) ER of
self-bifurcating cubic codes CCi for i in the range 2–10 or 14. (d) ER
of any first-order fractal spin liquid [44].

can be divided into three categories according to the minimal
number of directions one must coarse-grain for the model to
bifurcate. Sorting the self-bifurcating models in this way is
convenient when it comes to organizing them according to the
type of topological order they exhibit, as discussed in the next
section.

An important necessary condition for self-bifurcation with
c = b = 2 is that the number of encoded qubits under periodic
boundary conditions doubles when the number of sites L/a
along each axis is doubled. This is because a self-bifurcating
model with c = b = 2 on a lattice with 2L/a sites along each
axis, under ER, splits into two copies of itself when coarse
grained by a factor of 2, each of which lives on a decoupled
lattice with L/a sites.

We discuss examples of stabilizer models that we have
found to self-bifurcate under ER below. Examples of self-
bifurcating models and their ERG flows are depicted in Fig. 7
using our diagrammatic notation for bifurcating ERG fixed
points.

1. A stack of 2D toric codes

The stabilizer map for a stack of 2D toric codes along the ẑ
direction, parallel to the xy plane, appears identical to that in
Eq. (17). After coarse-graining in the x̂ direction the stabilizer
map is identical to that in Eq. (24). Applying a row operation

CNOT(2, 4, 1+y)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 1 + y
0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 1 + ȳ 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

to the coarse-grained stabilizer matrix from Eq. (24) results in

CNOT(2, 4, 1 + y)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + y 0
0 1 + y
1 x′
1 1

1 1
x̄′ 1

1 + ȳ 0
0 1 + ȳ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(25)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + y 0
1 + y 0

1 x′
1 1

1 1
x̄′ 1

1 + ȳ 0
x̄′(1 + ȳ) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (26)

After performing additional row operations CNOT(3, 4, x′),
CNOT(1, 2, x′), CNOT(1, 3, 1 + y) and column operations
Col(1, 2, 1) and Col(4, 3, 1), the model becomes

σ ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
1 + y 0
1 + x′ 0

0 1
1 0
0 1 + x′

0 1 + y
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (27)

which is nothing but a stack of 2D toric codes and two qubits
per site in a product state. Hence, the stack of toric codes along
the ẑ axis is a fixed point under ER in x. The stack of 2D toric
codes stabilizer map in Eq. (17) has x ↔ y symmetry up to
relabeling of the qubits. Hence, it is also a fixed point under
ER in y. Furthermore, for the stack of 2D toric codes along
the ẑ direction, we can trivially coarse-grain the stabilizer map
along ẑ by taking

x 
→
(

x 0
0 x

)
, y 
→

(
y 0
0 y

)
, (28)

as z does not enter the stabilizer map. This simply results in
two decoupled copies of the stack of 2D toric codes Hamilto-
nian. Hence, a stack of 2D toric codes is self-bifurcating under
ER. This provides an example of a model that self-bifurcates
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after ER in only one direction and is a fixed point under ER
along either of the other two orthogonal directions.

2. Yoshida’s fractal spin liquids

We now move on to show that a far more interesting class
of examples, the first-order fractal spin liquids of Yoshida
[44], are all self-bifurcating under ER. The general form of
the stabilizer map for these models is

⎛
⎜⎝

1 + f (x)y 0
1 + g(x)z 0

0 1 + g(x)z
0 1 + f (x)y

⎞
⎟⎠, (29)

where f and g are polynomials in the single translation
variable x. Such a model is type-II if and only if f and g are not
algebraically related [44]. This class of models also contains
fractal type-I lineon models for f = 1, g 	= 0, 1, stacks of
2D toric code for f = g = 1, stacks of 2D fractal subsystem
symmetry-protected models [62–66] for f = 0, g 	= 0, 1, and
decoupled 1D cluster states for f = 0, g = 1. We remark
that f and g can be exchanged in the above models up to a
redefinition of the lattice and an on-site qubit swap.

Under coarse-graining along ŷ:

x 
→
(

x 0
0 x

)
, y 
→

(
0 y′
1 0

)
z 
→

(
z 0
0 z

)
, (30)

where y′ = y2 is the translation variable on the coarse-grained
lattice, the stabilizer map becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 f y′
f 1

1 + gz 0
0 1 + gz

1 + gz 0
0 1 + gz
1 f

f y′ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (31)

Applying row operations: CNOT(2, 1, f ), CNOT(3, 1, 1 +
gz), CNOT(3, 4, f y) and column operations Col(2, 1, f (x)y),
Col(4, 3, f (x)) leads to the stabilizer map

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 1 + f 2(x)y′
0 0
0 1 + g(x)z

0 0
0 1 + g(x)z
1 0
0 1 + f 2(x)y′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (32)

The first and third qubits are disentangled in the above stabi-
lizer map and hence can be removed.2 The resulting stabilizer

2Up until this step, the same ER process as shown works if
1 + g(x)z is generalized to 1 + g1(x)z + g2(x)z2 + · · · , which also
generalizes 1 + g(x)z in the second column.

map is ⎛
⎜⎜⎝

1 + f 2y′ 0
1 + gz 0

0 1 + gz

0 1 + f
2
y′

⎞
⎟⎟⎠ , (33)

which is also a first-order FSL, where f (x) has been replaced
by f 2(x). We now notice that due to the symmetry between f
and g in a first-order FSL one can apply essentially the same
ER transformation, this time coarse-graining z, so that g is
replaced by g2. For a polynomial over F2, a useful property
is that f 2(x) ≡ f (x2). This leaves only functions of x2 in the
coarse-grained stabilizer map, so we coarse-grain again, along
x this time, sending

x2 
→
(

x′ 0
0 x′

)
. (34)

This results in the stabilizer map splitting into two copies of
the original model, and hence all qubit first-order FSL models
are self-bifurcating fixed points with b = 2. This includes
the stack of 2D toric codes for f = g = 1 and the trivial
model for f = g = 0. Furthermore, if f = 0, 1 then f 2 = f
and the model is a conventional fixed point under ER that
coarse-grains along y only, while being a self-bifurcating fixed
point under ER that coarse-grains both x and z, and similarly
if f and g are swapped.

A particular example, the SFSL model, is obtained when
f (x) = 1 + x, g(x) = 1, this model has a fractal logical oper-
ator in the xy plane and a lineon operator along ẑ [44]. Our
results indicate that the model is invariant under ER along the
direction of the string operator and self-bifurcates under ER
in the plane of the fractal operator.

The above ER transformations were essentially based on
the observation that the 2D first-order fractal subsystem sym-
metry breaking (classical) spin models, from which the first-
order FSLs are built, are self-bifurcating under ER. This can
easily be seen by following the ER transformation of the
FSL before Eq. (33) with the second qubit and generator, as
well as the z coordinate, dropped from the stabilizer map.
This connection generalizes straightforwardly to provide ER
transformations for 3D FSLs based upon self-bifurcating 2D
fractal subsystem symmetry breaking spin models that may
not be first order. We remark that higher-order FSLs need
not be self-bifurcating, as cubic code 1, which is not self-
bifurcating, is equivalent to a second-order FSL [44]. FSL
forms for this, and some other cubic codes are presented in
Appendix C. The explicit mapping transformations can be
found in the Supplemental Material [45] MATHEMATICA file
SMERG.nb. An interesting open problem is the classifica-
tion and characterization of higher-order self-bifurcating 2D
fractal subsystem symmetry breaking spin models and the 3D
FSLs built from them [67].

We remark that a form of real-space RG was considered
for the FSLs in Ref. [44], however it does not conform to the
strict definition of ER used here, where the phase of matter
cannot change. Instead, degrees of freedom that were not fully
disentangled were projected out, which is capable of changing
the phase by projecting out an arbitrary nontrivial decoupled
model. Our ER results are consistent with the RG results in
Ref. [44].
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FIG. 8. Bifurcating ERG flow of Haah’s cubic code 1.

For the details of the ER procedures for the other examples
discussed below, we refer the reader to the MATHEMATICA file
SMERG.nb in Ref. [45].

3. Cubic codes 5, 6, and 9

These cubic codes are fixed points under ER along one of
the lattice directions, while they self-bifurcate under ER along
the orthogonal plane, see Fig. 7(b). This is consistent with
these models being fractal type-I lineon models [30].

4. Cubic codes 2–4, 7, 8, and 10

These cubic codes are not fixed points under ER along any
single lattice directions, and self-bifurcate only after doing ER
along all three lattice directions together, see Fig. 7(c). This
is consistent with them being either fractal type-I, or type-II,
fracton models [30].

B. Quotient bifurcating fixed points

A quotient bifurcating fixed point is defined by its branch-
ing under ER into a copy of itself and an inequivalent self-
bifurcating model, which may consist of several decoupled
self-bifurcating models. Verifying the inequivalence of mod-
els can be quite subtle, as it requires one to consider arbi-
trary locality-preserving unitaries, including coarse graining
and modular transformations. Reference [2] introduced an
approach to proving the inequivalence of models based upon
the behavior of their ground space degeneracies. In particular,
the following sufficient condition was proposed to confirm
that a model could not be a self-bifurcating fixed point,

k(cL) = αk(L) + β, (35)

for integers α > 1, β > 0, where k(L) = log2 GSD(L) is
the number of encoded qubits in the ground space on an
L × L × L system with periodic boundary conditions. This is
in contrast with the necessary condition that β = 0 in Eq. (35)
for any self-bifurcating model.

1. Cubic code 1

It was shown in Ref. [2] that CC1 bifurcates into a copy
of itself and an inequivalent model CCB1 under ER and
hence is a quotient fixed point, see Fig. 8. To prove this
inequivalence the scaling of the number of encoded qubits in
the ground space, k(2L) = 2k(L) + 2, was used. This scaling
can be directly inferred from the following formula for CC1

[2,60,61]:

k(L) = 2l+2 degx

[
gcd

(
(x + 1)L′ + 1, (ζ3x + 1)L′

+ 1,
(
ζ 2

3 x + 1
)L′ + 1

)] − 2, (36)

where l is the power of 2 in L = 2lL′. Thus, any model
equivalent to CC1 cannot self-bifurcate. Since CCB1 was

FIG. 9. Bifurcating ERG flow of CCi for i = 11–17, which
support planon excitations. For CC13 and CC17 in particular, the
ERG flow depicted requires an initial coarse-graining step shown in
Fig. 10. CC14 also admits a self-bifurcating ERG flow, see Fig. 7(c).

demonstrated to be a self-bifurcating model, CC1 and CCB1

cannot be in the same phase.

2. Cubic codes 11-17

We have found that these cubic codes are quotient fixed
points under ER. CCi, for i = 11, . . . , 17, branches into a
copy of CCi, a stack of 2D toric codes along one direction and
a self-bifurcating model CCBi, see Fig. 9. This is consistent
with these models being fractal type-I topological orders that
support planons. See Appendix D of Ref. [30] for a descrip-
tion of these planons. For CC13 and CC17 the quotient fixed
point behavior occurs after an initial step of coarse-graining,
see Fig. 10.

C. Quotient bifurcating and self-bifurcating fixed point
behavior for cubic code 14

We have found two distinct ERG flows for CC14: under
one ER procedure CC14 is self-bifurcating with b = 2. Under
another ER procedure CC14 appears to be a quotient fixed
point as it bifurcates into a copy of itself, a stack of 2D toric
codes and another self-bifurcating model CCB14, see Fig. 10.
It is clear from the ERG flows that two copies of CC14 is phase
equivalent to CC14, CCB14, and a stack of toric codes. We
have not found a direct equivalence between CC14 and CCB14

plus a stack of 2D toric codes i.e. local unitary equivalence
up to addition of trivial qubits. However, the two ERG flows
we have found suggest that this is indeed the case. Due to the
absence of any correction factor in Eq. (35) for CC14, as it is a
self-bifurcating fixed point, the standard method to argue for
inequivalence, if true, of CC14 to CCB14 and a stack of 2D
toric codes does not apply.

In the case that the ERG flows are inequivalent, this would
provide an interesting example of a phase equivalence that is
catalyzed by the addition of a copy of CC14. This highlights
the fact that if bifurcated equivalence is defined with respect
to a particular B model, then the corresponding equivalence
classes will highly depend on the choice of B model. For
example, for a model such as CC14 with possibly inequivalent
ERG flows, one self-bifurcating and the other bifurcating, it
may lie in a trivial or nontrivial bifurcated equivalence class,
respectively. Hence, our notion of bifurcated equivalence is
not defined with respect to a particular B model but with
respect to all possible B models. Thus, whether the two ERG
flows for CC14 are equivalent or not, all of the aforementioned
models are in the same trivial bifurcated equivalence class.
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FIG. 10. Examples of bifurcating ERG flows. (a) ER of CC13.
The xy label on the arrows indicates the directions under which
the pre-coarse-graining is done. After an initial coarse-graining step,
CC13 splits into two copies of CC′

13. CC′
13 is a quotient fixed point of

the type shown in Fig. 9(b). (b) CC17 splits into two copies of CC′
17

and two stacks of 2D toric codes. CC′
17 is another quotient fixed point

of the type shown in Fig. 9(b). (c) CC14 appears to be a quotient fixed
point of the type shown in Fig. 9(b) under one ERG flow, depicted
with solid lines, but is found to be a self-bifurcating fixed point under
another ERG flow, depicted with dotted lines.

This example raises the interesting question of whether
all ERG flows for which a model is a bifurcating fixed
point are equivalent. We remark that this is trivially true for
conventional fixed points but requires a careful definition of
equivalence for more general bifurcating ERG flows.

V. ENTANGLEMENT RENORMALIZATION IN
DIFFERENT TYPES OF 3D TOPOLOGICAL PHASES

In the recent fracton literature [30], 3D topological stabi-
lizer models have been coarsely organized into four qualita-
tively distinct classes: TQL, foliated and fractal type-I, and
type-II fracton topological orders. TQL and fracton orders are
primarily distinguished via their relation to lattice geometry.
In the long wavelength limit, features of TQL order are
independent of the lattice geometry and are described by

TQFTs. Unlike TQL order, the details of lattice geometry play
an important role in the long wavelength description of fracton
orders. In this section, we describe salient features of the
different classes of topological order, which are determined by
the mobilities of their topological quasiparticles, and discuss
the influence they have on possible ERG flows.

A. TQL order

TQL order is characterized by a constant topological
ground space degeneracy as the system size increases and
deformable logical operators. In two dimensions, there is es-
sentially only one type of translation-invariant TQL stabilizer
model, the 2D toric code. This is due to a structure theorem
[48,68] stating that any translation-invariant topological stabi-
lizer model is equivalent under locality-preserving unitary to
copies of the toric code and some disentangled trivial qubits.

Hence all TQL stabilizer models in 2D are fixed points
under ER, equivalent to a number of copies of 2D toric code.
We expect similar behavior in 3D, that all TQL stabilizer
models are fixed points under ER equivalent to a number of
copies of 3D toric code and hence are described by a TQFT at
low energies, although this remains to be shown.

In 3D, the logical operator pairs of the toric code are com-
posed of deformable string and membrane operators. More
general 3D translation-invariant topological stabilizer models
that have a constant ground space degeneracy as system
size increases, and so are TQL orders, have been shown to
resemble this behavior as their logical operators also come
in string-membrane pairs [69]. We conjecture that a stronger
structure theorem holds for such models in three dimensions,
i.e., a TQL stabilizer model in 3D is locality-preserving
unitary equivalent to copies of the 3D toric code (possibly
with fermionic point particle [53,70]), and disentangled trivial
qubits.

B. Type-I fracton topological order

Type-I fracton topological order is characterized by a
subextensive ground space degeneracy and rigid string oper-
ators, which correspond to excitations with subdimensional
mobilities. This type of topological order is divided into two
broad categories which we treat separately below.

1. Foliated type-I topological order

Foliated topological order is characterized via a foliation
structure [39,40,71]. Such models can be grown by adding
layers of a 2D topological order, such as the 2D toric code,
according to the foliation structure. The most studied example
of this type is the X-cube model which can be grown by
adding layers of 2D toric code as shown in Fig. 11. More
formally, two Hamiltonians are foliated equivalent [41] if they
are connected by adiabatic evolution and addition of layers
of two-dimensional gapped Hamiltonians. When translation
invariance is enforced, foliated equivalence is the same as bi-
furcated equivalence with respect to stacks of 2D topological
orders. In other words, foliated equivalence as illustrated in
Fig. 11 is a special case of bifurcated equivalence as illustrated
in Fig. 12. Foliated stabilizer models can have topological
quasiparticles with a hierarchy of mobilities such as fractons,
lineons and planons. Given their foliation structure in terms
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FIG. 11. Foliated topological order in the X-cube model.

of 2D toric codes, they must always support planons. In fact,
the X-cube model has planons in all the three lattice directions
due to its foliation structure that allows layering with 2D toric
code in the three lattice directions. Due to the underlying
foliation structure of this class of models, the ground space
degeneracy scales exponentially with the size of the system.

The canonical self-bifurcating example within this class
of models is the stack of 2D toric codes. This serves as
the B model for X-cube, which is a quotient fixed point
that bifurcates into a copy of itself and a stack of 2D toric
codes along each axis. This is a consequence of the fact that
X-cube supports planons in all the three lattice planes. The ER
process for X-cube in the polynomial language is presented in
Appendix B.

Since all 2D topological stabilizer models are essentially
copies of 2D toric code, we expect that stacks of 2D toric
code are the only self-bifurcating stabilizer models in the foli-
ated class. Furthermore, we expect that all nontrivial foliated
stabilizer models flow to quotient fixed points with stacks of
2D toric code serving as the B models. An interesting open
question is whether all such quotient fixed point foliated sta-
bilizer models are foliated equivalent to a suitably generalized
X-cube model which is allowed to take on different foliation
structures [40–42,72].

2. Fractal type-I topological order

Fractal type-I topological order captures type-I models that
support fractal logical operators and symmetries, due to which
no foliation structure in terms of 2D Hamiltonians is known or
likely possible. In fact, these models need not support planons
at all. Due to the underlying fractal symmetry of this class
of models, the ground space degeneracy fluctuates with the

FIG. 12. Entanglement structure of more general fracton models.

system size. The simplest example of this type of model is the
Sierpinski fractal spin liquid model [12,44] which supports
two-dimensional fractal operators in the xy plane along with
rigid string operators in the ẑ direction as all particles in the
model are lineons. This model was mentioned above as a
special case of Yoshida’s first-order FSLs which were shown
to be self-bifurcating. As expected, this model is invariant
under ER along the ẑ direction alone but self-bifurcates under
ER in the xy plane or for all the three directions at once.

There are also fractal type-I models amongst the cubic
codes, some of which support fractons along with lineons and
planons. We discuss the ER of two such examples below. The
first is CC6 which is self-bifurcating and the other one is CC11

which is a quotient bifurcating fixed point.
CC6 is a self-bifurcating fixed point under ER that coarse-

grains all three lattice directions together. One can perform
a modular transformation on the stabilizer map of CC6 to
bring the lineon string operator along a lattice direction. The
transformed model is invariant under ER that coarse-grains
in the direction of the string operator, while it self-bifurcates
under ER that coarse-grains the directions orthogonal to it.
The number of encoded qubits of CC6 is given by

k(L) = 2l+1 degz(gcd((z + 1)L′ + 1, (z2 + z + 1)L′ + 1))

where L = 2lL′. This obeys

k(2rL) = 2rk(L),

which implies that the number of encoded qubits always dou-
bles upon doubling the system size. This is indeed consistent
with the self-bifurcating behavior.

CC11 is an important fractal type-I example as it supports
topological quasiparticles of subdimensional mobilities 0, 1,
and 2. Performing ER that coarse-grains all the three direc-
tions together causes CC11 to bifurcate into a copy of itself, a
lineon model CCB11, and a stack of 2D toric codes along x̂.
We conjecture that this bifurcating behavior is directly related
to the mobilities of topological quasiparticles in CC11. The
presence of planons in the yz planes leads to the extraction of
a stack of toric codes parallel to yz planes. Similarly, a subset
of lineons from the original model CC11 flow into the lineon
model CCB11 under ER. In fact, for each of the cubic codes
11–17, except cubic code 14, there is an ER procedure that
leads to a self-bifurcating lineon B model. For CC14, we find
a self-bifurcating fracton B model CCB14 which supports a
composite lineon as mentioned in Table III of the Appendix.
For CCB11, the scaling of the number of encoded qubits with
the system size, derived in the Appendix, is found to be
consistent with the self-bifurcating behavior.

On the other hand, we have found that the number of
encoded qubits for CC11 is given by

2L, 3 � L
2L − 4 + 2l+2 degz(gcd((z + 1)L′ + 1,

(ζ3z + 1)L′ + 1)), 3 | L
,

where L = 2lL′. Using this result, we notice that there exists
an infinite family of system sizes L for which the scaling of
number of encoded qubits has a correction factor: for 3|L, we
have

k(2L) = 2k(L) + 4 . (37)

033021-14



BIFURCATING ENTANGLEMENT-RENORMALIZATION … PHYSICAL REVIEW RESEARCH 2, 033021 (2020)

The argument from Ref. [2] can then be used to show that
the correction factor of 4 cannot be eliminated for any choice
of coarse-graining of the original model. Hence, CC11 cannot
self-bifurcate and is therefore inequivalent to CCB11.

Numerical results for the number of encoded qubits in the
ground space of CC12–17 indicate that such an inconsistency
with self-bifurcating behavior may hold for all codes except
CC14 for which the numerics are consistent with k(2L) =
2k(L). In fact, as mentioned before, we show explicitly that
there could possibly be two inequivalent ERG flows for CC14,
one in which it self-bifurcates and the other in which it splits
into a copy of itself, a B model and a stack of 2D toric codes.
The ER of CC14 is shown in Fig. 10(c).

C. Type-II topological order

Type-II topological order is defined by the absence of any
logical string operators and characterized by a subextensive
ground space degeneracy that fluctuates with the system size.
For the models in this class, none of the elementary topolog-
ical excitations or their nontrivial composites are mobile. In
the previous section we discussed the canonical example from
this class, cubic code 1, which is known to be a quotient fixed
point. CC1 supports a fractal operator that moves excitations
apart in three dimensions. We show in the MATHEMATICA file
SMERG.nb that the other type-II cubic code models3: CC2–4,
CC7, CC8, CC10, and a type-II first-order quantum FSL [44]
are self-bifurcating fixed points.

VI. QUOTIENT SUPERSELECTION SECTORS

In this section, we explore the flow of excitations under ER.
We find the set of quotient superselection sectors for several
quotient fixed point models by calculating their fixed point
excitations under a quotient ERG flow.

To find fixed point excitations under a quotient ERG flow,
it is important to understand how excitations split during
each step of ER. The local unitaries performed as part of
the ER process alter the form of stabilizer generators but do
not cause any splitting. It is the redefinition of the stabilizer
generators allowed by the equivalence relation ≡ during ER
that determines how an excitation splits. This is illustrated in
Fig. 13. In the polynomial description of ER, this redefinition
is captured by column operations on the stabilizer map. A
representation ExS of the excitation splitting map can be
found by taking the transpose of the matrix representation of
the composition of all column operations involved in an ER
transformation. For CSS models, ExS is block-diagonal and
can be decomposed into separate maps ExSX and ExSZ for
the X and Z sectors, respectively.

Quotient superselection sectors are defined to be equiva-
lence classes of superselection sectors modulo any sectors that
can flow into a self-bifurcating model. For stabilizer models,
the QSS form an Abelian group under fusion. Nontrivial QSS
only arise in nontrivial quotient fixed point models. While
self-bifurcating fixed point models may support highly non-

3CC2–4 were rigorously proven to be type-II in Ref. [43] while CC7,
CC8, and CC10 were found to be type-II according to the methods in
Ref. [30].

FIG. 13. An illustration of the flow of excitations under ER for
a quotient fixed point model. On the left hand side, the coarse-
grained unit cell of a 2D quotient fixed point model with one type
of excitation per site is depicted. The presence of an excitation is
indicated by a filled circle. Under ER, this excitation can split into
multiple excitations that may be supported on a coarse grained copy
of the original model (white box) and the B models (blue and grey
boxes). The excitation in (a) is a fixed point under quotient ER
and hence represents a QSS. On the other hand the excitation in
(b) corresponds to a trivial QSS as it flows to the trivial fixed point
under quotient ER.

trivial superselection sectors, these sectors all collapse into
the trivial QSS. A nontrivial QSS must maintain support on
a quotient fixed point model along its ERG flow. Conversely,
any excitation that flows fully into self-bifurcating B models
lies in the trivial QSS. Hence, representatives of potentially
nontrivial QSS are given by fixed point excitations under
quotient ER which mods out any of the self-bifurcating B
models.

Each row of the map ExS corresponds to a different type of
stabilizer generator in the coarse-grained model. The entries
in a row are the coefficients for expressing a new stabilizer
generator as a linear combination of the original stabilizer
generators within the coarse-grained unit cell,

(38)
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Here, x, y, and z are the translation variables of the origi-
nal lattice. For the choice of coarse-graining map described
in Sec. III B 5, the original stabilizer generators within the
coarse-grained unit cell are ordered as follows:

1 − z − y − yz − x − xz − xy − xyz . (39)

According to the above ordering, the position of each stabi-
lizer generator in the coarse-grained unit cell can be mapped
to unit vectors ei. This implies, for example, that the gener-
ator originally at position x becomes the fifth generator in
the coarse-grained unit cell, corresponding to the unit vec-
tor e5 = (0 0 0 0 1 0 0 0), and similarly the
generator at position xyz becomes the last, corresponding to
e8 = (0 0 0 0 0 0 0 1).

As mentioned above, for all examples studied we have
found that a copy of the original model appears after one
step of ER. To find the QSS by looking for fixed point
excitations under quotient ERG flow using the ExS map, we
need to consider only those rows that correspond to the copy
of the original model on the coarse-grained lattice. For a CSS
model with one type of X stabilizer generator, we need to
consider only one row of the ExSX map, denoted ExSRX .
This map, ExSRX , specifies how X type of excitations flow
under quotient ER. The quotienting out of excitations that
flow into self-bifurcating B models is achieved by ignoring the
corresponding rows in ExSX , which specify how excitations
flow to those B models. The fixed points of ExSRX capture
the potentially nontrivial QSS.

To find the fixed points of ExSRX we take the infrared
limit, corresponding to many steps of ER, after which an
arbitrary excitation will be supported on the coarse-grained
unit cell. This allows us to restrict our attention to columns
that contain only Z2 entries with no polynomial variables.
We then utilize the mapping from polynomials to unit vectors
described below Eq. (39) to translate the monomials in ExSRX

into columns, resulting in a square matrix with Z2 entries,
which we also denote ExSRX . With this replacement, the flow
of excitations within the unit cell of a quotient fixed point

model under quotient ER has been specified. The fixed points
of ExSRX , after the replacement, provide representatives for
the QSS. Several examples are worked out below.

1. X-cube model. Under ER, the X-cube model is mapped
to itself, stacks of 2D toric code along each axis, and de-
coupled trivial qubits. In the Quotient Superselection Sectors
section of the Supplemental Material [45] MATHEMATICA file
SMERG.nb, column 8 contains the X -stabilizer term of X-
cube model while columns 11 and 19 contain the Z-stabilizer
terms. The map ExS can be found in terms of the column
operations used during ER, as described above. The row
corresponding to the X -stabilizer term of X-cube in the map
ExSX , i.e., ExSRX , is given by

(x′ + y′ + x′y′ x′ + y′ + x′y′ 1 1 1 1 1 1) ,

where x′, y′, and z′ are again translation variables on the
coarse-grained lattice. Using the fact that the charge config-
uration given by 1 + x′ + y′ + x′y′ is trivial in the X-cube
model, we rewrite this row as

(1 1 1 1 1 1 1 1) .

To capture the flow of excitations from the coarse-grained unit
cell to the new copy of X-cube produced by ER, we write this
row in terms of unit vectors as described above in Eq. (39).
The 1 entries are replaced by column vectors e1

(e1 e1 e1 e1 e1 e1 e1 e1) ,

where e1 = (1 0 0 0 0 0 0 0). Here, e1 speci-
fies that all X stabilizer excitations within the unit cell flow
to the X stabilizer excitation at position 1 of the new copy
of X-cube on the coarse-grained lattice under quotient ER.
Accordingly, the fixed point of this matrix is simply e1,
corresponding to the Z2 fracton excitation from the X sector
of the X-cube model.

On the other hand, the Z sector splits into 16 different
stabilizer terms during ER. Hence there are 16 columns in the
map ExSZ . The rows corresponding to the two Z-stabilizer
terms in the copy of X-cube on the coarse-grained lattice are

(
1 z′ 1 1 1 z 1 1

1 + x′ z′ + x′z′ 0 0 0 0 0 0
1 + z′ 0 0 0 0 x′ + x′z′ 0 0

x′ 1 + z′ + x′z′ 1 1 x′ x′ + x′2z′ + x′z′ x′ 1

)
.

Using the triviality of charge configurations 1 + x′ and 1 + z′ in the X-cube model, we rewrite these rows as(
1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1

)
.

Again, converting the position labels to unit vectors, we obtain the map for the flow of excitations
(

e1 e1 e1 e1 e1 e1 e1 e1

e0 e0 e0 e0 e0 e0 e0 e0

e0 e0 e0 e0 e0 e0 e0 e0

e1 e1 e1 e1 e1 e1 e1 e1

)
,

where e0 = (0 0 0 0 0 0 0 0). The fixed
points are

(
e1

e0

)
and

(
e0

e1

)

which correspond to the two generating Z2 lineons in the Z
sector of the X-cube model. Hence we find that the QSS group
of X-cube is given by Z2 ⊕ Z2

2, which agrees with the result
in Ref. [42].

2. Cubic code 1. After ER, cubic code 1 bifurcates into
a copy of itself, cubic code B and some disentangled trivial
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FIG. 14. The flow of X -sector excitations in cubic code 1 under
the ER transformation depicted in Fig. 8. The coarse-grained unit
cell of CC1 is shown as a cube containing circles that represent X
stabilizers, which are filled in black to represent excitations. Under
ER, the X excitation at position z in the coarse-grained unit cell,
denoted e2, is mapped to excitations of the X stabilizer of the coarse
grained copy of CC1 represented by a white box, both X stabilizers
of CCB1 represented by the purple box and a local excitation in the
trivial sector represented by the gray box.

qubits. The matrix ExSRX is given by

(1 1 1 x′ 1 1 + x′ + z′ 1 + x′ + y′ x′ + y′ + z′).

Using the triviality of the charge configuration 1 + x′ + y′ + z′
in cubic code 1, we rewrite this row as

(1 1 1 x′ 1 y′ z′ 1),

which specifies the flow of excitations into the CC1 model on
the coarse-grained lattice. Converting the position labels into
unit vectors, we can write this as a matrix

(e1 e1 e1 e5 e1 e3 e2 e1) . (40)

This means, for example, that the X excitation at position yz
in the unit cell shown flows to an excitation of the X stabilizer
at position x′ in the coarse-grained lattice. Considering the
next-coarse-grained unit cell, this position is equivalently
expressed by the unit vector e5. The fixed point of the matrix
in Eq. (40) is e1 which corresponds to the Z2 fracton in X
sector of cubic code 1. We remark that the Z sector behaves
similarly due to the relation between sectors in the cubic codes
and hence the QSS group is given by Z2 ⊕ Z2.

In Fig. 14, we depict how the excited X stabilizer at
position z splits into different excitations in the new models
after ER. One of the split excitations is supported in the copy
of the original model CC1 and hence the excitation at position
z on the original lattice flows to the nontrivial fixed point
under quotient ER and therefore is in the nontrivial QSS. In
addition, both X stabilizers of CCB1 are excited and the local
stabilizer on a decoupled qubit is excited. The excitation in
the coarse-grained lattice of CC1 is found at position 1 in the
next-coarse-grained unit cell. Upon further quotient ER, the
excitation remains at position 1 as it is a fixed point.

3. Cubic code 11. Cubic code 11 supports fractons, lineons
and planons, where the lineons and planons are composites
of fractons. Under ER, cubic code 11 splits into itself, a self-

bifurcating lineon model and a stack of 2D toric codes. In this
case, the ExSRX map is given by

(y′ y′ 1 1 y′ 1 + y′ + z′ 1 1 + y′2 + y′2z) .

Using the triviality of charge configurations 1 + y′ + y′2 +
z′ + y′z′ + y′2z′ and 1 + x′ + y′ + y′z′ in cubic code 11, we
rewrite ExSRX as

(y′ y′ 1 1 y′ 1 + y′ + z′ 1 1 + x′ + z′).

Converting the position labels to unit vectors, we get find the
matrix

(e3 e3 e1 e1 e3 e1 + e3 + e2 e1 e1 + e5 + e2),

whose only nonzero fixed point is given by e1 + e3. Since the
Z sector behaves similarly we find that the QSS group is Z2 ⊕
Z2.

VII. DISCUSSIONS AND CONCLUSIONS

In this work, we have systematically studied unconven-
tional bifurcating ERG flows of gapped stabilizer Hamilto-
nian models. We introduced the notions of self-bifurcating
and quotient bifurcating fixed points to organize the possible
behavior of bifurcating fixed point models. This inspired us to
define the notion of bifurcated equivalence class, generalizing
the conventional notion of gapped phase and foliated fracton
equivalence. This also led to a natural definition of quotient
superselection sectors. These ideas were then brought to bear
on a large range of stabilizer model examples, including 17
of Haah’s cubic codes and Yoshida’s fractal spin liquids.
All models were found to be bifurcating ERG fixed points.
Furthermore, many cubic codes and all first-order fractal spin
liquids were found to be self-bifurcating. These results are
summarized in Table I.

We found that the long-range entanglement features of
stabilizer models provide insights into their structure. The
mobilities of particles in each model was found to constrain
the nature of the self-bifurcating models produced by ER. For
models that support planon particles, we found that a stack of
2D toric codes could be extracted during ER. For example,
CC11 supports planons with mobility in the lattice planes
perpendicular to x̂ and consequently a stack of 2D toric codes
is extracted during ER. This leads us to conjecture [73] that the
existence of a planon in a 3D translation-invariant topological
stabilizer model implies that a copy of the 2D toric code can
be extracted via a local unitary transformation. Extending this
in a translation-invariant way leads to the observed extraction
of a stack of 2D toric codes. We also conjecture that if the
original model has a particle with three-dimensional mobility,
a 3D toric code can be extracted via a local unitary circuit.

Models in which all the elementary excitations can move
along a certain direction î are observed to be invariant under
ER that coarse-grains along î. This is consistent with the
fact that the number of encoded qubits k does not change
as the system size grows along this particular direction, i.e.,
k(2Li ) = k(Li ). Conversely, it was shown in Ref. [69] that
all particles must have three-dimensional mobility in any 3D
topological stabilizer model that has a constant ground space
degeneracy as the system size increases along all three axes,
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and hence such models are TQL phases. Inspired by this re-
sult, we conjecture that this principle can be extended to cover
models with a ground space degeneracy that is constant as the
system size grows along two axes, in which case we posit that
all particles in the theory must be at least mobile in a 2D plane
spanned by the two axes, and consequently the model must be
a stack of planon and TQL models. Similarly we conjecture
for models with a ground space degeneracy that is constant as
the system size grows along one axis, that all particles must be
at least mobile along that axis, and consequently such a model
is a stack of lineon, planon, and TQL models. Combining this
with conjectures posed previously in Ref. [30]: that all TQL
stabilizer models are equivalent to copies of the 3D toric code
(possibly with fermionic point particle) and planon stabilizer
models are equivalent to a stack of 2D toric codes, and the
fact that lineon models can be compactified [31] along the
lineon direction to produce 2D subsystem symmetry breaking
models, points the way towards general classification results
for 3D translation-invariant topological stabilizer models, in-
spired by the ERG flows we have found in examples. We leave
the proofs of these conjectures to a future work.

For bifurcating models, when there is an additive correc-
tion to the exponential scaling of the number of encoded
qubits k as the system size increases by a factor c, i.e.,
k(cL) = αk(L) + β, the model cannot self-bifurcate under
coarse graining by c. For models that do self-bifurcate, the
additive correction vanishes, i.e., k(cL) = αk(L). We have
calculated the number of encoded qubits for many examples
over a range of system sizes, see Table IV in the Appendix,
and confirmed that they are consistent with the ERG flows
found in Table I. We remark that a correction to the linear
scaling of k(L) was the first indication that X-cube is a non-
trivial foliated model [14]. It would be interesting to search
for invariant quantities that characterize nontrivial bifurcated
models, such as the correction β or similarly inspired correc-
tions to entanglement entropy, generalizing ideas that arose in
the study of foliated fracton models [41].

Our examples have focused on coarse-graining by a factor
of two, which appeared natural for qubit systems. In particu-
lar, each quotient fixed point example is bifurcated equivalent
to itself on all lattices with spacings that are related by a
multiple of two. It would be interesting to extend this to other
primes, in an attempt to remove the lattice scale entirely from
the bifurcated equivalence class of these models.

We also note the appearance of the 2-adic norm of L (for
lattice spacing a = 1) in the ratio of the number of quotient
fixed point branches to all branches, the vast majority of which
are generated by self-bifurcating B models, when one starts
with an initial system on the L × L × L 3D torus and applies
ERG until all factors of 2 have been removed from L. Sim-
ilarly, for L2 = 2nL1, after this the ratio GSD(L1)/GSD(L2)
should be given by the 2-adic norm of L2/L1. The further
appearance of p-adic norms in fracton models remains an
intriguing prospect.

The bifurcating ER concepts and methods employed here
apply equally well to subsystem symmetry breaking models.
It would be interesting if they could shed light onto the clas-
sification of 2D translation-invariant spontaneous symmetry
breaking stabilizer models, which has been accomplished in
1D [61] but remains open in 2D due to the presence of com-

plicated fractal like symmetries [15,44]. This classification
problem appears to be contained within the classification of
3D translation-invariant topological stabilizer models due to
the existence of lineon models that can be compactified along
the lineon direction to produce any known 2D subsystem
symmetry breaking model. The bifurcating ER methods can
also be extended directly to subsystem symmetry-protected
topological phases (SSPT), by imposing a subsystem symme-
try constraint on the individual gates in each ER step. This
should shed light on the question: what is the appropriate
definition of SSPT equivalence class [65,74,75]?

It would also be interesting to extend the ERG approach
applied in this work to fractonic U(1) tensor gauge theories
[76,77]. It has been found that upon Higgsing, such theories
may transition to either fractonic or conventional topological
orders [78–81], so it raises the question of how the “parent”
fractonic U(1) gauge theories behave under ERG.

Finally, exact ERG flows have been found for TQL Hamil-
tonians beyond stabilizer models [4]. It would be interesting
to extend these ERG flows to bifurcating ERG flows for
non-Abelian fracton models [22,24]. It is currently unclear if
foliated equivalence extends straightforwardly to non-Abelian
fracton models as their ground-state degeneracies behave
somewhat differently to the Abelian case [24].

Note added in proof. Recently, we learnt of the work by
Shirley, Slagle, and Chen on closely related topics [67].
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APPENDIX A: LIST OF CODES AND THEIR
POLYNOMIAL REPRESENTATIONS

In Table II, we list the polynomials f and g for various
cubic codes, denoted CCi where i runs from 1 to 17, and their
B models if any, denoted CCBi. The stabilizer map for a cubic
code in terms of f and g is given by

σ =

⎛
⎜⎜⎝

f 0
g 0
0 g
0 f

⎞
⎟⎟⎠ , (A1)

and the stabilizer ideal is defined as the ideal 〈 f , g〉, which
contains the polynomials in the image of the excitation map,
see Eq. (22). The third column of the table below contains
polynomial entries, each of which specifies the positions of
two nontrivial clusters of charges that are created at the ends
of string operators. For example, y + xz2 implies that the
small segment of string operator in CC5 creates elementary
excitations at y and xz2. This means that the direction of
each string operator can be read off the binomial factor in its
description.

033021-18



BIFURCATING ENTANGLEMENT-RENORMALIZATION … PHYSICAL REVIEW RESEARCH 2, 033021 (2020)

TABLE II. Polynomial representation for stabilizers and string operator segments in cubic code models. The polynomials in the third
column describe string operator segments and belong to the stabilizer ideal I = 〈 f , g〉 [14]. The binomial part specifies the direction of the
string segment while the preceding polynomial specifies the cluster of elementary charges at its each end. The supplementary SAGE (PYTHON)
file shows that the full polynomials belong to the stabilizer ideal and the preceding polynomials representing the nontrivial charge clusters do
not.

Model f g Positions of charges in a trivial pair

CC1 1 + x + y + z 1 + xy + yz + xz
CC2 x + y + z + yz 1 + y + xy + z + xz + xyz
CC3 1 + x + y + z 1 + xz + yz + xyz
CC4 1 + x + z + yz 1 + y + xy + xz
CC5 1 + x + z + yz y + z + xz + yz y + xz2

CC6 1 + x + y + z 1 + y + xz + yz x + z2

CC7 1 + x + y + z 1 + z + yz + xyz
CC8 1 + x + z + yz 1 + y + xy + z + xz + yz
CC9 1 + z + xz + yz 1 + x + y + xyz xyz2 + 1
CC10 1 + x + z + yz 1 + y + xy + xz + yz + xyz
CC11 1 + x + y + yz x + y + z + xy (1 + y + y2 )(1 + z)
CCB11 1 + x + y + yz 1 + y + y2 y3 + 1
CC12 1 + x + xy + z 1 + x + xz + yz (1 + xy + x2)(1 + z)
CCB12 x + x2 + z xy + z + xz + yz z2 + yx3

CC13 x + z + xz + yz 1 + xz + yz + xy (1 + xy + x + x2)(1 + z)
CCB13 y + z 1 + z + xz + z2 y + z
CC14 1 + x + z + xyz 1 + x + xy + xz + yz + xyz (1 + x2 + yx2)(1 + z)
CCB14 x + y2 + xy2 + xz2 1 + y + y2 + z + yz (1 + x + y2)(1 + z)
CC15 1 + xy + z + xz 1 + xy + y + xyz (1 + xz + x2z)(1 + y)
CCB15 y + xz + z2 + xz2 zx + zx2 + 1 zyx3 + 1
CC16

a 1 + z + xz + xyz 1 + xy + y + z (x + y + xy)(1 + xz)
CC17 1 + xy + yz + xz 1 + x + y + xy + z + xyz (1 + z + z2)(1 + x)(1 + y)
CCB17 1 + z + z2 1 + xy + xz + yz z3 + 1

aCC16 is equivalent to CC15 after modular transformations. Hence, we do not include CCB16 explicitly here.

APPENDIX B: DEMONSTRATING OUR HEURISTIC
PROCEDURE FOR ENTANGLEMENT

RENORMALIZATION ON THE X-CUBE MODEL

In this Appendix, we outline our heuristic procedure for
entanglement renormalization on CSS codes and demonstrate
it, using the X-cube model as an example. The heuristic is
quite simple, essentially we coarse grain until a monomial
appears in a column. We next use that entry to set the rest
of the column to 0 via CNOT gates. The monomial entry
can then be used to set its row to 0 via column operations.
After this the qubit has been disentangled into the trivial
state and its row and column can be removed. This is re-
peated until there are no monomials left. At which point
the model has either bifurcated or we perform more steps
of coarse graining. There is an important subtlety to the
above recipe, as we do not necessarily need a monomial
to set the rest of a column and row to 0. In some cases,
such as the X-cube example below, a nonmonomial entry,
pair of entries, or several entries, in a column can be used
to set the rest of the column to zero. This more general
step can be used in place of the monomial step mentioned
above.

The stabilizer map for the X-cube model is given by⎛
⎜⎜⎜⎜⎜⎝

(1 + y)(1 + z)
(1 + x)(1 + z)
(1 + x)(1 + y)

1 + x 1 + x
0 1 + y

1 + z 0

⎞
⎟⎟⎟⎟⎟⎠

. (B1)

After coarse-graining in x, the X and Z sectors of the stabilizer
map are respectively given by⎛

⎜⎜⎜⎜⎜⎝

(1 + y)(1 + z) 0
0 (1 + y)(1 + z)

1 + z x(1 + z)
1 + z 1 + z
1 + y x(1 + y)
1 + y 1 + y

⎞
⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 1
x 1 x 1
0 0 1 + y 0
0 0 0 1 + y

1 + z 0 0 0
0 1 + z 0 0

⎞
⎟⎟⎟⎟⎟⎠

, (B2)
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where x is now the translation variable in the coarse-grained
unit cell. The goal is to decouple different models or stabilizer
terms such that they are supported on nonoverlapping sets of
qubits. We first do this for the X sector. In doing so, the Z
sector will also get modified. In the two columns for the X
sector, the fourth and sixth row elements in both columns are
the same. Thus applying the column operation Col(2, 1, 1)
simplifies the sectors of the stabilizer map

⎛
⎜⎜⎜⎜⎜⎝

(1 + y)(1 + z) (1 + y)(1 + z)
0 (1 + y)(1 + z)

1 + z (1 + x)(1 + z)
1 + z 0
1 + y (1 + x)(1 + y)
1 + y 0

⎞
⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 1
x 1 x 1
0 0 1 + y 0
0 0 0 1 + y

1 + z 0 0 0
0 1 + z 0 0

⎞
⎟⎟⎟⎟⎟⎠

. (B3)

Now, since there are same polynomials in certain row ele-
ments of the first column, one can get rid of them by applying
CNOT(3, 4, 1) and CNOT(5, 6, 1) such that the second col-
umn is not affected due to the zero entries in it.

⎛
⎜⎜⎜⎜⎜⎝

(1 + y)(1 + z) (1 + y)(1 + z)
0 (1 + y)(1 + z)
0 (1 + x)(1 + z)

1 + z 0
0 (1 + x)(1 + y)

1 + y 0

⎞
⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 1
x 1 x 1
0 0 1 + y 0
0 0 1 + y 1 + y

1 + z 0 0 0
1 + z 1 + z 0 0

⎞
⎟⎟⎟⎟⎟⎠

. (B4)

Finally, applying CNOT(1, 6, 1 + z) and CNOT(1, 2, 1) de-
couples the two stabilizer terms in the X sector as follows:

⎛
⎜⎜⎜⎜⎜⎝

0 0
0 (1 + y)(1 + z)
0 (1 + x)(1 + z)

1 + z 0
0 (1 + x)(1 + y)

1 + y 0

⎞
⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 1
1 + x 0 1 + x 0

0 0 1 + y 0
0 0 1 + y 1 + y

1 + z 0 0 0
0 0 1 + z 1 + z

⎞
⎟⎟⎟⎟⎟⎠

. (B5)

It turns out that once the X sector is decoupled, doing certain
column operations in the Z sector is enough to decouple
the whole stabilizer map into two different models. This

is also observed for other models. Applying Col(5, 6, 1),
Col(3, 4, 1), and Col(6, 4, 1) gives

⎛
⎜⎜⎜⎜⎜⎝

0 0
0 (1 + y)(1 + z)
0 (1 + x)(1 + z)

1 + z 0
0 (1 + x)(1 + y)

1 + y 0

⎞
⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0
1 + x 0 1 + x 0

0 0 1 + y 0
0 0 0 1 + y

1 + z 0 0 0
0 0 0 1 + z

⎞
⎟⎟⎟⎟⎟⎠

. (B6)

Removing the disentangled qubit (the 1st qubit), we have
found that the model splits into two, one is given by

⎛
⎜⎝

1 + z
1 + y

1 + y
1 + z

⎞
⎟⎠, (B7)

which is just a stack of 2D toric codes parallel to the yz plane,
and the other is a coarse-grained X-cube model.

APPENDIX C: CUBIC CODES AS FRACTAL SPIN LIQUIDS

Certain cubic codes could be mapped to the following
fractal spin liquid (FSL) [44] form of the stabilizer map,

⎛
⎜⎜⎜⎝

1 + f (x)y 0

1 + g1(x)z + g2(x)z2 0

0 1 + g1(x)z + g2(x)z2

0 1 + f (x)y

⎞
⎟⎟⎟⎠ , (C1)

which represents a first-order FSL for g2(x) = 0 and a second-
order FSL otherwise. Here xi ≡ x−1

i where xi denotes x, y, or
z. In Table III, we write down the polynomials that appear in
the FSL forms of various cubic codes. The explicit mapping
from the cubic codes to FSLs is contained in the Supplemental
Material [45] MATHEMATICA file SMERG.nb.

TABLE III. Polynomials in the fractal spin liquid form (C1) of
cubic codes.

Model f (x) g1(x) g2(x)

CC1 1 + x + x2 1 + x 1 + x + x2

CC2 1 + x + x2 1 + x2 1 + x + x2

CC3 (1 + x + x2)x−1 1 + x (1 + x + x2)x−1

CC5 x2 1 + x x2

CC6 x2 1 + x + x2 0
CC9

a x2 1 + x x2

aCC9 is equivalent to CC5
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TABLE IV. Number of encoded qubits for different stabilizer models on a system of size L×L×L where L is the number of stabilizers in
each lattice direction. CCi’s refer to the cubic codes, CCB11 to the cubic code 11B and SFSL to the Sierpinski Fractal spin liquid. For models
that self-bifurcate under coarse-graining by a factor of 2, the number of encoded qubits also doubles as the system size is increased by a factor
of 2. For CCB11, one needs a minimum cubic system size of L = 3 since the stabilizer generators are supported on 2×2×3 unit cells. The
results in the table are calculated in the Supplemental Material [45] MATHEMATICA file encodedqubits.nb.

L CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9 CC10 CC11 CCB11 CC12 CC13 CC14 CC15 CC16 CC17 SFSL

2 6 4 4 4 4 4 4 4 4 4 4 4 8 4 4 4 8 0
3 2 2 2 6 2 2 2 2 2 2 10 8 6 6 6 6 6 6 4
4 14 8 8 8 8 8 8 8 8 8 8 0 8 16 8 8 8 16 0
5 2 2 2 2 2 2 2 2 2 2 10 0 10 10 10 10 10 10 0
6 6 4 4 12 4 4 4 4 4 4 24 16 16 16 12 16 16 24 8
7 2 14 2 2 14 14 2 2 14 2 14 0 26 26 26 26 26 14 12
8 30 16 16 16 16 16 16 16 16 16 16 0 16 32 16 16 16 32 0
9 2 2 2 6 2 2 2 2 2 2 22 8 18 18 18 18 18 18 4
10 6 4 4 4 4 4 4 4 4 4 20 0 20 24 20 20 20 40 0
11 2 2 2 2 2 2 2 2 2 2 22 0 22 22 22 22 22 22 0
12 14 8 8 24 8 8 8 8 8 8 52 32 36 32 24 36 36 56 16
13 2 2 2 2 2 2 2 2 2 2 26 0 26 26 26 26 26 26 0
14 6 28 4 4 28 28 4 4 28 4 28 0 52 56 52 52 52 56 24
15 50 2 18 22 26 26 42 42 26 18 82 56 54 54 54 54 54 78 28
16 62 32 32 32 32 32 32 32 32 32 32 0 32 64 32 32 32 64 0
17 2 2 2 2 2 2 2 2 2 2 34 0 34 34 34 34 34 34 0
18 6 4 4 12 4 4 4 4 4 4 48 16 40 40 36 40 40 72 8
19 2 2 2 2 2 2 2 2 2 2 38 0 38 38 38 38 38 38 0
20 14 8 8 8 8 8 8 8 8 8 40 0 40 48 40 40 40 80 0

APPENDIX D: NUMERICAL RESULTS ON NUMBER
OF ENCODED QUBITS

In Table IV, we list the number of encoded qubits with
respect to the system size L in the cubic codes and the

Sierpinski fractal spin liquid (SFSL) on an L×L×L lattice.
The results are calculated in the Supplemental Material [45]
MATHEMATICA file encodedqubits.nb. Results for some of
these models were recovered analytically in the next section
using the polynomial framework.

APPENDIX E: NUMBER OF ENCODED QUBITS

In Ref. [60], Haah used techniques from commutative algebra to derive a formula for the number of encoded qubits for the
cubic code CC1 which we recount in Appendix E 1. We use the general strategy used by Haah to derive similar formulas for the
number of encoded qubits for other cubic codes. We consider CC6, CC11, and CCB11 as examples. We first explain the general
definitions and explain the steps used by Haah in his derivation.

Suppose a = ( f , g) ⊂ F2[x, y, z] is an ideal corresponding to a code. Fix some L ∈ Z>0. Imposing the periodicity conditions
xL − 1 = yL − 1 = zL − 1 = 0, the number of encoded qubits is given by

ka = 2 dimF2 (F2[x, y, z]/Ia)

where dimF2 (F2[x, y, z]/Ia) is the dimension of F2[x, y, z]/Ia as a vector space and Ia is the ideal defined as

Ia = a + (xL − 1, yL − 1, zL − 1) = ( f , g, xL − 1, yL − 1, zL − 1).

Due to algebrogeometric reasons, it is preferable to work over an algebraically closed field. Hence we take the algebraic closure
F = F2. By extension of scalars of the vector spaces, we have

ka = 2 dimF (F [x, y, z]/Ia)

where Ia is now the ideal generated in F [x, y, z]. In order to calculate this, we use the structure theorem for Artinian rings from
[82, Theorem 8.7] which we restate in Theorem 1.

Theorem 1. Let A be an Artinian ring. Then A = ∏n
j=1 Aj for some n ∈ Z>0 where Aj is a local Artinian ring for all integers

1 � j � n. Moreover, the decomposition is unique up to isomorphism.
Remark. In the above theorem, if A is also a vector space over F , we have A = ⊕n

j=1 Aj and in particular dimF (A) =∑n
j=1 dimF (Aj ).
We apply Theorem 1 to obtain the formula ka = ∑

m ka,m where

ka,m = 2 dimF ((F [x, y, z]/Ia)m)

033021-21



DUA, SARKAR, WILLIAMSON, AND CHENG PHYSICAL REVIEW RESEARCH 2, 033021 (2020)

where the sum is taken over all such maximal ideals m ⊂ F [x, y, z]/Ia. Here, (F [x, y, z]/Ia)m is the localization of F [x, y, z]/Ia
over maximal ideal m. By the weak form of Hilbert’s Nullstellensatz, any maximal ideal m ⊂ F [x, y, z]/Ia is of the form m =
(x − x0, y − y0, z − z0)/Ia where (x0, y0, z0) ∈ V (Ia) ⊂ A3

F , i.e., (x0, y0, z0) ∈ A3
F satisfies

f (x0, y0, z0) = g(x0, y0, z0) = xL
0 − 1 = yL

0 − 1 = zL
0 − 1 = 0.

In particular x0, y0, z0 	= 0. Since xL
0 − 1 = x2l L′

0 − 1 = (xL′
0 − 1)2l = 0, we also have xL′

0 = 1 and similarly, yL′
0 = zL′

0 = 1. We
now calculate ka,m for all maximal ideals m ⊂ F [x, y, z]/Ia.

Fix a maximal ideal m = (x − x0, y − y0, z − z0)/Ia ⊂ F [x, y, z]/Ia. Now write L = 2lL′ where 2 � L′ and l ∈ Z�0. Consider
the factorization

xL − 1 = xL − xL
0 = (xL′

)2l − (
xL′

0

)2l = (
xL′ − xL′

0

)2l

= (
(x − x0)

(
xL′−1 + xL′−2x0 + · · · + xxL′−2

0 + xL′−1
0

))2l

= (x − x0)2l (
xL′−1 + xL′−2x0 + · · · + xxL′−2

0 + xL′−1
0

)2l

.

The right most factor has no further factors of x − x0 since putting x = x0 results in L′xL′−1
0 	= 0 since 2 � L′ and x0 	= 0. We

obtain similar factorization for the variables y and z. We recognize that (x − x0)2l = x2l + x2l

0 and similarly for the variables y
and z since char(F ) = 2, which motivates us to define the ideal

Ja = a + (x2l + a0, y2l + b0, z2l + c0) = ( f , g, x2l + a0, y2l + b0, z2l + c0),

where a0 = x2l

0 , b0 = y2l

0 and c0 = z0
2l

. We have the canonical map F [x, y, z]/Ia → F [x, y, z]/Ja since Ia ⊂ Ja. We would like
to apply [82, Corollary 3.2] which we restate in Lemma 1.

Lemma 1. Let A and B be rings and S ⊂ A be a multiplicatively closed set. If g : A → B is a ring homomorphism such that
(1) for all s ∈ S, the element g(s) ∈ B is a unit;
(2) for all a ∈ ker(g), we have as = 0 for some s ∈ S;
(3) for all b ∈ B, there are a ∈ A and s ∈ S such that b = g(a)g(s)−1;

then there is a unique isomorphism h : S−1A → B such that g = h ◦ f , where f : A → S−1A is the canonical homomorphism.
Checking conditions of Lemma 1, we have the isomorphism

(F [x, y, z]/Ia)m ∼= F [x, y, z]/Ja

as rings and hence also as F -modules which are of course simply vector spaces over F . Thus we need to calculate
dimF (F [x, y, z]/Ja). Note that if l = 0, then (F [x, y, z]/Ia)m ∼= F [x, y, z]/Ja ∼= F is the residue field at m and hence we simply
get dimF (F [x, y, z]/Ja) = 1. We assume l ∈ Z>0 henceforth.

Most of the time we can eliminate one of the three variables, say z, and use the substitutions x 
→ x + 1 and y 
→ y + 1
to show F [x, y, z]/Ja ∼= F [x, y]/Jz

a, as rings and hence as vector spaces over F , where Jz
a = (h, x2l + a, y2l + b), a = a0 + 1,

b = b0 + 1 and h is the polynomial derived from f and g by eliminating the variable z. This further simplifies the problem to the
calculation of dimF (F [x, y]/Jz

a). In the following sections, we calculate this for various cubic codes by first finding appropriate
Gröbner bases with the help of the computer algebra system SAGEMATH. SAGEMATH cannot calculate Gröbner bases for a general
l ∈ Z>0 but we test various values of l to accurately predict the Gröbner bases in terms of l and then we prove that it is indeed
so. Then we use the Gröbner bases to calculate ka,m. To calculate this, we use [83, Proposition 2.1.6] which we restate in
Theorem 2.

Theorem 2. Let n ∈ Z>0 and R = F [x1, x2, . . . , xn] be a polynomial ring endowed with a monomial ordering. Let I ⊂ R be
an ideal and G ⊂ R be a Gröbner basis for I . Then the set

{m + I ∈ R/I : m ∈ R is a monomial which is reduced with respect to G}

is a basis for the vector space R/I over F .
Finally, we use ka = ∑

m ka,m, where the sum is over all maximal ideals m ⊂ F [x, y, z]/Ia, which is feasible to compute
explicitly whenever we can explicitly count the number of points in certain appropriate subvarieties of V (Ia).

Remark. All Gröbner bases in the rest of the document are using the lexicographic ordering of monomials with x < y < z.
Polynomial divisions with respect to a Gröbner basis are also using the same ordering of monomials.

Remark. We often need the roots of the polynomial x2 + x + 1 ∈ F [x] which are the primitive cube roots of unity. We denote
by ζn ∈ F any choice of a primitive nth root of unity, for all n ∈ Z>0.
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1. Cubic code 1

The stabilizer generators of cubic code 1 (CC1) are given by

IX XI

XI II

XX IX

IX XI

IZ ZI

ZI ZZ

II IZ

IZ ZI

(E1)

Hence, the stabilizer ideal that defines CC1 is a = ( f , g) = (x + y + z + 1, xy + yz + zx + 1). We eliminate the variable z and
use the substitutions x 
→ x + 1 and y 
→ y + 1 to obtain

Jz
a = (

h, x2l + a, y2l + b
) = (

x2 + xy + y2, x2l + a, y2l + b
)
.

Recalling definitions, we know that a = x2l

0 + 1, b = y2l

0 + 1 where xL′
0 = yL′

0 = 1 such that a2 + ab + b2 = 0. The last equation

is satisfied if and only if a = b = 0 or ( b
a )

2 + b
a + 1 = 0. In the latter case, b/a is a primitive cube root of unity and we assume

the choice ζ3 = b/a.
Lemma 2. For the ideal Jz

a = (x2 + xy + y2, x2l + a, y2l + b), we have the following Gröbner bases.
(1) Suppose a = b = 0. Then

G = {
x2 + xy + y2, yx2l −1, x2l }

is a Gröbner basis.
(2) Suppose a2 + ab + b2 = 0 with a, b 	= 0. Then

G = {
(ζ3 + l )x + y, x2l + a

}
is a Gröbner basis.

Proof. It is a straight forward calculation using the S-polynomials of Buchberger’s algorithm to verify that G is a Gröbner
basis for the ideal (G) for all the cases. It is also a straight forward calculation by polynomial divisions by elements in G to
verify that Jz

a ⊂ (G) for all the cases. It remains to show that (G) ⊂ Jz
a for all the cases. This is shown below assuming the same

hypotheses and using the same set G as in the lemma for the corresponding cases.

Case 1. The only nontrivial containment we need to show is yx2l −1 ∈ Jz
a, i.e., yx2l −1 ≡ 0 (mod Jz

a). This follows if we show
our claim nx2n + x2n−1y + y2n ≡ 0 (mod Jz

a) for all integers 0 � n � l by taking the n = l case because x2l ≡ y2l ≡ 0 (mod Jz
a).

We show this by induction. The base case n = 0 is trivial. Suppose that the claim holds for some integer 0 � n − 1 � l − 1, i.e.,
(n − 1)x2n−1 + x2n−1−1y + y2n−1 ≡ 0 (mod Jz

a). Squaring this and using x2 + xy + y2 ≡ 0 (mod Jz
a), we get

(n − 1)2x2n + x2n−2y2 + y2n ≡ 0
(
mod Jz

a

) ⇒ (n2 − 1)x2n + x2n−2(x2 + xy) + y2n ≡ 0
(
mod Jz

a

)
⇒ nx2n + x2n−1y + y2n ≡ 0

(
mod Jz

a

)
where we use the fact that n2 ≡ n (mod 2) by Fermat’s little theorem or by directly checking both cases n ≡ 0 (mod 2) and
n ≡ 1 (mod 2).

Case 2. The only nontrivial containment we need to show is (ζ3 + l )x + y ∈ Jz
a, i.e., (ζ3 + l )x + y ≡ 0 (mod Jz

a). The
equation nx2n + x2n−1y + y2n ≡ 0 (mod Jz

a) holds for all integers 0 � n � l in this case as well. The proof is exactly the same
as above. By hypothesis, a, b 	= 0. Using the case n = l and multiplying by x

a , we get

x

a

(
lx2l + x2l −1y + y2l ) ≡ 0

(
mod Jz

a

) ⇒ 1

a

(
lx2l +1 + x2l

y + bx
) ≡ 0

(
mod Jz

a

)

⇒ 1

a
(lax + ay + bx) ≡ 0

(
mod Jz

a

) ⇒
(

b

a
+ l

)
x + y ≡ 0

(
mod Jz

a

)

⇒ (ζ3 + l )x + y ≡ 0
(
mod Jz

a

)
. �

Now we simply read off the dimension using the Gröbner basis and obtain the formula

dimF

(
F [x, y]/Jz

a

) =
{

2l+1 − 1, a = b = 0
2l , a2 + ab + b2 = 0 with a, b 	= 0

.

Recalling definitions, the above gives the formula

ka,m =
{

2l+2 − 2, x0 = y0 = 1
2l+1, (x0 + 1)2 + (x0 + 1)(y0 + 1) + (y0 + 1)2 = 0 with x0, y0 	= 1

.
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Now we wish to calculate ka = ∑
m ka,m where the sum is over all maximal ideals m ⊂ F [x, y, z]/Ia. For the calculation, we first

need to explicitly calculate the points in the variety V (Ia). To solve h = 0, we divide by x2 to get ( y
x )2 + y

x + 1 = 0 and hence
the solutions are {(x′

0, ζ3x′
0) ∈ A2

F : x′
0 ∈ F} ∪ {(x′

0, ζ
2
3 x′

0) ∈ A2
F : x′

0 ∈ F}. Thus we calculate that the solutions of f = g = 0 is
the set of points V (a) = V1(a) ∪ V2(a), where

V1(a) = {(
x′

0 + 1, ζ3x′
0 + 1, ζ 2

3 x′
0 + 1

) ∈ A3
F : x′

0 ∈ F
}
,

V2(a) = {(
x′

0 + 1, ζ 2
3 x′

0 + 1, ζ3x′
0 + 1

) ∈ A3
F : x′

0 ∈ F
}
.

Note that the intersection is V∩(a) = V1(a) ∩ V2(a) = {(1, 1, 1)} which consists of the only point satisfying x0 = y0 = 1.
Imposing the periodic conditions xL − 1 = yL − 1 = zL − 1 = 0, we have the corresponding set of solutions V (Ia) = V1(Ia) ∪
V2(Ia) where Vj (Ia) = {(x0, y0, z0) ∈ Vj (a) : xL′

0 = yL′
0 = z0

L′ = 1} for all j ∈ {1, 2}. The intersection is V∩(Ia) = {(1, 1, 1)}.
Thus #V∩(Ia) = 1 and

#(V1(Ia) \ V∩(Ia)) = #(V2(Ia) \ V∩(Ia)) = deg
(
ζ 2

3 ((x + 1)L′ + 1, (ζ3x + 1)L′ + 1,
(
ζ 2

3 x + 1
)L′ + 1)

) − 1.

we put everything together using the formula

ka = (2l+2 − 2)#V∩(Ia) + 2l+1#(V1(Ia) \ V∩(Ia)) + 2l+1#(V2(Ia) \ V∩(Ia)) (E2)

= 2l+2 deg
(

gcd((x + 1)L′ + 1, (ζ3x + 1)L′ + 1,
(
ζ 2

3 x + 1)L′ + 1
)) − 2. (E3)

In general, it is difficult to obtain a more explicit formula. However, we obtain a more explicit formula for some special cases.
First suppose L′ = 1. Then it is easy to see that x is a greatest common divisor in Eq. (E3). Hence Eq. (E3) gives ka =

2l+2 − 2 = 4L − 2.
Now suppose L′ = 2n + 1 for some n ∈ Z�0. Then we have the factorization

(x + 1)2n+1 + 1 = (x + 1)(x + 1)2n + 1 = (x + 1)
(
x2n + 1

) + 1

= x2n+1 + x2n + x = x
(
x2n + x2n−1 + 1

)
.

We apply the same equation for (ζ3x + 1)2n+1 + 1 and (ζ 2
3 x + 1)2n+1 + 1 to get the factorization

(ζ3x + 1)2n+1 + 1 = ζ3x((ζ3x)2n + (ζ3x)2n−1 + 1),(
ζ 2

3 x + 1
)2n+1 + 1 = ζ 2

3 x
((

ζ 2
3 x

)2n + (
ζ 2

3 x
)2n−1 + 1

)
.

Let r be a root of the second factor x2n + x2n−1 + 1. Suppose that 2n ≡ 1 (mod 3). In this case, we have

(ζ3r)2n + (ζ3r)2n−1 + 1 = ζ3r2n + r2n−1 + 1 = ζ3r2n + r2n = r2n
(ζ3 + 1)2n

.

So (ζ3r)2n + (ζ3r)2n−1 + 1 = 0 implies r = 0 which is a contradiction. Suppose that 2n ≡ 2 (mod 3). In this case, we have

(ζ3r)2n + (ζ3r)2n−1 + 1 = ζ 2
3 r2n + ζ3r2n−1 + 1 = ζ 2

3 r2n + ζ3r2n + ζ3 + 1.

So (ζ3r)2n + (ζ3r)2n−1 + 1 = 0 implies

ζ3r2n
(ζ3 + 1) + (ζ3 + 1) = 0 ⇒ r2n + ζ3

2n = 0 ⇒ (r + ζ3)2n = 0.

Thus r = ζ3. However, then(
ζ 2

3 r
)2n + (

ζ 2
3 r

)2n−1 + 1 = (
ζ 2

3 · ζ3
)2n + (

ζ 2
3 · ζ3

)2n−1 + 1 = 1 + 1 + 1 = 1 	= 0.

Thus, in any case, there is no common root among the second factors. So x is a greatest common divisor in Eq. (E3). Now
Eq. (E3) gives ka = 2l+2 − 2.

Now suppose L′ = 4n − 1 for some n ∈ Z>0. We calculate that

(x + 1)4n = x4n − 1 = (x − 1)
(
x4n−1 + x4n−2 + · · · + x + 1

) ⇒ (x + 1)4n−1 + 1 = x4n−1 + x4n−2 + · · · + x2 + x.

Thus we have the factorization

(x + 1)4n−1 + 1 = x
(
x4n−2 + x4n−3 + · · · + x + 1

)
= x(x2 + x + 1)

(
x4n−4 + x4n−7 + · · · + x3 + 1

)
= x(x + ζ3)

(
x + ζ 2

3

)(
x4n−4 + x4n−7 + · · · + x3 + 1

)
.

We apply the same equation for (ζ3x + 1)4n−1 + 1 and (ζ 2
3 x + 1)4n−1 + 1 to get the factorizations

(ζ3x + 1)4n−1 + 1 = x(x + 1)(x + ζ3)
(
x4n−4 + x4n−7 + · · · + x3 + 1

)
,(

ζ 2
3 x + 1

)4n−1 + 1 = x(x + 1)
(
x + ζ 2

3

)(
x4n−4 + x4n−7 + · · · + x3 + 1

)
.
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It is easy to see that x(x4n−4 + x4n−7 + · · · + x3 + 1) is a greatest common divisor in Eq. (E3) whose degree is 4n − 3 = L′ − 2.
Using this in Eq. (E3) gives ka = 4L − 2l+3 − 2.

Now suppose L′ = 22n+1 − 1 for some n ∈ Z�0. Suppose r is a root of (x + 1)22n+1−1 + 1. We calculate that

(x + 1)22n+1 = x22n+1 − 1 = (x − 1)
(
x22n+1−1 + x22n+1−2 + · · · + x + 1

)
⇒ (x + 1)22n+1−1 + 1 = x22n+1−1 + x22n+1−2 + · · · + x2 + x.

Thus we have the factorization

(x + 1)22n+1−1 + 1 = x
(
x22n+1−2 + x22n+1−3 + · · · + x + 1

)
.

We apply the same equation for (ζ3x + 1)22n+1−1 + 1 and (ζ 2
3 x + 1)22n+1−1 + 1 to get the factorizations

(ζ3x + 1)22n+1−1 + 1 = ζ3x((ζ3x)22n+1−2 + (ζ3x)22n+1−3 + · · · + ζ3x + 1),
(
ζ 2

3 x + 1
)22n+1−1 + 1 = ζ 2

3 x
((

ζ 2
3 x

)22n+1−2 + (
ζ 2

3 x
)22n+1−3 + · · · + ζ 2

3 x + 1
)
.

Suppose r is a root of the second factor x22n+1−2 + x22n+1−3 + · · · + x + 1. By multiplying by r − 1, we find that r22n+1−1 = 1, i.e.,
r is a (22n+1 − 1) th root of unity. Similarly, so are ζ3r and ζ 2

3 r. But then we have

(ζ3r)22n+1−1 = 1 ⇒ (ζ3)22n+1−1 = 1

which is a contradiction because 22n+1 − 1 ≡ 1 (mod 3) for all n ∈ Z�0. Thus x is a greatest common divisor in Eq. (E3). Now
Eq. (E3) gives ka = 2l+2 − 2. We summarize the results in the following theorem.

Theorem 3. Consider CC1 defined by the ideal a = (x + y + z + 1, xy + yz + zx + 1). Imposing the periodic conditions xL −
1 = yL − 1 = zL − 1 = 0 for some L = 2lL′ where 2 � L′ ∈ Z>0 and l ∈ Z�0, the number of encoded qubits is given by

ka = 2l+2 deg
(

gcd((x + 1)L′ + 1, (ζ3x + 1)L′ + 1,
(
ζ 2

3 x + 1
)L′ + 1)

) − 2.

Moreover, we have the explicit formulas

ka =

⎧⎪⎪⎨
⎪⎪⎩

4L − 2, L = 2l

2l+2 − 2, L = 2l · (2n + 1)
4L − 2l+3 − 2, L = 2l · (4n − 1)
2l+2 − 2, L = 2l · (22n+1 − 1)

.

Remark. Theorem 3 implies that ka as a function of L, obeys the scaling relation

ka(2rL) = 2rka(L) + 2(2r − 1)

for all r ∈ Z�0.

2. Cubic code 6

The stabilizer generators of cubic code 6 (CC6) are given by

IX XI

XI II

XX XX

IX II

II ZI

ZZ ZZ

II IZ

IZ ZI

(E4)

Hence, the stabilizer ideal that defines CC6 is a = ( f , g) = (x + y + z + 1, yz + zx + y + 1). We eliminate the variable y to
obtain

Jy
a = (

h, x2l + a, z2l + c
) = (

z2 + x, x2l + a, z2l + c
)
.

Recalling definitions, we know that a = x2l

0 + 1, c = z0
2l + 1, where xL′

0 = z0
L′ = 1 such that c2 + a = 0.

Lemma 3. For the ideal Jy
a = (z2 + x, x2l + a, z2l + c), we have that

G = {
z2 + x, x2l−1 + c

}
is a Gröbner basis.
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Proof. We assume the same hypotheses and use the same set G as in the lemma. It is a straight forward calculation using
the S-polynomials of Buchberger’s algorithm to verify that G is a Gröbner basis for the ideal (G). It is also a straight forward
calculation by polynomial divisions by elements in G to verify that Jy

a ⊂ (G). It remains to show that (G) ⊂ Jy
a.

The only nontrivial containment we need to show is x2l−1 + c ∈ Jy
a, i.e., x2l−1 + c ≡ 0 (mod Jy

a). We calculate that

x2l + a = (
x2l−1)2 + c2 = (

x2l−1 + c
)2

. �
Hence x2l + a ≡ 0 (mod Jy

a) implies x2l−1 + c ≡ 0 (mod Jy
a) as desired.

Now we simply read off the dimension using the Gröbner basis and obtain the formula

ka,m = 2 dimF

(
F [x, y]/Jy

a

) = 2l+1.

We wish to calculate ka = ∑
m ka,m where the sum is over all maximal ideals m ⊂ F [x, y, z]/Ia. For the calculation, we first need

to explicitly calculate the points in the variety V (Ia). By first finding solutions of h = 0, we easily calculate that the solutions
of f = g = 0 is the set of points V (a) = {(z′

0
2 + 1, z′

0
2 + z′

0 + 1, z′
0 + 1) ∈ A3

F : z′
0 ∈ F}. Imposing the periodic conditions xL −

1 = yL − 1 = zL − 1 = 0, we have the corresponding set of solutions V (Ia) = {(x0, y0, z0) ∈ V (a) : xL′
0 = yL′

0 = z0
L′ = 1}. Thus

#V (Ia) = deg(gcd((z2 + 1)L′ + 1, (z2 + z + 1)L′ + 1, (z + 1)L′ + 1)).

Since (z2 + 1)L′ + 1 = ((z + 1)L′ + 1)2, we can in fact simplify the equation to

#V (Ia) = deg(gcd((z + 1)L′ + 1, (z2 + z + 1)L′ + 1)).

We put everything together using the formula

ka = 2l+1#V (Ia) = 2l+1 deg(gcd((z + 1)L′ + 1, (z2 + z + 1)L′ + 1)).

In general, it is difficult to obtain a more explicit formula. We note however that calculating this for a single value of L′ can
already provide a formula for an infinite family of values of L, namely, for all L ∈ {2lL′ ∈ Z>0 : l ∈ Z�0}. It is not difficult to do
this this explicitly by hand for small values of L′. We do this now for L′ = 1 and L′ = 3.

First suppose L′ = 1. Then we have the factorizations

(z + 1) + 1 = z

(z2 + z + 1) + 1 = z2 + z = z(z + 1).

So we calculate that

#V (Ia) = deg(gcd((z + 1) + 1, (z2 + z + 1) + 1)) = deg(z) = 1.

Thus ka = 2l+1 = 2L.
Now suppose L′ = 3. Then we have the factorizations

(z + 1)3 + 1 = z3 + 3z2 + 3z + 1 + 1 = z3 + z2 + z = z(z + ζ3)
(
z + ζ 2

3

)
and

(z2 + z + 1)3 + 1 = (z2)3 + 3(z2)2(z + 1) + 3z2(z + 1)2 + (z + 1)3 + 1

= z6 + z5 + z3 + z

= z(z5 + z4 + z2 + 1).

So gcd((z + 1)3 + 1, (z2 + z + 1)3 + 1) = z because we check that ζ3 and ζ 2
3 are not roots of z5 + z4 + z2 + 1 by putting z = ζ3

and z = ζ 2
3 . Again #V (Ia) = 1. Thus ka = 2l+1 = 2

3 L.
We summarize the results in the following theorem.
Theorem 4. Consider CC6 defined by the ideal a = (x + y + z + 1, yz + zx + y + 1). Imposing the periodic conditions xL −

1 = yL − 1 = zL − 1 = 0 for some L = 2lL′ where 2 � L′ ∈ Z>0 and l ∈ Z�0, the number of encoded qubits is given by

ka = 2l+1 deg(gcd((z + 1)L′ + 1, (z2 + z + 1)L′ + 1)).

Moreover, we have the explicit formulas

ka =
{

2L, L = 2l

2
3 L, L = 2l · 3

.

Remark. Theorem 4 implies that ka as a function of L, obeys the scaling relation

ka(2rL) = 2rka(L)

for all r ∈ Z�0.
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3. Cubic code 11

The stabilizer generators of cubic code 11 (CC11) are given by

XI II

IX II

XX IX

XI XX

ZZ IZ

ZI ZZ

II ZI

II IZ

(E5)

Hence, the stabilizer ideal that defines CC11 is a = ( f , g) = (yz + x + y + 1, xy + x + y + z). We eliminate the variable x and
use the substitutions y 
→ y + 1 and z 
→ z + 1 to obtain

Jx
a = (

h, y2l + b, z2l + c
) = (

z(y2 + y + 1), y2l + b, z2l + c
)
.

Recalling definitions, we know that b = y2l

0 + 1, c = z0
2l + 1 where yL′

0 = z0
L′ = 1 such that c(b2 + b + 1) = 0. The last

equation is satisfied if and only if b2 + b + 1 = 0 or c = 0.
Lemma 4. For the ideal Jx

a = (z(y2 + y + 1), y2l + b, z2l + c), we have the following Gröbner bases.
(1) Suppose b2 + b + 1 = 0 and c = 0. Then we have the following cases.

(a) Suppose 3 � 2l + 1. Then

G = {
yz + bz, y2l + b, z2l }

is a Gröbner basis.
(b) Suppose 3 | 2l + 1. Then

G = {
yz + (b + 1)z, y2l + b, z2l }

is a Gröbner basis.
(2) Suppose b2 + b + 1 = 0 and c 	= 0. Then

G = {
y + (b + l ), z2l + c

}
is a Gröbner basis.

(3) Suppose b2 + b + 1 	= 0 and c = 0. Then

G = {
z, y2l + b

}
is a Gröbner basis.

Proof. It is a straight forward calculation using the S-polynomials of Buchberger’s algorithm to verify that G is a Gröbner
basis for the ideal (G) for all the cases. It is also a straight forward calculation by polynomial divisions by elements in G to
verify that Jx

a ⊂ (G) for all the cases. It remains to show that (G) ⊂ Jx
a for all the cases. This is shown below assuming the same

hypotheses and using the same set G as in the lemma for the corresponding cases.
Case 1.(a). The only nontrivial containment we need to show is yz + bz ∈ Jx

a, i.e., yz + bz ≡ 0 (mod Jx
a ). We calculate that

(by − 1)((by)2l −1 + (by)2l −2 + · · · + by + 1) ≡ (by)2l − 1
(
mod Jx

a

) ≡ b2l · y2l − 1
(
mod Jx

a

) ≡ b2l +1 + 1
(
mod Jx

a

)
.

The hypothesis b2 + b + 1 = 0 implies b 	= 1 with b3 = 1. Hence the hypothesis 3 � 2l + 1 implies b2l +1 + 1 	= 0. Let P =
(by)2l −1 + (by)2l −2 + · · · + by + 1. Realizing that z(y + b)(y + (b + 1)) = z(y2 + y + 1), we multiply by b

b2l +1+1
P to get

z(y + b)(y + (b + 1)) · b

b2l +1 + 1
P ≡ 0

(
mod Jx

a

) ⇒ z(y + b) · (by − 1)P

b2l +1 + 1
≡ 0

(
mod Jx

a

) ⇒ yz + bz ≡ 0
(
mod Jx

a

)
.

Case 1.(b). The only nontrivial containment we need to show is yz + (b + 1)z ∈ Jx
a, i.e., yz + (b + 1)z ≡ 0 (mod Jx

a ). By a
similar calculation as in the proof of case 1a, we have

((b + 1)y − 1)(((b + 1)y)2l −1 + ((b + 1)y)2l −2 + · · · + (b + 1)y + 1) ≡ (b + 1)2l +1 + 1
(
mod Jx

a

)
.

This time, the hypothesis 3 | 2l + 1 implies b2l +1 + 1 = 0. Hence

(b + 1)2l +1 + 1 = (b + 1)(b + 1)2l = (b + 1)(b2l + 1) = b2l +1 + b2l + b + 1

= b2l + b = b2l +1 + b2

b
= b2 + 1

b
= b

b
= 1.
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Let P = ((b + 1)y)2l −1 + ((b + 1)y)2l −2 + · · · + (b + 1)y + 1. Then the above implies ((b + 1)y − 1)P ≡ 1 (mod Jx
a ). Again

using z(y + (b + 1))(y + b) = z(y2 + y + 1), we multiply by (b + 1)P to get

z(y + (b + 1))(y + b) · (b + 1)P ≡ 0
(
mod Jx

a

) ⇒ z(y + (b + 1)) · ((b + 1)y − 1)P ≡ 0
(
mod Jx

a

)
⇒ yz + (b + 1)z ≡ 0

(
mod Jx

a

)
.

Case 2. The only nontrivial containment we need to show is y + (b + l ) ∈ Jx
a, i.e., y + (b + l ) ≡ 0 (mod Jx

a ). This follows if we
show our claim y2l−n + (b + n) ≡ 0 (mod Jx

a ) for all integers 0 � n � l by taking the n = l case. We show this by induction.
The base case n = 0 is trivial. Suppose that the claim holds for some integer 0 � n − 1 � l − 1, i.e., y2l−(n−1) + (b + (n − 1)) ≡
0 (mod Jx

a ). Then

z2l −2l−n · (z(y2 + y + 1))2l−n + z2l (
y2l−(n−1) + (b + (n − 1))

) ≡ 0
(
mod Jx

a

)
⇒ z2l (

y2l−n+1 + y2l−n + 1
) + z2l (

y2l−n+1 + (b + (n − 1))
) ≡ 0

(
mod Jx

a

)
⇒ z2l (

y2l−n + (b + n)
) ≡ 0

(
mod Jx

a

)
⇒ c(y2l−n + (b + n)) ≡ 0

(
mod Jx

a

)
.

The hypothesis c 	= 0 implies y2l−n + (b + n) ≡ 0 (mod Jx
a ) as desired.

Case 3. The only nontrivial containment we need to show is z ∈ Jx
a, i.e., z ≡ 0 (mod Jx

a ). We have

((y2 + y) − 1)((y2 + y)2l −1 + (y2 + y)2l −2 + · · · + (y2 + y) + 1)

≡ (y2 + y)2l − 1
(
mod Jx

a

) ≡ (y2l
)2 + y2l + 1

(
mod Jx

a

) ≡ b2 + b + 1
(
mod Jx

a

)
.

Now b2 + b + 1 	= 0 by hypothesis. Let P = (y2 + y)2l −1 + (y2 + y)2l −2 + · · · + (y2 + y) + 1. Then the above implies (y2 +
y + 1) · P

b2+b+1 ≡ 1 (mod Jx
a ). Thus

z ≡ z(y2 + y + 1) · P

b2 + b + 1
≡ 0

(
mod Jx

a

)
.

�
Now we simply read off the dimensions using the Gröbner bases and obtain the formula

dimF

(
F [x, y]/Jx

a

) =
⎧⎨
⎩

2l+1 − 1, b2 + b + 1 = 0 and c = 0
2l , b2 + b + 1 = 0 and c 	= 0
2l , b2 + b + 1 	= 0 and c = 0

.

Recalling the definitions, the above gives the formula

ka,m =
⎧⎨
⎩

2l+2 − 2, y0 ∈ {
ζ3, ζ

2
3

}
and z0 = 1

2l+1, y0 ∈ {
ζ3, ζ

2
3

}
and z0 	= 1

2l+1, y0 /∈ {
ζ3, ζ

2
3

}
and z0 = 1

.

Note that this holds if l = 0 as well. Now we wish to calculate ka = ∑
m ka,m where the sum is over all maximal ideals m ⊂

F [x, y, z]/Ia. For the calculation, we first need to explicitly calculate the points in the variety V (Ia). By first finding solutions of
h = 0, we easily calculate that the solutions of f = g = 0 is the set of points V (a) = V1(a) ∪ V2(a) ∪ V3(a) where

V1(a) = {
(1, y0, 1) ∈ A3

F : y0 ∈ F
}
,

V2(a) = {
(ζ3z′

0 + 1, ζ3, z′
0 + 1) ∈ A3

F : z′
0 ∈ F

}
,

V3(a) = {
(ζ 2

3 z′
0 + 1, ζ 2

3 , z′
0 + 1) ∈ A3

F : z′
0 ∈ F

}
.

Note that the intersection is

V∩(a) = V1(a) ∩ V2(a) ∩ V3(a) = {
(1, ζ3, 1),

(
1, ζ 2

3 , 1
)}

,

which consists of the only points satisfying both y0 ∈ {ζ3, ζ
2
3 } and z0 = 1. Imposing the periodic conditions xL − 1 = yL − 1 =

zL − 1 = 0, we have the corresponding set of solutions V (Ia) = V1(Ia) ∪ V2(Ia) ∪ V3(Ia) where Vj (Ia) = {(x0, y0, z0) ∈ Vj (a) :
xL′

0 = yL′
0 = z0

L′ = 1} for all j ∈ {1, 2, 3}. The intersection is

V∩(Ia) = V1(Ia) ∩ V2(Ia) ∩ V3(Ia) =
{

∅, 3 � L′{
(1, ζ3, 1),

(
1, ζ 2

3 , 1
)}

, 3 | L′ .
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Thus we immediately calculate

#V∩(Ia) =
{

0, 3 � L′
2, 3 | L′ ;

#(V1(Ia) \ V∩(Ia)) =
{

L′, 3 � L′
L′ − 2, 3 | L′ ;

#(V2(Ia) \ V∩(Ia)) =
{

0, 3 � L′

deg(gcd((z + 1)L′ + 1, (ζ3z + 1)L′ + 1)) − 1, 3 | L′ ;

#(V3(Ia) \ V∩(Ia)) =
{

0, 3 � L′

deg
(

gcd
(
(z + 1)L′ + 1,

(
ζ 2

3 z + 1
)L′ + 1

)) − 1, 3 | L′ .

Note that #(V2(Ia) \ V∩(Ia)) and #(V3(Ia) \ V∩(Ia)) are in fact equal in all cases using any extension σ̃ ∈ Gal(F/F2) of σ ∈
Gal(F22/F2) specified by σ (ζ3) = ζ 2

3 , noting that F2(ζ3) ∼= F22 . We put everything together using the formula

ka = (2l+2 − 2)#V∩(Ia) + 2l+1#(V1(Ia) \ V∩(Ia)) + 2l+1#(V2(Ia) \ V∩(Ia)) + 2l+1#(V3(Ia) \ V∩(Ia)) (E6)

=
{

2L, 3 � L
2L − 4 + 2l+2 deg(gcd((z + 1)L′ + 1, (ζ3z + 1)L′ + 1)), 3 | L

. (E7)

In general, it is difficult to obtain a more explicit formula for the case 3 | L′. However, it is possible for a special case.
Suppose 3 | L′ = 4n − 1 for some n ∈ Z>0. We calculate that

(z + 1)4n = z4n − 1 = (z − 1)
(
z4n−1 + z4n−2 + · · · + z + 1

)
⇒ (z + 1)4n−1 + 1 = z4n−1 + z4n−2 + · · · + z2 + z.

Thus we have the factorization

(z + 1)4n−1 + 1 = z
(
z4n−2 + z4n−3 + · · · + z + 1

)
= z(z2 + z + 1)

(
z4n−4 + z4n−7 + · · · + z3 + 1

)
= z(z + ζ3)

(
z + ζ 2

3

)(
z4n−4 + z4n−7 + · · · + z3 + 1

)
.

We apply the same equation for (ζ3z + 1)4n−1 + 1 and use ζ 3
3 = 1 to get the factorization

(ζ3z + 1)4n−1 + 1 = z(z + 1)(z + ζ3)
(
z4n−4 + z4n−7 + · · · + z3 + 1

)
.

It is easy to see that z(z + ζ3)(z4n−4 + z4n−7 + · · · + z3 + 1) is a greatest common divisor in Eq. (E7) whose degree is 4n − 2 =
L′ − 1. Using this in Eq. (E7) gives ka = 6L − 4(2l + 1).

We summarize the results in the following theorem.
Theorem 5. Consider CC11 defined by the ideal a = (yz + x + y + 1, xy + x + y + z). Imposing the periodic conditions xL −

1 = yL − 1 = zL − 1 = 0 for some L = 2lL′ where 2 � L′ ∈ Z>0 and l ∈ Z�0, the number of encoded qubits is given by

ka =
{

2L, 3 � L
2L − 4 + 2l+2 deg(gcd((z + 1)L′ + 1, (ζ3z + 1)L′ + 1)), 3 | L

.

Moreover, if 3 | L′ = 4n − 1 for some n ∈ Z>0, then we have the explicit formula

ka = 6L − 4(2l + 1).

Remark. Theorem 5 implies that ka as a function of L, obeys the scaling relation

ka(2rL) =
{

2rka(L), 3 � L
2rka(L) + 4(2r − 1), 3 | L

for all r ∈ Z�0.

4. Cubic code 11B

The stabilizer generators of cubic code 11B (CCB11) are given by

IX

XI XX XX

IX

ZI

ZZ ZZ IZ

ZI

(E8)
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Hence, the stabilizer ideal that defines CCB11 is given by a = ( f , g) = (1 + y + y2, 1 + x + y + yz). We eliminate the variable
x to obtain

Jx
a = (

h, y2l + b0, z2l + c0
) = (

y2 + y + 1, y2l + b0, z2l + c0
)
.

Recalling definitions, we know that b0 = y2l

0 , c0 = z0
2l

where yL′
0 = z0

L′ = 1 such that b0
2 + b0 + 1 = 0. Notice that we have

not made the substitutions y 
→ y + 1, z 
→ z + 1 in this example as the ideal is simple enough as it is.
Lemma 5. For the ideal Jx

a = (y2 + y + 1, y2l + b0, z2l + c0), we have the following Gröbner bases.
(1) Suppose 3 � 2l + 1. Then

G = {
y + b0, z2l + c0

}
is a Gröbner basis.

(2) Suppose 3 | 2l + 1. Then

G = {
y + b0 + 1, z2l + c0

}
is a Gröbner basis.

Proof. It is a straight forward calculation using the S-polynomials of Buchberger’s algorithm to verify that G is a Gröbner
basis for the ideal (G) for all the cases. It is also a straight forward calculation by polynomial divisions by elements in G to
verify that Jx

a ⊂ (G) for all the cases. It remains to show that (G) ⊂ Jx
a for all the cases. This is shown below assuming the same

hypotheses and using the same set G as in the lemma for the corresponding cases.
Case 1. The only nontrivial containment we need to show is y + b0 ∈ Jx

a, i.e., y + b0 ≡ 0 (mod Jx
a ). We calculate that

(b0y − 1)((b0y)2l −1 + (b0y)2l −2 + · · · + b0y + 1)

≡ (b0y)2l − 1
(
mod Jx

a

) ≡ b0
2l · y2l − 1

(
mod Jx

a

) ≡ b0
2l +1 + 1

(
mod Jx

a

)
.

The hypothesis b0
2 + b0 + 1 = 0 implies b0 	= 1 with b0

3 = 1. Hence the hypothesis 3 � 2l + 1 implies b0
2l +1 + 1 	= 0. Let

P = (b0y)2l −1 + (b0y)2l −2 + · · · + b0y + 1. Realizing that (y + b0)(y + (b0 + 1)) = (y2 + y + 1), we multiply by b0

b0
2l +1+1

P to
get

(y + b0)(y + (b0 + 1)) · b0

b0
2l +1 + 1

P ≡ 0
(
mod Jx

a

) ⇒ (y + b0) · (b0y − 1)P

b0
2l +1 + 1

≡ 0
(
mod Jx

a

) ⇒ y + b0 ≡ 0
(
mod Jx

a

)
.

Case 2. The only nontrivial containment we need to show is y + (b0 + 1) ∈ Jx
a, i.e., y + (b0 + 1) ≡ 0 (mod Jx

a ). By a similar
calculation as in the proof of case 1, we have

((b0 + 1)y − 1)(((b0 + 1)y)2l −1 + ((b0 + 1)y)2l −2 + · · · + (b0 + 1)y + 1) ≡ (b0 + 1)2l +1 + 1
(
mod Jx

a

)
.

This time, the hypothesis 3 | 2l + 1 implies b0
2l +1 + 1 = 0. Hence

(b0 + 1)2l +1 + 1 = (b0 + 1)(b0 + 1)2l = (b0 + 1)
(
b2l

0 + 1
) = b2l +1

0 + b2l

0 + b0 + 1

= b2l

0 + b0 = b2l +1
0 + b2

0

b 0
= b2

0 + 1

b0
= b0

b0
= 1.

Let P = ((b0 + 1)y)2l −1 + ((b0 + 1)y)2l −2 + · · · + (b0 + 1)y + 1. Then the above implies ((b0 + 1)y − 1)P ≡ 1 (mod Jx
a ).

Again using (y + (b0 + 1))(y + b0) = (y2 + y + 1), we multiply by (b0 + 1)P to get

(y + (b0 + 1))(y + b0) · (b0 + 1)P ≡ 0
(
mod Jx

a

) ⇒ (y + (b0 + 1)) · ((b0 + 1)y − 1)P ≡ 0
(
mod Jx

a

)
⇒ y + (b0 + 1) ≡ 0

(
mod Jx

a

)
. �

Now we simply read off the dimensions using the Gröbner bases and obtain the formula

dimF

(
F [x, y]/Jx

a

) = 2l .

Recalling the definitions, the above gives the formula

ka,m = 2l+1.

Now we wish to calculate ka = ∑
m ka,m where the sum is over all maximal ideals m ⊂ F [x, y, z]/Ia. For the calculation, we

first need to explicitly calculate the points in the variety V (Ia). By first finding solutions of h = 0, we easily calculate that the
solutions of f = g = 0 is the set of points V (a) = V1(a) ∪ V2(a), where

V1(a) = {
(ζ3z′

0 + 1, ζ3, z′
0 + 1) ∈ A3

F : z′
0 ∈ F

}
,

V2(a) = {
(ζ 2

3 z′
0 + 1, ζ 2

3 , z′
0 + 1) ∈ A3

F : z′
0 ∈ F

}
.
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Note that the intersection is V∩(a) = V1(a) ∩ V2(a) = ∅. Imposing the periodic conditions xL − 1 = yL − 1 = zL − 1 = 0,
we have the corresponding set of solutions V (Ia) = V1(Ia) ∪ V2(Ia) where Vj (Ia) = {(x0, y0, z0) ∈ Vj (a) : xL′

0 = yL′
0 = z0

L′ = 1}
for all j ∈ {1, 2}. The intersection is V∩(Ia) = ∅. Thus #V∩(Ia) = 0 and

#(V1(Ia) \ V∩(Ia)) = #(V2(Ia) \ V∩(Ia)) =
{

0, 3 � L′

deg(gcd((z + 1)L′ + 1, (ζ3z + 1)L′ + 1)), 3 | L′ .

Recalling arguments from Appendix E 3, we put everything together using the formula

ka = 2l+1#V∩(Ia) + 2l+1#(V1(Ia) \ V∩(Ia)) + 2l+1#(V2(Ia) \ V∩(Ia))

=
{

0, 3 � L′

2l+2 deg (gcd((z + 1)L′ + 1, (ζ3z + 1)L′ + 1)), 3 | L′ .

We also recall from Appendix E 3 that for the special case 3 | L′ = 4n − 1 for some n ∈ Z>0, we have the explicit calculation

deg (gcd((z + 1)L′ + 1, (ζ3z + 1)L′ + 1)) = 4n − 2 = L′ − 1.

We summarize the results in the following theorem.
Theorem 6. Consider CCB11 defined by the ideal a = (1 + y + y2, 1 + x + y + yz). Imposing the periodic conditions xL −

1 = yL − 1 = zL − 1 = 0 for some L = 2lL′ where 2 � L′ ∈ Z>0 and l ∈ Z�0, the number of encoded qubits is given by

ka =
{

0, 3 � L
2l+2 deg (gcd((z + 1)L′ + 1, (ζ3z + 1)L′ + 1)), 3 | L

.

Moreover, if 3 | L′ = 4n − 1 for some n ∈ Z>0, then we have the explicit formula

ka = 4(L − 2l ).

Remark. Theorem 6 implies that ka as a function of L, obeys the scaling relation

ka(2rL) = 2rka(L)

for all r ∈ Z�0. This is consistent with the self-bifurcating behavior of CCB11.

APPENDIX F: CHARGE ANNIHILATORS

In our argument for choosing the coarse-graining factor
to be 2, we argued how the charge annihilator or the set of
trivial charges shows self-reproducing behavior under coarse-
graining by a factor of 2. To be precise, the charge annihilator
given by the stabilizer ideal 〈 f , g〉 changes to 〈 f 2, g2〉 after
coarse-graining. In the MATHEMATICA file SMERG.nb, we
show the calculation for all the cubic codes. In fact, for
all of them the annihilator after coarse-graining is given
by 〈 f 2, g2〉 where f and g are polynomials that give the
stabilizer ideal as well as the charge annihilator of the orig-
inal model. We now explain how we use elimination theory
with Gröbner bases to compute the annihilator of the charge
module after coarse-graining. The charge annihilator after
coarse-graining is the intersection of the original annihilator
and the coarse-grained Laurent polynomial ring, i.e., 〈 f , g〉
∩ F2[x±2, y±2, z±2].

Let R = F2[x, y, z] and R′ = F2[x2, y2, z2] ⊂ R be a sub-
ring. Consider an ideal I = 〈 f , g〉 ⊂ R for some f , g ∈ R.
We wish to compute the annihilator AnnR′ (R/I ) of the left
R′-module R/I . Since AnnR′ (R/I ) = I ∩ R′, we develop a
method to compute I ∩ R′.

Let R̃ = F2[x, y, z, a, b, c] and R̃′ = F2[a, b, c] ⊂ R̃ be
a subring. Consider the ideal Ĩ = I + 〈x2 − a, y2 − b, z2 −
c〉 ⊂ R̃. Then elimination theory directly provides an al-
gorithm to compute Ĩ ∩ R̃′ using a Gröbner basis accord-
ing to [83, Theorem 2.3.4]. We now focus on arguing

that computing Ĩ ∩ R̃′ is essentially the same as computing
I ∩ R′.

Define the surjective homomorphism φ : R̃ → R uniquely
determined by the mappings

x 
→ x, a 
→ x2,

y 
→ y, b 
→ y2,

z 
→ z, c 
→ z2.

Note that φ(R̃′) = R′ and φ(Ĩ ) = I . A simple set theoretic cal-
culation gives φ(Ĩ ∩ R̃′) ⊂ φ(Ĩ ) ∩ φ(R̃′) = I ∩ R′. However,
the reverse containment does not hold in general and this is
the nontriviality which is to be shown.

Theorem 7. We have I ∩ R′ = φ(Ĩ ∩ R̃′). Hence, viewing
I as an ideal generated in F2[x±1, y±1, z±1], the charge
annihilator after coarse-graining can be calculated by I ∩
F2[x±2, y±2, z±2] = 〈φ(Ĩ ∩ R̃′)〉 ⊂ F2[x±2, y±2, z±2].

Proof. First we show the useful fact ker(φ) = 〈x2 −
a, y2 − b, z2 − c〉. Define the surjective homomorphism φa :
F2[x, y, z, a, b, c] → F2[x, y, z, b, c] uniquely determined by
the mappings

x 
→ x, a 
→ x2,

y 
→ y, b 
→ b,

z 
→ z, c 
→ c.
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and also define the surjective homomorphisms φb :
F2[x, y, z, b, c] → F2[x, y, z, c] and φc : F2[x, y, z, c] →
F2[x, y, z] in a similar fashion. Then we have the commutative
diagram

F2[x, y, z, a, b, c] F2[x, y, z, b, c] F2[x, y, z, c] F2[x, y, z].
φa

φ

φb φc

In light of the containments

F2[x, y, z] ⊂ F2[x, y, z, c] ⊂ F2[x, y, z, b, c]

⊂ F2[x, y, z, a, b, c],

we have ker(φ) = ker(φc ◦ φb ◦ φa) = ker(φa) + ker(φb) +
ker(φc). Now, making the identification F2[x, y, z, c] =
F2[x, y, z][c] and using the division algorithm with the divisor
being the monic polynomial c − z2 ∈ F2[x, y, z][c], we con-
clude that ker(φc) = 〈z2 − c〉 ⊂ F2[x, y, z, c]. By similar ar-
guments, we also have ker(φb) = 〈y2 − b〉 ⊂ F2[x, y, z, b, c]
and ker(φa) = 〈x2 − a〉 ⊂ F2[x, y, z, a, b, c]. Thus ker(φ) =
〈x2 − a, y2 − b, z2 − c〉 ⊂ F2[x, y, z, a, b, c].

We now compute that φ−1(I ) = I + ker(φ) = I + 〈x2 −
a, y2 − b, z2 − c〉 = Ĩ . Hence the surjective homomorphism
φ|R̃′+Ĩ : R̃′ + Ĩ → R′ + I lifts to the isomorphism φ|R̃′+Ĩ :

R̃′+Ĩ
Ĩ

→ R′+I
I . We use this and the second isomorphism the-

orem to get

R̃′

Ĩ ∩ R̃′
∼= R̃′ + Ĩ

Ĩ
∼= R′ + I

I
∼= R′

I ∩ R′ .

More explicitly tracing the maps in the isomorphisms above,
we have the commutative diagram

R̃′ + Ĩ

Ĩ

R′ + I

I

r̃′ + Ĩ φ(r̃′) + I

r̃′ + Ĩ ∩ R̃′ φ(r̃′) + I ∩ R′

R̃′

Ĩ ∩ R̃′
R′

I ∩ R′ .

φ|
R̃′+Ĩ

We see that the isomorphism R̃′
Ĩ∩R̃′

∼= R′
I∩R′ is induced by the sur-

jective homomorphism φ|R̃′ : R̃′ → R′. This implies Ĩ ∩ R̃′ =
{r̃′ ∈ R̃′ : φ(r̃′) ∈ I ∩ R′} = φ−1(I ∩ R′). Hence we conclude
φ(Ĩ ∩ R̃′) = I ∩ R′. �
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