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The relative stability of two-dimensional soft quasicrystals is examined using a recently devel-
oped projection method which provides a unified numerical framework to compute the free energy
of periodic crystal and quasicrystals. Accurate free energies of numerous ordered phases, includ-
ing dodecagonal, decagonal and octagonal quasicrystals, are obtained for a simple model, i.e. the
Lifshitz-Petrich free energy functional, of soft quasicrystals with two length-scales. The availability
of the free energy allows us to construct phase diagrams of the system, demonstrating that, for
the Lifshitz-Petrich model, the dodecagonal and decagonal quasicrystals can become stable phases,
whereas the octagonal quasicrystal stays as a metastable phase.

I. INTRODUCTION

Quasicrystals are a class of ordered materials possess-
ing quasiperiodic positional order and long-range orien-
tational order. The intriguing property of quasicrystals
is that their symmetry does not belong to the tradi-
tional crystallographic point groups. As such, the dis-
covery of quasicrystals has led to a redefinition of the
term crystal as any ordered materials having an essen-
tially discrete diffraction pattern. For a traditional crys-
tal or periodic crystal, the discrete diffraction pots form
an periodic array on their reciprocal lattice. For a qua-
sicrystal, the discrete diffraction spots densely fill the re-
ciprocal space although, in practice, only the most in-
tense reflections will be observed. Since the discovery
of quasicrystals by Shechtman [I] in a rapidly-quenched
Al-Mn alloy thirty years ago, materials with quasicrys-
talline order have been found in more than a hundred
different metallic alloys [2], [3]. Besides the large number
of quasicrystals found in metallic alloys, quasicrystalline
order has been observed in many soft condensed matter
systems, including micelle-forming liquid crystals [4H6],
block copolymers [7, [§], colloidal suspensions [9] and bi-
nary mixtures of nanoparticles [I0]. In contrast to the
metallic quasicrystals, the building blocks of soft-matter
quasicrystals are on a much larger length-scale, e.g. tens
to hundreds of nanometers. Soft quasicrystals provide
an interesting platform for the study of fundamentals of
quasiperiodic long-range orders, as well as potential can-
didates for advanced applications based on their unique
electronic or photonic properties.
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Due to a large number of studies since the discovery
of quasicrystals, their structure and symmetry are now
well understood [IT}, [12]. In particular, quasicrystalline
order can be described as the projection from a higher-
dimensional periodic lattice [I3]. On the other hand, the
study of the thermodynamic stability of quasicrystals re-
quires the examination of their free energy, which remains
a challenge [14] [15].

Theoretical approaches to investigating the origin and
stability of an ordered phase, including periodic crystals
and quasicrystals, often involve minimizing an appropri-
ate free energy functional of the system, and comparing
the free energies of different candidate structures [16, [I7].
Therefore a systematic examination of the stability of
quasicrystals requires the availability of suitable free en-
ergy functionals and accurate methods to compute the
free energy of phases with quasicrystalline order. Sev-
eral microscopic models have been developed over the
years to explore ordered structures, which have yielded
surprisingly rich phase diagrams. In some cases even sta-
ble quasicrystals are found [I8-25]. Parallel to the devel-
opment of microscopic models, phenomenological theo-
ries based on coarse-grained free energy functionals have
been widely used to study phases and phase transitions
of ordered systems. The utilization of such Landau-type
theories provides an effective method to investigate the
phase behaviour of physical systems exhibiting ordered
phases. In the case of block copolymers, a free energy
functional developed by Leibler [26] has provided useful
insight and a rather accurate description of the ordered
phases of block copolymers. Similarly, for soft quasicrys-
tals, a number of coarse-grained model free energy func-
tionals have been proposed to explore the quasicrystalline
order arising from model systems with more than one
characteristic length-scales [17], 25, [27H31]. Among these
models, the free energy functional proposed by Lifshitz
and Petrich, or the Lifshitz-Petrich (LP) model [27], may
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be the simplest model with two length-scales. Initially
the LP model was developed to study parametrically-
excited surface waves (Faraday wave [32]). Using a two-
mode approximation, Lifshitz and Petrich obtained sta-
ble two-dimensional patterns with two-, six- and twelve-
fold symmetries for the LP model. Recently the LP
model has been used to explain the source of stability
of soft quasicrystals with dodecagonal symmetry. In par-
ticular, the stability of soft quasicrystals is attributed to
the existence of two length-scales and three-body interac-
tions in the free energy functional [I5]. Nevertheless, the
existence and stability of other quasiperiodic structures
within the LP model remain an open question.

Besides a proper free energy functional of the system,
the study of thermodynamic stability requires methods
to compute the free energy of the different ordered phases
accurately. Due to the spatial periodicity, the computa-
tion of periodic crystals can be carried out within a unit
cell with periodic boundary conditions. On the contrary,
it is not possible to reduce the structure of a quasicrystal
to unit cells because quasicrystals are space-filling or-
dered structure without spatial periodicity. In the lit-
erature, a common method to overcome this difficulty
is to utilize periodic structures with large unit cells to
approximate quasicrystals [20H22] 27] [33] [34]; their free
energies are also approximated by that of these periodic
orders as well. However, it is not immediately obvious
whether such approximation of the free energy is accu-
rate. Indeed, Jiang and Zhang [35] recently showed that
the free energy density of dodecagonal quasicrystal is al-
ways lower than its approximant evaluated by this ap-
proximated approach.

An alternative approach to calculate the free energy of
quasicrystals is based on the observation that quasiperi-
odic lattices can be generated by a cut-and-project
method from higher-dimensional periodic lattices [11]. It
follows that the density and free energy of quasicrystals
can be obtained using the quasiperiodic lattices derived
from the higher-dimensional periodic structure. A pre-
vious approach along this line is the Gaussian method,
in which the density profile of a quasicrystal is assumed
to be given by a sum of Gaussian functions centered at
the lattice points of a predetermined quasicrystalline lat-
tice [36]. The width of the Gaussian function is treated as
a variational parameter, which is optimized to minimize
the free energy of the system. More recently, Jiang and
Zhang [35] have proposed a generalized spectral method
for characterizing the density profile and computing the
free energy of quasiperiodic structures. Instead of work-
ing in the real space, Jiang and Zhang utilized the fact
that the Fourier spectrum of quasicrystalline structures
can be lifted into that of a higher-dimensional periodic
structure, so that the Fourier spectrum of the quasiperi-
odic pattern can be obtained by projecting the higher-
dimensional reciprocal lattice vectors onto the original
Fourier space through a projection matrix. Details of the
lifting and projection depend on the symmetry and rank
of the desired structures. As a special case, the projection

method can also be used to investigate periodic crystals
by setting the projection matrix as an identity matrix.
From this perspective the projection method provides a
unified computational framework for the study of peri-
odic crystals and quasicrystals. In particular, the free
energy of periodic crystals and quasicrystals can be ob-
tained with the same accuracy.

In the current work, we apply the projection method
to study the relative stability of different ordered phases
of the LP model. The main objective is to investigate
the existence and relative stability of periodic structures
and quasicrystals beyond the 12-fold symmetric patterns.
Specifically, two-dimensional quasiperiodic patterns with
12-, 10- and 8-fold symmetries as well as several periodic
crystal structures including the three-dimensional body-
centered-cubic (BCC) phase (with space group I'm3m)
have been obtained as possible phases of the LP model. A
comparison of the free energies of these candidate phases
leads to the construction of a phase diagram of the sys-
tem, thus extending the earlier results of Lifshitz and Pet-
rich [27]. In particular, the theoretical study predicts that
the decagonal quasicrystal can become a stable phase.

II. THEORETICAL FRAMEWORK

Since the discovery of quasicrystals, a large number
of theoretical studies have been carried out to investi-
gate their symmetry, structure characterization and ther-
modynamic properties. In general, the formation of
quasicrystalline phases is characterized by two or more
length-scales. Omne possibility of realizing two length-
scales is to have a pairwise interaction that depends on
two length-scales explicitly. For example, a recent Monte
Carlo simulation study by Dotera et al. [37] demonstrated
that a simple step-like interaction potential with two
length-scales could lead to the formation of various two-
dimensional quasicrystals. Another possibility of realiz-
ing two length-scales is to construct a Landau-type free
energy functional with two or more characteristic length-
scales [15], [I'7, 28]. In particular, Lifshitz and Petrich [27]
have proposed a Landau theory with a scale order param-
eter and with a second-order term containing two length-
scales explicitly. It has been demonstrated that the LP
model exhibits dodecagonal quasicrystal. In what follows
we will use the LP theory as a model free energy func-
tional to examine the relative stability of various two-
dimensional quasicrystals.

In order to examine the relative stability of different or-
dered phases, the free energies of the candidate structures
have to be evaluated accurately. The candidate phases
correspond to free energy local minima in the free energy
landscape of the system. Therefore the computation of
their free energies corresponds to finding the solutions
of the Euler-Lagrange equation of the free energy func-
tional. For quasiperiodic phases, a direct computation in
the real space can only be carried out approximately us-
ing periodic approxmants or other truncation methods.



On the other hand, the computation can be carried out
in reciprocal or Fourier space using projection method as
described recently by Jiang and Zhang [35]. With appro-
priate choice of the Fourier basis, the projection method
provides a unified numerical framework to study periodic
crystals and quasicrystals with the same accuracy.

In this work we apply the projection method to the LP
model and determine the relative stability of different
phases including two-dimensional dodecagonal, decago-
nal and octagonal quasicrystals. The rest of this section
gives a brief introduction to the LP model and the pro-
jection method for ordered phases.

A. Lifshitz-Petrich model

The Lifshitz-Petrich model is a generic Landau the-
ory for a physical system with two length-scales [27].
The original LP model was motivated by experiments
on the parametrically-excited surface waves, which ex-
hibits dodecagonal quasiperiodic order [32]. Lifshitz and
Petrich [27] introduced a spatial-varying scale order pa-
rameter, ¢(r), and constructed a free energy functional,
F1p[¢p(r)], which governs the pattern-forming dynamics
of the system. The essential characteristic of the LP
model is that the disordered phase, corresponding to
¢(r) = 0, undergoes an instability simultaneously at two
wave-lengths. Specifically the Lifshitz-Petrich model is
defined by the free energy functional,
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where V' is the volume of the system, ¢ is an energy
penalty factor, ¢ is a temperature-like controlling param-
eter, and « is a parameter characterizing the third-order
interactions. The order parameter ¢(r) corresponds to
the density profile for a soft matter system. Compar-
ing with the usual Landau theory of phase transition,
the crucial feature of the LP model is the occurrence
of the second length-scale specified by the parameter q.
It should be noticed that the basic length scale of the
model is take as the unit wavelength (as specified by the
V2 + 1 term) and the second length-scale is specified by
a wavevector, ¢, which is the ratio of the two character-
istic length-scales. In the case of the surface waves, the
origin of the two length-scales is the two-frequency para-
metric excitation of the fluid surface [27]. In the case of
generic soft matter system, the two length-scales could
be from the pairwise interactions of the soft particles. In
the current work the parameter g is taken as one of the
controlling parameters of the systems. In principle, free
energy minimization should be carried out with respect
to ¢ as well. However, carrying out such minimization is
a formidable task. Instead, we study the relative stability
of different patterns with a limited number of g-values.

In their original study [27], Lifshitz and Petrich used
a two-mode approximation to describe the different or-
dered phases. They demonstrated that the simple LP
model exhibits various two-dimensional ordered patterns
with 2-, 4-, 6- and 12-fold symmetries, and obtained a
phase diagram for the LP model based on the two-mode
approximation. Subsequent studies [I5] have demon-
strated that such free energy functionals with two length-
scales could be considered as a generic model for self-
assembling soft matter systems, providing insights into
the essential features of soft quasicrystals forming in den-
drimers, tetrablock terpolymers and micelle-forming lig-
uid crystals. Furthermore, the theory with two length-
scales has been used to study the soft-particle sys-
tems [17, 25 28]. It is also noticed that three-body in-
teractions characterized by the cubic term in the LP free
energy functional plays an important role in stabilizing
quasicrystals.

B. Projection Method

For a given set of parameters, the candidate phases are
local minima of the free energy functional, corresponding
to solutions of the Euler-Lagrange equation,
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For the LP model, the Euler-Lagrange equation (Eq.
corresponds to a eighth-order nonlinear partial differen-
tial equation, which can be solved using a number of
numerical methods. For structures with quasicrystalline
order, an efficient method is the projection method for-
mulated in the Fourier space. It is based on the observa-
tion that the Fourier spectrum of a d-dimensional aperi-
odic structure, such as a quasicrystal, consists of Bragg
peaks on a, n-dimensional lattice, where n > d. In other
words, the Fourier spectrum of the quasiperiodic struc-
ture can be lifted into an n-dimensional periodic lattice.
The n-dimensional reciprocal vectors can be spanned by
a set of bases b;, which are the primitive reciprocal vec-
tors in the n-dimensional reciprocal space, with integer
coefficients, i.e. m-dimensional reciprocal vector H can
be written as H = Y | h;b; € R™, h; € Z, b; € R"
[12,38]. The physical d-dimensional wavevector k is then
obtained from the n-dimensional vector H by a projec-
tion, k = § - H, where S is a projection matrix of d x n-
order. The dimensionality n and the specific form of the
projection matrix is determined by the structure of the
ordered phases [I2]. The expression of S is not unique
and relies on the symmetry of the quasicrystals. More
precisely, it depends on the choice of the basis vectors.

Using the n-dimensional vectors and the projection op-
erator, the Fourier expansion of any quasiperiodic func-
tion ¢(r) can be written in the form,
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In the above expression, r € R%, andk = Y"1, h;(Sbh;) €
R?. One simple observation is that the expansion (Eq.
allows us to treat the d-dimensional quasiperiodic struc-
ture as a slice of an n-dimensional periodic structure
whose orientation is determined by S.

Expanding the order parameter ¢(r) in the form of
Eq. [3] and inserting it into Eq. [T the free energy func-
tional can be written in terms of the Fourier coefficients
¢x. For a given structure of interest, the reciprocal lattice
vectors are determined by its symmetry, and the optimal
coefficients are obtained by minimizing the free energy
functional. In our previous work [35], it has been shown
that, when using the projection method, it suffices to
have a free energy functional defined in the lower (physi-
cal) d-dimensional space. Therefore the computations are
implemented in the n-dimensional space, while the final
results represent the d-dimensional structures through
(3). The computation in the n-dimensional space is car-
ried out on a regular periodic grid since the reciprocal
lattice in this space is periodic. As a special case of
quasiperiodic structures, a d-dimensional periodic struc-
ture can be described within the projection method by
setting the projection matrix as a d X d identity ma-
trix. In this case the projection method is reduced to
the commonly used Fourier-spectral method. This dose
not provide any computational advantage when it comes
to periodic crystals. However, this view provides a uni-
fied computational scheme of the periodic crystals and
quasicrystals.

In practice, we adopt a dissipative method to obtain
solutions of the Euler-Lagrange equation of the free en-
ergy functional. Inserting the generalized Fourier expan-
sion (Eq.|3) into the LP model, the free energy functional
(Eq. |1)) becomes a function of the Fourier coefficients,
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where g, = >°1" Z?Zl skihjbji, k= 1,2,...,d, si; are
the components of the projection matrix S, and bj; is
the i-th component of the primitive reciprocal vector b;.
Instead of solving the nonlinear Euler-Lagrange equation
directly, we adopt a relaxation method to solve the min-
imization problem. Specifically, the Fourier coefficients
are iterated according to the following relaxation equa-
tion,
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It should be pointed out that the variable ¢ here is not
time, but a parameter controlling the iteration steps. In
this expression the quadratic term and cubic term are
given by,
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From these expressions it is obvious that the nonlinear
(quadratic and cubic) terms in Eq. |5| are n-dimensional
convolutions in the reciprocal space. A direct evaluation
of these nonlinear terms will be computationally expen-
sive. Instead, these terms are simple multiplication in
the n-dimensional positional space and the computation
of these nonlinear terms in the position space is straight-
forward. The pseudospectral method takes advantage of
this observation by evaluating the gradient terms in the
Fourier space and the nonlinear terms in the position
space, thus providing an efficient technique to find solu-
tions of the Euler-Lagrange equation. The pseudospec-
tral method requires access to the density function in real
and reciprocal spaces. The transformation between the
real-space and reciprocal space was done by performing
Fast Fourier Transformation (FFT) in the n-dimensional
space.

Starting from an initial configuration with a specified
symmetry, a steady state solution of Eq. |b| correspond-
ing to a local minimum of the free energy functional, is
obtained. Using initial configurations with different sym-
metries leads to different ordered structures as solutions
of the minimization problem. The ordered structures
corresponding to these solutions are taken as candidate
phases of the problem. The free energies of these candi-
date structures are then compared and used to construct
phase diagrams of the system.

III. RESULTS AND DISCUSSION

Using the projection method outline above, we will ob-
tain possible ordered phases, and examine their relative
stability, of the LP model. Due to the computational de-
mand, in the current study, the quasicrystals of interest
are restricted to two-dimensional quasiperiodic patterns
whose point group symmetries can be realized by periodic
lattices in 4-dimensional space, namely 5-, 8-, 10- and 12-
fold symmetric structures [I3]. Therefore the dimensions
of the physical space and the reciprocal space are d = 2
and n = 4. Besides, one-, two- and three-dimensional pe-
riodic patterns, corresponding to the commonly observed
lamellar, cylindrical and spherical phases, are included in
our study. In practice, the n-dimensional Fourier space is
discretized using 24 basis functions along each direction.
The total number of variables is thus 24™. We remark
that the projection method works equally well if we use
different numbers of basis functions along each dimen-
sion, although we will not do that here for simplicity.



A semi-implicit scheme is adopted to solve Eq. [5| until
the relative change of Fpp between consecutive iteration
steps is smaller than 1078, For the cases of periodic
crystals and quasicrystals, the computation starts with
initial configurations with the desired symmetries. The
choice of initial configurations will speed up the compu-
tations by reducing the number of iterations. If the ini-
tial symmetric structure is a local minimum of the free
energy functional for a given set of model parameters,
the calculation will lead to a converged solution with the
prescribed symmetry. In the case that the chosen sym-
metry of the initial configuration does not correspond
to a local minimum, the iteration procedure will lead
to other phases, or more commonly, to the trivial solu-
tion ¢(r) = 0 corresponding to the disordered phase. It
should be noticed that the homogeneous phase is always
a solution of the Euler-Lagrange equation.

A. Quasicrystals and Periodic Crystals from the
LP Model

In this subsection we enumarate the ordered phases
used in our study. All these ordered phases are solutions
of the Euler-Lagrange equation, corresponding to local
minima of the LP free enegy functional. These ordered
phases are used as candidate structures for the construc-
tion of the phase diagram. At a given point of phase space
only one of these phases could become stable whereas all
the others are metastable.

With proper choice of the second length-scale char-
acterized by ¢, solutions corresponding to periodic and
quasiperiodic patterns are obtained as local minima of
the LP free energy functional. In particular, the choice of
q = 2cos(m/12), 2cos(w/5) and 2 cos(7/8) leads to three
two-dimensional quasicrystals, with 12-, 10- and 8-fold
symmetries, as the potential stable phases in the model.
The order parameter or density profiles ¢(r), and the cor-
responding profiles in the Fourier space ék, of these or-
dered structures are shown in Fig.a)-(c). Besides these
quasicrystalline phases, several periodic structures, cor-
responding to two-dimensional patterns with 2-; 4- and
6-fold symmetries and a three-dimensional periodic phase
of spheres packed on a body-centered-cubic (BCC) lat-
tice, have been observed as local minima of the LP free
energy functional. Fig.d) presents the order parame-
ter profiles of the 6-fold symmetric pattern. Because the
energy penalty factor ¢ is finite, more nonzero Fourier
modes which do not set on two rings of radius 1 and ¢
appear as Fig.[I] shows. Before we examine the stabil-
ity of these ordered structures, it is useful to verify the
symmetries of these quasicrystalline patterns.

Dodecagonal Quasicrystal (DDQC) — The 12-fold
symmetric dodecagonal quasicrystal is obtained by
choosing structural parameter ¢ = 2 cos(mw/12). The cor-
responding projection matrix is given by,

_ (1 cos(m/6) cos(m/3) 0
5= <0 sin(m/6) sin(r/3) 1>~ (6)
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FIG. 1: Order parameter profiles ¢(r) and ¢y (with
qgkzo removed) obtained by minimizing free energy
density (Eq. [1]) with different choices of ¢. For (a)-(c),
the upper panels are density profiles, while the below
ones are the corresponding Fourier transforms. (a)
12-fold symmetric pattern for ¢ = 2 cos(7/12), (b)
10-fold symmetric pattern for ¢ = 2 cos(w/5), (c) 8-fold
symmetric pattern for ¢ = 2 cos(w/8), (d) 6-fold
symmetric crystal with two different length scales,
located at |k| =1 and |k| = ¢ (¢ #1).

As is shown in Fig.[] (a), the Fourier spectrum of this
structure consists of two stars of reciprocal vectors as
its principal Fourier components (red dots in Fig.[l] (a)).
Each star contains 12 vectors separated evenly by an an-
gle of 30°. The reciprocal vectors on the |k| = ¢ circle
are sums of two neighboring reciprocal vectors on the
|k| = 1 circle. The real space and Fourier space pro-
files of this structure clearly exhibit 12-fold rotational
symmetry. The structural parameter of the dodecago-
nal quasicrystal is in agreement with that of Lifshitz and
Petrich [27], where the dodecagonal pattern was obtained
with the same choice of q.

Decagonal Quasirystal (DQC) — The 10-fold sym-
metric quasicrystal is obtained when ¢ is set at ¢ =
2 cos(m/5), with a projection matrix specified by,

(1 cos(m/5) cos(2m/5) cos(3m/5)
S = (o sin(7/5) sin(2r/5) sin(3/5) ) (7)

Fig.[1] (b) gives the order parameter profiles of this phase
in the real space and Fourier space, both of which exhibit
the 10-fold rotational symmetry. The principal Fourier
components (red dots in Fig.[]] (b)) contain twenty recip-



rocal vectors, with ten vectors located on the circle of
k| = 1, and the other ten on the circle of |k| = ¢. Un-
like the dodecagonal quasicrystal, the reciprocal vectors
of the decagonal quasicrystal located on the |k| = ¢ and
|k| =1 circles are collinear.

It should be noticed that the decagonal quasicrys-
tal has the same diffraction pattern as the pentagonal
quasicrystal [40]. Therefore identification of the decago-
nal quasicrystal requires a detailed examination of the
Fourier coeflicients. For the LP free energy functional, it
has been found that the Fourier coefficients on a given cir-
cle are real and equal to each other (e.g. qi;k:1 = 0.7592,
br—q = 0.694 when ¢ = 100, o = 10.0 and ¢ = 0.5).
From this observation it can be concluded that the struc-
ture obtained from the calculations has a 10-fold symme-
try, corresponding to decagonal quasicrystal.

Octagonal Quasicrystal (OQC) — The third aperiodic
structure is the 8-fold symmetric octagonal quasicrystal
that is found by choosing g = 2 cos(7/8) and a projection
matrix,

(1 cos(n/4) cos(m/2) cos(3m/4)
S = (o sin(7/4) sin(m/2) sin(3m/4) ) (8)

As shown in Fig. (¢), the principal Fourier coefficients
of this structure compose of two 8-fold symmetric stars
of wavevectors on the |k| = 1 and |k| = ¢ circles. Similar
to the case of DDQC, the wavevectors located on |k| = ¢
circle are sums of the neighboring wavevectors located on
the |k| =1 circle.

Periodic Crystals — The projection method is used
to obtain periodic structures as local minima of the LP
free energy functional by setting the projection matrix
as a unit matrix. Due to the existence of two character-
istic length-scales in the LP model, two stable periodic
structures with the same symmetry but different lattice
spacings can be obtained [I7, 27, [41]. These structures
are termed sibling periodic crystals. When g # 1, a num-
ber of periodic phases with their sibling periodic crystals,
including two-dimensional 2-, 4- and 6-fold symmetric
patterns and a three-dimensional BCC phase, have been
obtained from our calculations. The basic Fourier vectors
of two sibling phases are located at the circles with radii
k| = 1, and |k| = ¢, respectively. For instance, Fig.
(d) presents the real densities and the distinct Fourier
spectra corresponding to two hexagonal sibling patterns.
Note that we only show one copy of the real density, since
those associated with sibling phases only differ in scale.

It should be noticed that the candidate structures ob-
tained from our calculations differ from that obtained
by Lifshitz and Petrich [27]. Specifically, Lifshitz and
Petrich reported that the DDQC could become an equi-
librium phase with ¢ = 2cos(w/12), whereas the OQC
or DQC were not obtained for any choice of g. This
difference can be attributed to the different numeri-
cal methods used in the calculations. In Lifshitz and
Petrich’s simulations, a pseudospectral algorithm is ap-
plied to a large square computational box with periodic

boundary condition. For a given quasicrystal, the peri-
odic computational domain is strictly determined by the
non-crystallographic rotational symmetry, yet still hav-
ing some approximate error [35, 42]. On the other hand,
the projection method employed in the current study re-
spects the symmetry of the quasicrystals strictly, leading
to a robust method to obtain quasiperiodic structures
numerically.

B. Relative Stability of Ordered Phases and Phase
diagram

For the LP free energy functional, three quasicrystals
and four periodic crystals (and their siblings) are ob-
tained as the candidate phases for the model system. The
relative stability of these phases is obtained by comparing
their free energies. A phase diagram in the e-« plane can
be constructed from the free energy comparison. In this
section we will examine factors influencing the relative
stability of the different phases first, and then present the
phase diagram of the system. The value of ¢ will affect
the stable areas of different phases. Our extensive cal-
culations for cases with different values of ¢ demonstrate
that the boundaries between different phases do change
with c. However the topological of the stable regions of
the different phases is insensitive to the c-values. There-
fore in what follows we will use ¢ = 100 as an example of
finite ¢, and examine the phase behaviour of the system
as a function of € and «. As a initial step in the study of
the phase behaviour of the system, we will examine the
relative stability of the sibling phases first. Results for
the other ordered phases are presented subsequently.

Relative Stability of Sibling Periodic Crystals — Sib-
ling periodic crystals are obtained by imposing the same
symmetry, but with different length-scales, on the initial
configurations of ¢(r). As an example, Fig. (d) shows
the real-space density profile and Fourier spectra of the
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FIG. 2: Free energy of the large hexagonal pattern H*
and the small hexagonal pattern H? as a function of «
for fixed € = 0.5, ¢ = 2 cos(w/5), and ¢ = 100.



hexagonal sibling phases. For convenience, the hexago-
nal structure with larger lattice spacing in the real space
is termed as H' (the middle figure in Fig.[]] (d)), and the
one with the smaller lattice spacing as H? (the right fig-
ure in Fig.[l] (d)). Fig.[2] shows the free energy density
(computed from Eq. (1)) of the hexagonal structures for
e = 0.5, ¢ = 2cos(n/5) as a function of o € [2.0,11.0].
It is observed that the free energy of H! is always lower
than that of H4. Our extensive calculations show that
for other choices of €, ¢ > 0 and g # 1, the free energy of
H! is always lower than that of H?. As c increases, the
free energy differences between the two hexagonal sib-
ling phases decrease. When ¢ — oo, the Fourier modes
with nonzero coefficients are constrained to be on the
circle with radius 1 or ¢. In this case the free energies
of the two hexagonal sibling crystals become equal. The
comparison of the free energy of the two sibling HEX
phases clearly demonstrate that the H' structure always
has lower free energy than the H? phase over the range
of model parameters used in our calculations.

For other sibling periodic crystals, such as the two-
dimensional patterns with 2-fold symmetry and the
three-dimensional BCC phases, we also find that the
phases with larger lattice spacing in the physical space
have lower free energy than the one with smaller lattice
spacings. Therefore, only the periodic phases with larger
lattice spacing may become equilibrium phases on the
phase diagram. In the following we will only consider
the phases with larger lattice spacing in the phase dia-
gram. In particular, we will term the hexagonal phase
H! in the phase diagram as the HEX phase.

Relative Stability of Quasicrystals and Periodic Crys-
tals — We now examine the relative stability of qua-
sicrystals and periodic crystals by comparing their free
energies in the e-a plane. In what follows we will treat ¢
as one of controlling parameters of the system, dependent
on the symmetry of ordered phases, that is chosen a pri-
ori. For the quasiperiodic phases, the choice of ¢ for the
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FIG. 3: The free energy differences from the value of
HEX of various structures as a function of o on the
phase path of fixed ¢ = —0.1 and ¢ = 100.

three two-dimensional quasicrystals of interest have been
given before. For the periodic crystals, different values of
q may affect the free energy of the sibling periodic crys-
tals. However, it will not significantly change the relative
stability of quasicrystals and periodic crystals, merely af-
fects the stability region. Therefore, in what follows we
set ¢ = 2cos(m/5) for periodic crystals.

From our calculations, it is found that the 4-fold sym-
metric pattern is always metastable. Therefore, this
structure is not included in the following analysis. The
candidate structures are therefore composed of the three
quasicrystals (DDQC, DQC and OQC), the HEX phase
and the BCC phase. Using the free energy of the HEX
phase as the baseline, the free energies of the DDQC,
DQC, OQC and BCC phases as a function of o are shown
in Fig.[3|with ¢ = —0.1. From the results shown in Fig.[3]
it is obvious that the OQC has higher free energy than the
other four candidate structures. Thus the OQC struc-
ture is a metastable phase of the system with the given
set of parameters. On the other hand, the other four
candidate structures (DDQC, DQC, HEX and BCC) can
become equilibrium phases with the lowest free energy.
Specifically, when the value of « is increased, the phase
transition sequence is predicted to be DDQC to BCC to
DQC to HEX. The corresponding stable regions of these
phases are o < 3.44 (DDQC), 3.44 < o < 9.76 (BCC),
9.76 < a < 11.35 (DQC), and « > 11.35 (HEX).

This predicted phase behaviour for finite ¢ is very dif-
ferent from that of infinite ¢ as given by Lifshitz and
Petrich [27]. For infinite ¢, it was predicted that only
the DDQC could become an equilibrium quasicrystalline
phase. This behaviour is justified by the fact that when
¢ — 400, the Fourier wavevectors of DDQC can form the
most triangles among the DDQC, DQC and OQC struc-
tures, thus decreasing the free energy of the DDQC struc-
ture. However, when c¢ is finite, more nonzero Fourier
modes arise away from the circles with radii 1 and q. The
higher-harmonic contributions to the free energy could
lower the free energy of the other quasicrystalline struc-
tures, resulting in the predicted phase behaviour from
the current calculations.

In order to analyze contributions to the free energy
from the different Fourier modes, it is informative to di-
vide the Fourier modes into two parts, i.e. fundamental
modes and higher-harmonics. The fundamental modes
are those Fourier modes with nonzero coefficients lying
on circles with radius 1 and ¢, and the higher-harmonics
are the other Fourier modes with nonzero coeflicients.
The fundamental part of energy is defined by the con-
tribution of the fundamental Fourier modes to the free
energy, while the higher-harmonic part of energy is the
remainder when subtracting the fundamental part of en-
ergy from the total energy. The fundamental part of en-
ergy can be calculated analytically using the two-mode
approximation method [I6} 27]. The analytic expressions
of the fundamental part of energy corresponding to var-
ious patterns is given in the Appendix.

Fig.[d] shows the fundamental and higher-harmonic
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FIG. 4: The difference of (a) fundamental modes energy
and (b) higher-harmonic energy of various patterns
from the corresponding part of HEX as a function of «
for fixed ¢ = —0.1 and ¢ = 100. The OQC is a
metastable along this phase path, therefore, its energy
difference is not shown.

contributions to the free energy for the DDQC, DQC
and BCC phases using the HEX phase as the baseline.
The free energy of the OQC structure is not included here
since the OQC is always a metastable phase of the model
system (see Fig.[3). From Fig.[4] (a), it can be concluded
that the DDQC is favoured by the fundamental modes
because it has the largest number, 24, of nonzero Fourier
modes located on the circles with radii of 1 and ¢, thus
forming the most triangles in the Fourier space. On the
other hand, since the energy penalty factor c is finite, the
higher-harmonics cannot be ignored. As Fig.[d] (b) shows,
these higher-harmonics have large impacts on the free en-
ergy of the system. HEX has the lowest higher-harmonics
contribution to the free energy, since its Fourier modes
with nonzero coefficients form the least tetragonal inter-
action. It can be observed from Eq. that the four-
body interaction or the quartic term increases the free en-
ergy. Meanwhile, the differential term is no longer zero,
which increases the energy. Due to the competition of
the fundamental modes and higher-harmonics, the sta-
ble phases are DDQC, BCC, DQC and HEX patterns as

« increases.
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FIG. 5: The free energy differences from the value of
HEX as a function of « for fixed € = 0.5 and ¢ = 100.

To further understand the influence of the higher-
harmonics on the stability region of various phases, we
set € = 0.5 and examine the contributions to the free en-
ergy as a function of a. In this case, the quadratic and
cubic terms in Eq. [d] decrease the free energy since £ > 0,
while the quartic terms still increase the free energy. The
free energy differences as a function of « € [2.0,11.0] are
plotted in Fig.f] For this set of parameters, the HEX,
BCC and DQC structures form the possible equilibrium
phases, whereas the DDQC and OQC structures become
metastable. The stability regions of the BCC and DQC
phases are 3.67 < a < 6.38 and 6.38 < o < 10.75, re-
spectively. Compared to the previous discussion for the
case of ¢ = —0.1, the stability region of the BCC struc-
ture becomes smaller. An interesting phenomenon is the
reentrance transition of the HEX phases, in which its sta-
bility regions, a < 3.67 and a > 10.75, are separated by
the BCC and DQC phases. Moreover, the HEX phase in
these two regions share the same lattice spacing.

Similar to the case of e = —0.1, the contributions to the
free energy from different Fourier modes can be used to
understand the phase behavior (see Fig.@. As is noted
before, since the fundamental Fourier modes of DDQC
and BCC structures can form more triangles than that of
the HEX phase, the DDQC and BCC phases have lower
free energy from the fundamental modes, as shown Fig.[f]
(a). However, the free energy differences in both funda-
mental and higher-harmonic parts between the DQC and
HEX phases exhibit non-monotonic behaviour. Specifi-
cally, when « is small, HEX has lower energy value in
the fundamental part. As « increases, DQC becomes
more favoured. When « is large enough, HEX has lower
free energy again. From Egs. (A2) and (A4), we find
that DQC has more two-, three- and four-body interac-
tions in the fundamental part of energy than the HEX
does. More precisely, when « is small, the sum of the
cubic terms in the energy expression of DQC is smaller
than that of the HEX, and the sums of the quadratic and
quartic terms are larger than the counterparts for HEX.
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Therefore, when « is small, the quadratic term domi-
nates the free energy; HEX thus has lower free energy
than the DQC. As « increases, the cubic term becomes
important in F1,p, and thus DQC has lower energy in the
fundamental part. When « is sufficiently large, the value
of cubic and quartic terms of DQC becomes comparable
with the HEX (results not shown). Thus the difference in
the quadratic terms dominates the difference of the free
energy in this case. Therefore, HEX becomes favored
in energy again. The energy differences in the higher-
harmonic part are given in Fig.[f] (b). The DDQC and
BCC phases have relatively high energy as before. The
energy difference between DQC and HEX has the sim-
ilar behavior with the fundamental part, which can be
explained in a similar way. Therefore, as a increases, the
phase transition occurs in the sequence of HEX, BCC,
DQC, and HEX.

The phase transition sequence for other values of &
can be obtained by repeating the free energy comparison
among the candidate structures. The results of the phase
transition sequences can be summarized in terms of phase
diagrams in the e-a plane. For a fixed value of ¢ = 100,

0 05 1 15
€

FIG. 7: Phase diagram of the LP model with ¢ = 100.
LAM and D represent the 2-fold pattern and disordered
phase, respectively. For DDQC and DQC, the structural

parameter g equals to 2 cos(m/12) and 2 cos(n/5),
respectively. For periodic crystals, ¢ = 2 cos(7/5).

the phase diagram in the range of —0.3 < ¢ < 1.5 and
0 < a < 12 is presented in Fig.[7] for the LP free energy
functional. Besides the DDQC, DQC, OQC, HEX and
BCC phases discussed above, two more phases, the 2-fold
symmetric pattern, or the lamellar phase (LAM), and the
disordered phase (D) are included in the phase diagram.
The regions of stability of the different phases are ob-
tained by comparing the free energy of these seven can-
didate structures. The phase boundaries are determined
by calculating the cross over point of the free energies
of the two neighbouring phases. Because the contribu-
tion from the higher-harmonics becomes significant for
the cases with finite values of ¢, the predicted phase dia-
gram from the current study includes more features when
compared with the previous phase diagram obtained from
the analytic calculation using the two-mode approxima-
tion [27].

In the previous work, Lifshitz and Petrich used the
two-mode approximation method [I6] to analytically an-
alyze the phase behavior of the LP model when c is suffi-
ciently large. It is found that when ¢ = 2 cos(n/12) and
¢ — 400, the LAM phase is stable for ¢/a? > 1.91313;
the HEX phase has the lowest energy for 0.08776 <
g/a? < 1.91313; and the DDQC is stable for £/a? <
0.08776. While the generic feature of the phase diagrams
is maintained, there are significant differences between
the analytic phase diagram and the numerical result pre-
sented in the current work, which contains more features
by taking higher-harmonics into account. The first no-
ticeable difference is that the current phase diagram in-
cludes the DQC as a new equilibrium quasicrystal phase,
whereas the previous phase diagram only contains the
DDQC as the unique stable quasicrystalline phase. It is
interesting to notice that the DQC-HEX phase boundary
possess a special turning point at (e,a) = (1.32,8.46).
Increasing o at € < 1.32 leads to a reentrance transi-



tion of the HEX phase. Another interesting feature is
the prediction of a triple point at (e,a) = (0.85,5.9),
at which the BCC, DQC and HEX phases coexist. The
OQC is only observed as a metastable phase, which is
in agreement with the analytic result by two-mode ap-
proximation. Moreover, a three-dimensional phase with
spheres packed on a body-centred-cubic lattice (BCC) is
included in the current phase diagram.

IV. SUMMARY

In summary, we have applied the projection method
to obtain quasicrystalline structures as possible local
minima of the LP free energy functional. The pro-
jection method enables accurate numerical calculations
of the free energy of the quasicrystals, resulting in a
phase diagram with more accurate phase boundaries
and, most importantly, more ordered phases as com-
pared with the previous study. Specifically, three two-
dimensional quasiperiodic patterns, namely the OQC,
DQC and DDQC structures, and several periodic phases
(LAM, HEX and BCC) emerge from our calculations as
candidate structures for the construction of the phase di-
agram. By comparing the free energy of the candidate
structures, a phase diagram for the case of ¢ = 100 is ob-
tained in the e-« place. It is predicted that for the LP free
energy function given in Eq the 10-fold (DQC) and 12-
fold (DDQC) symmetric quasicrystals can become equi-
librium phases in the phase diagram. On the other hand
the 8-fold (OQC) symmetric quasicrystal is found to be a
metastable phase of the model system. The prediction of
a stable DQC phase within the LP free energy functional
is a new result. The present study complements and ex-
tends the previous work of Lifshitz and Petrich [27].

The two-mode approximation provides an accurate de-
scription of the LP model at the limit of ¢ = +o0, at
which the wavevectors are forced to be on two circles de-
fined by |k|] = 1 and |k| = ¢. A finite value of ¢, as
exemplified by the case of ¢ = 100, allows the occurrence
of higher-harmonics other than the modes with |k| = 1
and |k| = ¢. The additional Fourier modes lead to phase
diagram at finite ¢ that is significantly different from the
phase behavior of the case of ¢ = +o00. In particular,
the quasicrystalline phases DQC, DDQC, the lamellar
phase, HEX and BCC phase are predicted to be poten-
tially stable phases for the LP free energy functional.
These results provide a good understanding of the rich
phase behaviour contained in the simple LP model. The
numerical methods and insights obtained from them can
be helpful for further studying more complex soft matter
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systems such as block copolymers and soft particles with
multi-length-scale interactions.
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Appendix A: Free Energy of fundamental Fourier
Modes

In the two-mode approximation valid in the limit of
¢ = +oo, the Fourier modes are restricted to the two
circles defined by |k| = 1 and |k| = ¢. Keeping only
the Fourier coefficients at |k| = 1 and |k| = ¢, the free
energy of the system can be obtained analytically. The
analytic expressions of fundamental energy (which has
been defined in Section of different patterns are
given as follows.

Fopqe,r = — 6e(¢? + éﬁi) — 240(d g + q31<z3§)

—8a(d} + ¢3) +99(41 + 1)
+ 144193 + ¢ g) + 3609362,

(A1)

FpqoL = — 5e(d + 53) - 200&((2)%‘1 + éléi)

(084 + 888, + 280 + 85165+ 99%),

(A2)
Foqe,L = — 4¢(6? + 453) — 16a¢i¢, A3)
+6(791 + 240302 + 767),
22 g 454y
Fuex,L = —3e¢7 — dagy + R4k (A4)
FpcoL = —12e¢? — 16a¢? + 13544, (A5)

where qAbl, (qu € R stand for the Fourier coefficients on the
circles of 1 and ¢, respectively.
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