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Abstract

A “persistence” exponent θ has been extensively used to describe the nonequilib-
rium dynamics of spin systems following a deep quench: for zero-temperature homo-
geneous Ising models on the d-dimensional cubic lattice Zd, the fraction p(t) of spins
not flipped by time t decays to zero like t−θ(d) for low d; for high d, p(t) may decay
to p(∞) > 0, because of “blocking” (but perhaps still like a power). What are the
effects of disorder or changes of lattice? We show that these can quite generally lead
to blocking (and convergence to a metastable configuration) even for low d, and then
present two examples — one disordered and one homogeneous — where p(t) decays
exponentially to p(∞).

In modelling the nonequilibrium dynamics of spin systems following a deep quench, the
following question naturally arises [1, 2, 3, 4, 5, 6, 7, 8]: given a spin system at zero tem-
perature with random starting configuration and evolving according to the usual Glauber
dynamics, what is the probability p(t) at time t that a spin has not yet flipped?

For the homogeneous ferromagnetic Ising model on Zd, this probability has been found
to decay at large times as a power law p(t) ∼ t−θ(d) [1, 2, 3] for d < 4. The “persistence”
exponent θ(d) is considered to be a new universal exponent governing nonequilibrium dy-
namics following a deep quench [6]. The persistence problem can be extended to positive
temperatures by considering the dynamics of the local order parameter rather than that of
single spins [9, 10, 11].

In this paper we confine our attention to dynamics at zero temperature in infinite spin
systems. In the usual case of asynchronous updating, a spin is chosen at random (this
can be made precise for infinite systems, as in [12]) and then: always flips if the resulting
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configuration has lower energy, never flips if the energy is raised, and flips with probability
1/2 if the resulting energy change is zero. We will consider these dynamics for random
initial configurations σ0 (in which each spin is equally likely to be up or down, independent
of the others) in both disordered ferromagnets and spin glasses with continuous coupling
distributions, and also for uniform ferromagnets on lattices other than Zd (e.g., hexagonal
lattices in 2D).

Our first result is that the persistence phenomenon as described above is unstable to
the introduction of randomness into the spin couplings, or even to some changes in lattice
structure. For the random ferromagnet, spin glass, 2D hexagonal ferromagnet, and others
to be discussed below, we will see that a positive fraction of spins never flip and every spin
flips only finitely many times.

The “frozenness” of a nonvanishing fraction of spins (sometimes referred to as “blocked”
spins [5]) has been reported in numerical simulations of Ising ferromagnets on Zd with d > 4
[1] and q-state Potts models on square lattices for q > 4 [5]. The problem can then be
recast by restricting attention to only those spins that eventually do flip, and asking for the
conditional probability that such spins haven’t yet flipped by time t. Simulations of Potts
models appeared to indicate that this probability (proportional to p(t)− p(∞)) also decays
as a power law at long times [5] (however, some curvature on their log-log plots was noted).

We will examine the same question for disordered Ising systems and also for homogeneous
systems that show blocking. Although we cannot yet answer this question in general, we will
present calculations on two systems, the homogeneous ferromagnet on a quasi-1D “ladder”
and the 1D disordered spin chain [13], showing that p(t) − p(∞) decays exponentially as
t → ∞. Exponential decay for d ≥ 2 will also be discussed.

Persistence and local nonequilibration. The analysis of persistence exponents suggests
that the fraction of sites that remain in the same phase (for T > 0) or spin value (at T = 0)
from time t1 to time t2 tends to zero for 1 ≪ t1 ≪ t2. It therefore implies the presence of
local nonequilibration (LNE) [12]: that in any fixed, finite region, there exists no finite time
after which the spins within remain in a single phase; that is, domain walls forever sweep
across the region. At zero temperature, the presence of LNE means every spin flips infinitely
often (in almost every sample).

Why does the decay to zero of p(t) (coming from the analysis of persistence exponents at
T = 0) suggest that every spin flips infinitely many times? Suppose instead that a positive
fraction of spins flip only finitely many times. Then it is reasonable to expect that a (smaller
but still positive) fraction of spins never flip, and p(t) would not decay to zero. While not
proved in general, this argument applies to all systems treated here.

It was proved in [14] (see also [12]) that, in the homogeneous Ising ferromagnet on the
square lattice with a random initial spin configuration, every spin indeed flips infinitely
often at zero temperature, consistent with persistence results in the literature. (Similar
results apply to several other systems, and can be extended to positive temperature with
the local order parameter in a region replacing individual spins [12].)

Blocking. What about the zero-temperature dynamics of systems with continuous dis-
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order? In any dimension and on any lattice, it can be proved for these (and many other)
systems that every spin flips only finitely many times. These systems exhibit “blocking” and
for them p(t) does not decay to zero.

These are examples of a general result [14] applying to the dynamical evolution (following
a deep quench) of infinite-volume Ising spin systems with Hamiltonian

H = −
∑

<xy>

Jxyσxσy , (1)

where the sum is over nearest neighbors. If the distribution of couplings is continuous with
finite mean, then it can be proved that every spin flips only finitely many times (for almost
every σ0, realization ω of the dynamics and realization J of the couplings).

The proof of this theorem yields a more general result that shows that, even without
the continuity assumption on the distribution of couplings, for almost every J , σ0, and ω,
there can be only finitely many flips of any spin that cause a nonzero energy change. This
is why the above result applies to ordinary spin glasses and random ferromagnets with a
continuous distribution of couplings (e.g., Gaussian or uniform): the probability of a “tie”
in any sum or difference of a given spin’s nearest-neighbor coupling strengths (and therefore
the probability of a spin flip costing zero energy) is zero, and the result follows.

We sketch the proof here; for further details, see [14]. Let σt
x be the value of σx at time

t for fixed ω, σ0 and J . Let

E(t) = −(1/2)
∑

y:|x−y|=1

Jxyσt
xσ

t
y (2)

where the bar indicates an average over J , σ0, and ω. By translation-ergodicity of the
distributions from which J , σ0, and ω were chosen, and using the assumption that |Jxy| < ∞,
it follows that E(t) exists, is independent of x, and equals the energy density (i.e., the average
energy per site) at time t in almost every realization of J , σ0, and ω.

Because every spin flip lowers the energy, E(t) monotonically decreases in time (note that
E(0) = 0) and has a finite limit E(∞) (≥ −d|Jxy|). Now choose any fixed number ǫ > 0,
and let N ǫ

x be the number of spin flips (over all time) of the spin at x that lower the energy
by an amount ǫ or greater. Then −∞ < E(∞) ≤ −ǫN ǫ

x so that for every x and ǫ > 0, N ǫ
x is

finite. Let ǫx be the minimum energy (magnitude) change resulting from a flip of σx; then
although ǫx varies (differently in each J ) with x, it is sufficient that it is strictly positive.

This result applies also to homogeneous systems on certain lattices, such as Ising ferro-
magnets on lattices with an odd number of nearest-neighbors so that ties in energy cannot
occur. Such lattices include the hexagonal (or honeycomb) lattice in 2D, and the double-
layered cubic lattices Zd×{0, 1} (i.e., a “ladder” when d = 1, two horizontal planes separated
by unit vertical distance when d = 2, and so on) [15].

As for blocking in these systems, it is elementary to show that a positive fraction of
spins will never flip. Consider first the hexagonal lattice. If the spins on any single hexagon
are all up or all down, they will form a stable configuration that will never change. Such
configurations (and of course similar larger-scale ones) occur with positive density in almost
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every σ0. Similarly, in the ladder, any square with all spins up or down is stable. The
extension to general Zd × {0, 1} is straightforward.

Turning to disordered systems, consider first the random ferromagnet on Z2. For almost
every J , there will be a positive density of plaquettes whose couplings satisfy the following:
on each of the four corners, the sum of the two couplings that connect to adjacent corners
of the square is greater than the sum of the two couplings to sites outside the square. If the
spins at the four corners initially are all up or all down, the spin configuration on the square
will again be stable. A similar construction can be used for general d and for spin glasses.

To summarize, our first result has been to prove that many ordered and disordered spin
systems display two important zero-temperature dynamical properties, which when taken
together lead them to exhibit novel persistence behavior. The first concerns the presence
of blocking, meaning a positive fraction of spins never flip. In the systems we treat, this
is a zero time property in that some of the spins are blocked by the nature of σ0 (and
J ), regardless of the dynamics realization. The second property concerns infinite time: the
existence of a limiting (metastable) spin configuration σ∞, since every spin flips only finitely
many times. Although the second of these properties probably implies the first, the first
does not imply the second [16]. Our next result is to show that for at least some of these
systems, these two properties lead to an exponential (as opposed to power law) decay of the
quantity p(t)− p(∞) at large times.

Exponential decay. In this section we study the large-time behavior of p(t) − p(∞), the
probability that a spin will flip at some time but has not yet flipped by time t. We will
prove that this quantity decays exponentially by showing the same for the larger probability
p̃(t) that a spin will flip at some time after t (whether or not it has flipped before). We
consider two systems, one homogeneous (the uniform Ising ferromagnet on the ladder) and
one disordered (the 1D continuously disordered Ising chain).

Consider first a homogeneous system where every site has an odd number M of neighbors.
(Systems such as ±J spin glasses where the signs are disordered but not the |Jxy|’s also fall
into this category of examples.) Consider at time τ , all sites y such that the spin at y will flip
after time τ , and denote by Cx(τ) the cluster of such sites that contains x (an empty cluster
if the spin at x will not flip after time τ). We will show below for the ladder model that with
τ = 0, the distribution of the number of sites |Cx(τ)| in these clusters has an exponential
tail; i.e., the probabilities for large cluster sizes are bounded by:

P (|Cx(τ)| ≥ n) ≤ Ae−kn (3)

for some A < ∞ and k > 0. We next show that this implies exponential decay of p̃(t).
Since each flip in Cx(τ) lowers the energy of that cluster by at least 2 and since the

total energy of the cluster lies somewhere between −M |Cx(τ)| and M |Cx(τ)| (we take J = 1
here), it follows that the entire cluster must reach its final configuration after no more than
M |Cx(τ)| flips. Let T1 denote the (random) amount of time after τ until the first flip in
Cx(τ), T2 the amount of time after τ + T1 until the second flip, etc. Clearly, as long as flips
are possible, the Ti’s are bounded above by independent exponential (mean one) random
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variables T ′
i . Thus the time of the last flip of x is bounded above by τ + T ′

1 + · · ·+ T ′
M |Cx(τ)|

and so for t > τ ,

p(t)− p(∞) ≤ p̃(t) ≤
∞∑
n=1

P (|Cx(τ)| = n)P (T ′
1 + · · ·+ T ′

Mn ≥ t− τ) . (4)

The probability density of T ′
1 + · · ·+ T ′

j is f(s) = sj−1e−s/(j − 1)! and so for t > τ ,

p(t)− p(∞) ≤
∞∑
n=1

Ae−kn
∫ ∞

t−τ
[sMn−1/(Mn− 1)!]e−sds

≤
∫ ∞

t−τ

∞∑
j=1

A(e−k/M)j[sj−1/(j − 1)!]e−sds

= Ae−k/M
∫ ∞

t−τ
exp(e−k/Ms− s)ds

= A′e−k′t (5)

where the constants A′ and k′ depend on A, k,M and τ .
It remains to show that (3) is valid in the ladder ferromagnet with τ = 0. (Similar

arguments work for the ladder antiferromagnet or ±J spin glass.) To do this we note that a
single plaquette has an initial probability p0 = 1/8 of having its four corner spins all plus or
all minus (we call such a blocked plaquette “frigid”). The lattice’s sites take integer values
(xi, yi), with −∞ < xi < ∞ and yi = 0, 1. A lower bound for the initial number of frigid
plaquettes can be obtained by considering only those plaquettes whose left edges occur at
even xi (we define the location of a plaquette by the position of its left edge); such plaquettes
do not overlap and so their probabilities of being frigid are independent. If the plaquette
at the origin is frigid, and P (0 → 2n) is the probability that there is no frigid plaquette
between 0 and x2n, then

P (0 → 2n) ≤ (1− p0)
n = exp(−kn) , (6)

where k = | log(1 − p0)|. So the ladder is broken up into finite segments, bounded to either
side by a frigid plaquette, whose length distribution has an exponential tail. This yields
Eq. (3).

Our second example is a disordered 1D spin chain in zero field. The analysis is essentially
the same for either the spin glass or the random ferromagnet, so for specificity we study a
ferromagnet whose couplings Jz ≡ Jz,z+1 are independent random variables taken from the
uniform distribution on [0, 1]. The key idea here is that the chain breaks up into finite,
disjoint “influence segments” whose union is the infinite chain. An influence segment is a
dynamical construct defined (for a given J ) as follows: two sites x and y belong to the same
influence segment if and only if either the state of σx can dynamically induce a change in
the state of σy or vice-versa (or both). To illustrate, suppose that the coupling Jx is larger
than both Jx−1 and Jx+1; i.e., Jx is a local maximum. Then it is clear that the state of σx

can be dynamically influenced by σx+1 but not by σx−1 (and similarly, the state of σx+1 can
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be dynamically influenced by σx but not by σx+2). That is, no state of the spin σx−1 can
alter the sign of the energy change ∆Hx that would result from a flip of σx. To summarize,
two sites x and y are defined to be in the same influence cluster if and only if either σx can
influence σy, or σy can influence σx, or both [17].

Influence segments for the disordered 1D chain are then constructed as follows [14].
Consider the doubly infinite sequences x = xm of sites where Jx is a local maximum and
y = ym ∈ (xm, xm+1) where Jy is a local minimum: the couplings are strictly increasing
from ym−1 to xm and strictly decreasing from xm to ym. The set of spins at the sites
{ym−1 + 1, ym−1 + 2, . . . ym} determines a single influence segment.

To see this, note that the spin at ym cannot influence the one at ym + 1 (or vice-versa);
similarly, at the other end ym−1 + 1 cannot influence ym−1. Now consider the spins at xm

and xm + 1, which are within the interval {ym−1 + 1, ym−1 + 2, . . . ym}. Clearly, the spin at
xm−1 can never influence the spin at xm, and the spin at xm+2 can never influence the one
at xm+1. So once the spins at xm and xm+1 agree (either initially in σ0 or after either spin
flips) the final value of every spin in the interval {ym−1 + 1, ym−1 + 2, . . . ym} is determined
through a “cascade” of influence to either side of {xm, xm + 1} (which is put into effect as
the Poisson clocks successively ring) until ym−1 + 1 and ym, respectively, are reached.

Given this, the analysis leading to Eqs. (4) and (5) applies as before. One needs only an
estimate analogous to Eq. (3) for the probability distribution of influence segment sizes. In
fact, the decay here for large size n is faster than in Eq. (3); the probability of n independent
coupling random variables being ordered so as to have a single local maximum falls off as
1/n! (times an exponential factor).

In these two examples different factors determine the distribution of dynamical cluster
sizes: for the homogeneous ferromagnet on the ladder, they’re determined by the initial spin
configuration σ0; for the disordered 1D chain, they’re determined by the coupling realization
J .

In this section we considered two examples, one ordered and one disordered, but both
one-dimensional (or quasi-one-dimensional). There is another system that shows the same
behavior in any dimension: the highly disordered spin glass (or ferromagnet) [18, 19, 20].
Using similar arguments, this system can also be shown to display an exponential decay
to its final state [21]. We expect that a related model, in which coupling magnitudes are
“stretched” in the manner of references [18, 19, 20] but only up to a finite length scale, would
show similar behavior. This last model is of interest because its thermodynamic behavior is
expected to be similar to that of the ordinary spin glass (or random ferromagnet).

Discussion. Most work on persistence at zero temperature has examined systems, such as
the homogeneous Ising ferromagnet on Zd in low d, where the quantity p(t) decays to zero as
a power law. We have shown here that there is a second class of models in which p(∞) > 0:
these include systems with continuous disorder and homogeneous systems on other lattices.
In several of these the persistence decay is exponential rather than power law. It would be
of interest to see whether this fast decay holds in other systems in this general class, such as
the 2D homogeneous ferromagnet on a hexagonal lattice [22] or an ordinary spin glass with
d > 1.
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Although we don’t know the answer in the general case, we can speculate using a rough
argument that the answer may be yes. If every spin flips only finitely often, as time progresses
an increasing number of spins will “freeze”; i.e., they cease to flip. It is reasonable to expect
that after some finite time “unfrozen” spins no longer percolate, so that the dynamics is
confined to noninteracting finite clusters, as in the examples treated here. Of course, there
remain serious gaps: this is not independent percolation, and the dynamics in the localized
clusters (should they exist) would need to be worked out, so the conclusion should be treated
with caution.

There is a third class of systems not discussed here; in these, a positive fraction of spins
flip infinitely often and a positive fraction flip only finitely many times. One such system is
the two-dimensional ±J spin glass [16]. Although it appears that p(∞) > 0, determining
the large-time behavior of p(t)− p(∞) remains an open problem.
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