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Feedback control schemes are a promising way to manipulate transport properties of driven col-
loidal suspensions. In the present article we suggest a feedback scheme to enhance the collective
transport of colloidal particles with repulsive interactions through a one-dimensional tilted wash-
board potential. The control is modelled by a harmonic confining potential, mimicking an optical
“trap”, with the center of this trap moving with the (instantaneous) mean particle position. Our
theoretical analysis is based on the Smoluchowski equation combined with Dynamical Density Func-
tional Theory (DDFT) for systems with hard-core or ultra-soft (Gaussian) interactions. For either
type of interaction we find that the feedback control can lead to an enhancement of the mobility by
several orders of magnitude relative to the uncontrolled case. The largest effects occur for interme-
diate stiffness of the trap and large particle numbers. Moreover, in some regions of the parameter
space the feedback control induces oscillations of the mean velocity. Finally, we show that the
enhancement of mobility is robust against a small time delay in implementing the feedback control.

PACS numbers: 05.60.Cd, 05.10.Gg, 02.30.Yy, 47.57.J-

I. INTRODUCTION

The manipulation of colloidal transport properties
with feedback mechanisms has become an active topic
of research in recent years. Examples include the im-
provement of the net current in one-dimensional ratchet
systems [1–4], the transport of interacting particles in a
tilted washboard under Pyragas control [5, 6], the sorting
of colloids in a micro-fluidic channel [7], and the adjust-
ment of viscosity of a sheared colloidal suspension [8].
Further, feedback control has become an important con-
cept in (bio-)particle trapping [9–14], reaction-diffusion
systems [15], quantum transport [16–18], laser dynamics
[19], and brain dynamics [20, 21]. An essential factor sup-
porting the development of and theoretical research on
feedback control strategies is the recent major progress
of corresponding experimental techniques, among them
the monitoring and steering of colloids [10, 12, 22] and
biomolecules [23], and preparation and non-destructive
(weak) measurement of quantum states [24].

Within colloidal transport, most of the feedback stud-
ies so far involve single particles [11, 25, 26] or dilute
suspensions [1, 3], i.e., systems of non-interacting par-
ticles. We note that, even in this idealized situation,
feedback can induce effective interactions if the protocol
involves system-averaged quantities [27]. For many real
colloidal systems, however, direct interactions between
the colloids stemming e.g., from excluded volume effects,
charges on the particles’ surfaces, or (solvent-induced)
depletion effects cannot be neglected. First studies of
feedback control in presence of colloidal interactions in-
dicate indeed complex dynamical scenarios. An example
was considered in Refs. [5, 6], where a Pyragas-type con-
trol of colloidal transport in one dimension resulted in
current reversal and oscillatory states.

In the present work we explore the transport of in-
teracting (repulsive) colloids in presence of a feedback-

controlled harmonic “trap”. Indeed, trap-like devices ap-
pear as a standard tool to implement feedback, both in
experiments (see, e.g., [1, 9, 10, 12, 14, 28]) and in theory
[25]. A prominent example is an optical laser tweezer act-
ing on polarizable colloids. The corresponding trap po-
tential can be modelled as a quadratic function in space
[14, 29, 30].

In conventional applications the position of the center
of the trap acting on the colloidal particle(s) is either
constant in space, or it moves in an externally prescribed
manner [29, 31, 32]. In contrast to these situations (which
are termed “open-loop” in control theory), we here con-
sider a harmonic trap whose center coincides with the
mean position of the particles. Thus, the trap potential
depends on the particle’s position, yielding a feedback
scheme.

As a model system to demonstrate the principle of this
feedback control we consider the paradigm example of
colloids driven through a one-dimensional, spatially oscil-
lating, tilted “washboard” potential with energy barriers
much larger than the thermal energy. Already without
feedback or any trap potential these (overdamped) sys-
tems show interesting effects such as absolute negative
mobility [33] or enhancement of diffusion at a certain
“critical” force [34, 35]. Many single-particle transport
properties in washboard potentials can be derived analyt-
ically [36–39]. Further, recent numerical studies indicate
interesting interaction-induced transport phenomena, ex-
amples being coherent motion of attractively interact-
ing particles [33, 34, 40], density excitations in Frenkel-
Kontorova models [41], or single file diffusion [35]. Given
this background, one may expect that the interplay of
external potentials, particle interactions, and feedback
yields exciting additional effects. Our study shows that
this is indeed the case.

Specifically, we consider particles with either (in-
finitely) hard or soft (Gaussian) repulsion, the latter de-

ar
X

iv
:1

50
6.

01
84

6v
1 

 [
co

nd
-m

at
.s

of
t]

  5
 J

un
 2

01
5



2

scribing polymeric particles in a coarse-grained fashion
[42, 43]. The feedback control is implemented on the
level of the Smoluchowski (overdamped Fokker-Planck)
equation, in which the particle interactions are treated
via Dynamical density functional theory (DDFT) [44].
Our numerical results demonstrate that the feedback-
controlled trap in conjunction with particle interactions
can lead to a drastic increase of the mobility by orders of
magnitude. Loosely speaking, the particles “help to push
each other over the energy barrier”. This phenomenon
is accompanied by a freezing of the width of the den-
sity distribution (thus opposing normal diffusion), and to
time-periodic oscillations of the mean velocity not seen
in the uncontrolled case.

In the major part of our study we assume instanta-
neous feedback. This is clearly an idealization given the
fact that, in an experiment with feedback control, there
is always one (or several) time delay(s) due to measure-
ment, information processing, and implementation of the
forcing [45]. However, the time delay of modern exper-
imental feedback techniques for colloids [1, 10, 13, 46]
is much smaller than the time scale of particle motion,
justifying the approximation of instantaneous feedback.
Still, to estimate the effects we also consider briefly the
impact of time delay.

The remainder of this paper is organized as follows.
After the introduction of the theoretical background in
Sec. II, we discuss in Sec. III the effect of feedback on a
single particle. In the limit of vanishing washboard po-
tential the transport can here be calculated analytically.
The full problem is discussed in Sec. IV, where we present
the main results. A conclusion is given in Sec. V.

II. MODEL

We consider the motion ofN interacting Brownian par-
ticles in one dimension under the influence of the exter-
nally imposed, tilted washboard potential

Vext(x) = u(x)− xF , (1)

where u(x) = u0 sin2(πx/a). In Eq. (1), F denotes a con-
stant driving force, and a and u0 denote wavelength and
amplitude of the periodic potential u(x), respectively. On
the particle level, the motion is described by the N cou-
pled, overdamped Langevin equations

γẋi(t) =− u′(xi) + F + f inti (x1, . . . , xN )

+ fDF
i (x1, . . . , xN ) +

√
2kBTγ ξi(t) (2)

for the position xi(t) of the ith particle [36]. In Eq. (2),
the friction constant is denoted by γ, Boltzmann’s con-
stant by kB, the temperature by T , and the ξi(t) are
independent random numbers chosen from a Gaussian
distribution with zero mean and unit variance. Fur-
ther, f inti represents the force due to interaction be-
tween particle i and other particles j, that is f inti =

−∂/∂xi
∑
j 6=i v(xi, xj) and fDF

i is the force due to feed-
back control, where DF stands for dynamic freezing.
These forces are specified below.

In the present study we rather describe the motion
in terms of the space- and time-dependent one-particle
density [44, 47]

%(x, t) =

〈
N∑
i=1

δ(x− xi(t))
〉
, (3)

where 〈. . . 〉 denotes an average over all realisations of the
random force ξi(t). The density is normalized according
to
∫

dx %(x, t) = N . The time evolution of %(x, t) is gov-
erned by the extended Smoluchowski equation

∂t%(x, t) =
kBT

γ
∂xx%(x, t) +

1

γ
∂x (%(x, t)∂x[Vext(x)

+VDF(x, %) + Vint(x, %)]) , (4)

where the impact of particle interactions and of feedback
control enters via the potentials Vint and VDF, respec-
tively. Specifically, to treat the particle interactions we
employ the concepts of Dynamical Density Functional
Theory (DDFT) [44, 48, 49]. In this framework,

Vint(x, %) =
δFint[%]

δ%(x, t)
, (5)

where Fint[%] is the interaction part of an equilibrium free
energy functional and δ/δ% denotes a functional deriva-
tive. Equation (5) implicitly contains an adiabatic ap-
proximation, i.e., the assumption that non-equilibrium
correlations, at each time t, can be replaced by those of
an equilibrium system with density %(x, t).

We consider two types of interacting systems, that is,
ultra-soft particles described by the Gaussian core model
(GCM) and hard particles. The pair interaction potential
according to the Gaussian core model reads

vGCM(xi, xj) = ε exp

(
− (xi − xj)2

σ2

)
. (6)

This potential has been introduced as a coarse-grained
(center-of-mass) potential between two fluctuating poly-
mer chains, with the particle diameter σ being propor-
tional to the polymers’ radius of gyration [42, 43, 50].
To incorporate the GCM interactions into the dynami-
cal equation (4), we employ the mean-field free energy
functional

FGCM
int [%] =

1

2

∫
dxdx′ %(x, t) vGCM(x− x′) %(x′, t) . (7)

This functional has been proven to give a reliable descrip-
tion of the equilibrium structure of the GCM, particu-
larly at intermediate and high densities [51]. Combining
Eq. (7) and (5), we obtain

V GCM
int (x, %) =

∫
dx′ %(x′, t) vGCM(x− x′) . (8)
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Hard particles with diameter σ are described by the
interaction potential

vhard(xi, xj) =

{
0 , for |xi − xj | ≥ σ
∞ , for |xi − xj | < σ

. (9)

For one-dimensional systems of hard spheres there exists
an exact free energy functional [52]

Fhard
int [%] = −1

2

∫
dx ln

(
1−

∫ x+σ/2

x−σ/2
dx′ %(x′, t)

)
×[%(x+

σ

2
, t) + %(x− σ

2
, t)] , (10)

The free energy (10) corresponds to the one-dimensional
limit of fundamental measure theory [53].

We now turn to the modelling of feedback control. To
this end we use the potential

VDF(x, %) = η(x− 〈x〉)2 , (11)

where

〈x〉(t) =
1

N

∫
dxx %(x, t) (12)

is the time-dependent mean particle position. Thus,
Eq. (11) describes a moving harmonic trap centered
around the mean position, resembling the potential
seen by particles in moving optical traps [14, 29]. The
strength of the harmonic confinement, η, is set to con-
stant. Since VDF depends on 〈x〉(t) and, thus, on the
dynamical state of the system, it corresponds to a true
feedback control. This is different from an “open-loop
controlled” moving trap, where 〈x〉 in Eq. (11) would be
replaced by a position moving with fixed velocity v0.

We also note that the fact that our feedback control
is coupled to a ensemble averaged quantity is in con-
trast to other feedback mechanisms which are based on
individual particle positions [45]. At the level of the
Langevin equation (2) our feedback control force reads
fDF
i (xi, 〈x〉) = 2η(xi − 〈x〉(t)). Thus fDF

i only depends
on a single coordinate, xi, and on 〈x〉. This differs from
other feedback control approaches where the feedback
force itself depends on the number of particles [3, 27, 45].

III. SINGLE-PARTICLE TRANSPORT

To understand the basic properties of the effect of
the feedback control Eq. (11) we first discuss the single-
particle case (N = 1,Fint = 0) without the periodic po-
tential (u0 = 0). In this case Eq. (4) reduces to the one-
dimensional Smoluchowski equation

γ∂t% = kBT∂xx%+ ∂x(%(V ′DF − F )) . (13)

A main quantity characterizing the transport is the mean
particle position 〈x〉, defined in Eq. (12), as function of

time. Solving Eq. (13) analytically with the initial con-
dition %(x, t=0) = δ(x− x0) yields

〈x〉(t) =
F

γ
t + x0 . (14)

Equation (14) shows that the mean particle position does
not depend on the confinement strength η. This can also
be seen by applying the coordinate transformation x′ =
x − vt to the Smoluchowski equation Eq. (13), setting
v = F/γ. With this transformation the term ∂x(%F )
vanishes. Further, the force related to VDF is invariant
with respect to this transformation. Hence, the influences
of F and η decouple. From Eq. (14) we calculate the
mobility

µ := lim
t→∞

∂t〈x〉
F

(15)

=
1

γ
, (16)

which only depends on the friction constant γ. We will
refer to this value of µ as the mobility of free motion.

A further quantity of interest is the mean squared dis-
placement

w(t) = 〈(x− 〈x〉)2〉 . (17)

To calculate w(t) we use 〈VDF〉 = ηw [cf. Eqs. (11) and
(13)] which yields

w(t) =
kBT

2η

(
1− e−4ηt/γ

)
. (18)

For short times w(t) growths linearly with time, corre-
sponding to diffusive behaviour. For long times diffusion
is suppressed: w(t) approaches a limiting value deter-
mined by η. Interestingly, a similar behaviour of w(t) oc-
curs in a model of feedback control of quantum transport
[17]. There, the fluctuations of the number of electrons
tunneling through a quantum junction are suppressed
with a feedback control force, which is linear in the fluc-
tuation of the number of electrons. This corresponds
to our harmonic confinement of the density fluctuation,
and indeed, the two physically different situations are de-
scribable by a formally identical Smoluchowski equation
[54].

We now turn to the system in presence of the poten-
tial u(x), defined below Eq. (1). In the single particle
case (N=1,Fint =0) Eq. (4) then reduces to the Smolu-
chowski equation

γ∂t% = kBT∂xx%+ ∂x(%(V ′DF + V ′ext)) . (19)

Without control (η=0) Eq. (19) describes the thoroughly
studied case of a Brownian particle in a washboard po-
tential, where the mobility, as well as the long-time dif-
fusion constant, are accessible analytically [36, 37, 55].
From that it is known that the mobility is very small if
u0 � kBT and if the driving force F is smaller than the
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FIG. 1. Single particle transport through a potential with
wavelength a = 2.5σ. (a-c) Density plots (black, left axis) and
potential VDF + u (grey, right axis). The time t is (a) 105τB
and (b,c) 104τB where the Brownian time τB = σ2γ/(kBT ).
Part (d) shows the mean particle position with respect to
time for different η. For strong confinements an oscillatory
behaviour emerges.

so-called critical force Fc = u0π/a, related to the diffu-
sion maximum [37] (for F > Fc the potential minima
vanish). Otherwise the mobility is large, in particular it
approaches 1/γ for u0/F → 0. The goal of our study is
to enhance the mobility in the regime of deep wells.

A. Numerical Results

To explore the single particle transport for finite η and
Vext 6= 0 we solve Eq. (19) numerically, choosing u0 =
15kBT and F = 0.2Fc. As initial condition we choose
the equilibrium (Boltzmann) distribution corresponding
to the case F = 0

%(x, 0) = exp
(
−(η x2 + u(x))/kBT

)
/Z , (20)

where Z is a normalisation constant.
Figures 1(a-c) show plots of the one-particle density

%(x, t) for three values of η. As expected for a trap, the
width of the density distribution becomes the smaller the
larger η. Figure 1(d) shows additionally the mean parti-
cle position with respect to time. Interestingly, we find
that at large values of η, oscillatory solutions emerge.
At the corresponding values of η the confinement is so
strong that the particle is confined to a single well of the
periodic potential, cf. Fig. 1(c).

We explain the occurrence of oscillations as follows.
We take a view on the beginning of one step of an oscil-
lation at time t = 104τB for η = 1kBTσ

−2 [cf. Fig. 1(d)].
The potential VDF + u at this time, shown in Fig. 1(c)
as grey shade, shows that the particle is localized at a
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FIG. 2. Velocity v(t) (a) and width w(t) (b) as function of
time for different confinement strengths η for a = 2.5σ. Os-
cillatory solutions are characterized by sharp peaks. (c) Am-
plitude ∆v and period T of the velocity as function of η for
a = 2.5σ. Data points are shown only for values of η where
we find oscillations. The dashed line indicates the time 1/rK
where rK is Kramers’ rate.

minimum of VDF + u. As time progresses, the constant
driving force causes the diffusion of the particle to the
next minimum. This leads to a slow increase of the mean
particle position 〈x〉. Then, the feedback control which
moves with 〈x〉, lowers the energy barrier, and steadily
accelerates the diffusion through the barrier. This leads
to a fast motion until the particle arrives in the next well.
The next oscillation then starts again with slow diffusion
over the next barrier. The repeated cycle of motion con-
sisting of slow and fast portions is particularly visible in
the velocity

v(t) =
d

dt
〈x〉(t) , (21)

and the width w(t) which are plotted in Figs. 2(a) and
(b), respectively. Notice that w(t) oscillates around a
constant value, reflecting that the width of the distribu-
tion stays finite even at large times (“dynamic freezing”).

We analyse the occurrence of these oscillations nu-
merically in terms of period T and amplitude ∆v =
(vmax − vmin)/2 of velocity, shown in Fig. 2(c). The val-
ues vmax and vmin are the global maximum and minimum
of v(t)|t>t1 , respectively, where t1 is a time after the dis-
appearance of transients. From Fig. 2(c) we find that
oscillatory solutions occur in a range of intermediate η.
In that range the amplitude ∆v increases with η from
nearly zero to large values. Furthermore, the period T of
oscillations roughly coincides with the inverse Kramers
rate, which is the relevant time scale for the slow barrier-
crossing mentioned before. As we see in Fig. 1(d), the
regime of pronounced oscillations partly coincides with
a “speed up” of the motion. We quantify this “speed
up” via an average mobility based on the time-averaged
velocity

v̄ =
1

T

∫ t1+T

t1

dt v(t) (22)
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FIG. 3. (Color online) Single particle transport: Mobility
µ in dependence on η for a = 2.5σ. The mobility is scaled
by the mobility µ0 of uncontrolled diffusion in a washboard
potential. The feedback control can enhance the mobility by
up to ≈ 20%. Inset: Potential VDF(x, t = 0) + u(x) for the
three values of η which are indicated by crosses in µ(η).

such that

µ =
v̄

F
. (23)

Figure 3 shows µ/µ0 depending on η, where µ0 ≈ 1.2 ×
10−4/γ is the mobility of the uncontrolled system (η=0)
with the same external potential [36, 55]. For small η,
we find µ ≈ µ0. The remaining deviation is presumably
a numerical issue because, by definition, limη→0 µ = µ0.
At intermediate values of η the mobility shows a global
maximum which lies above µ0. From comparison with
Fig. 2(c) we see that the maximum of µ(η) lies in the
range of η where the oscillation periods of v(t) are about
(in fact, somewhat smaller) than the inverse Kramers
rate [36, 39]. Quantitatively, the maximal enhancement
of mobility of ≈ 20.4% is reached at η ≈ 0.96kBTσ

−2.
For even larger values of η a sharp decrease of the mo-
bility to zero is observed – the motion comes to a halt.
To investigate this phenomenon we first note that the
motion is always oscillatory (for these large η) as long as
there is transport at all [compare Figs. 3 and 2(c)]. From
the explanation of the oscillations above, we recall that
the oscillation period is determined by the slow diffusion
process over the energy barrier. The inset of Fig. 3 shows
the potential VDF(x, t=0)+u(x) for three values of η. To
ignite transport the particle must diffuse from the cen-
tral valley at x= 0 to the next valley at x ≈ 2.5σ. The
larger η the larger the energy barrier. Thus, the larger
η the smaller the probability that the particle diffuses to
the next valley, the longer the period of the oscillations,
and the lower the mobility. For η = 3kBT/σ

2 there is
no motion at all in the time range of our calculations
(t ≤ 105τB).

Finally, we note that for single-particle transport the
actual value of a is essentially arbitrary because a only
determines the scales of time, density, and confinement
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FIG. 4. Single-particle transport in presence of the open-
loop potential Vopenloop [see Eq. (24)] with η = 1kBTσ

−2 and
v0 = F/γ at t = 100τB and a = 2.5σ. Black line: one-particle
density %(x, t). Grey shade: potential Vopenloop + u.

strength, not the qualitative behaviour.

B. Comparison with open-loop control

To estimate the benefit of the feedback control scheme
over the more established open-loop control, we briefly
discuss the motion of a single particle under the potential

Vopenloop(x, t) = η (x− v0t)2 , (24)

where v0 is a constant velocity of the trap. Choosing v0
equal to the mean velocity v̄ of the feedback controlled
system, one observes the same general behaviour, but
slight variations of oscillation frequency and amplitude.
Large values v0 > v̄ lead, by construction, to a fast trans-
port, but the particle is no longer located in the center
of the trap. We can see this from Fig. 4 which shows
the one-particle density for the velocity v0 = F/γ [corre-
sponding to free motion, see Eq. (14)] and the effective
trap generated by the potential Vopenloop+u. In a real op-
tical trap a large distance of the particle position to the
center of the trap implies a large probability to escape
[9, 14]. Hence, driving the particle too fast implies the
risk of losing the particle completely. On the other hand,
being too cautious and driving the particle too slowly
is inefficient. Thus, the optimal velocity is difficult to
predict in open-loop control. The feedback control auto-
matically finds the optimal driving speed without taking
the risk of losing the particle. Furthermore, the feedback
control does not influence the direction of motion, it only
enhances the absolute value of the mobility.
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IV. MANY-PARTICLE TRANSPORT

We now turn to interacting systems, as described by
the SE (4) with Eq. (8) for ultra-soft particles and
Eq. (10) for hard particles. There are now two relevant
length scales, the wavelength of the periodic potential,
a, and the particle diameter σ. Hence, the wavelength a
is not just a scaling factor, as it was the case in single-
particle transport. In addition, the number of particles
N will play a role because the equations are now non-
linear in %. In our numerical calculations, we set the
ultra-soft particles’ interaction strength ε appearing in
Eq. (8) to ε = 4kBT . The hard-particle interaction has
no parameter besides σ. The initial condition is set to
the equilibrium density resulting at F = 0.

In the following we study motion of clusters of inter-
acting particles for various trap strengths η, numbers of
particles N , and dimensionless wavelengths a/σ.

A. General behaviour

The overall goal is to explore whether particle inter-
actions enhance the efficiency of our feedback control in
terms of the mobility. Before we start with the analy-
sis of the mobility we want to give an impression of the
general behaviour of our interacting systems.

We begin our study of the three-dimensional parame-
ter space (N, η, a) with small N and small η. In Fig. 5(c)
we present a plot of the density profile and the potential
VDF + u at η= 0.01kBTσ

−2, N = 4. In fact, the density
profiles shown in Fig. 5(c) and Fig. 1(a) are very similar.
Similarities to the single-particle case vanish gradually
if N or η (or both) are increased (at constant a), yield-
ing larger values of the density in the trap. To describe
the effect of these changes in density, we consider the
effective potential Vint that one particle experiences due
to the interaction with the other particles. The value
of Vint at a position x increases with the corresponding
densities %(x′), x′ ≈ x. Particularly large values of both,
%(x) and Vint(x), occur at the minima of VDF + u. As a
consequence, the potential VDF +u+Vint, which governs
the motion (together with the constant driving force), is
characterized by smaller energy barriers than VDF + u.
Loosely speaking, Vint fills the valleys of VDF + u [see
Fig. 5(b)]. For high densities, the hard particles form a
“chain” and the ultra-soft particles form a cluster which
is characterised by mutual overlap. In this dense situa-
tion the contribution of Vint to VDF + u + Vint can be-
come so large that u becomes negligible. Thus, there are
no hindering energy barriers any more. For both inter-
acting systems, ultra-soft and hard particles, we actually
find this case. Fig. 5(a) shows the hard particle case as
example. The potentials plotted in Fig. 5(a) show that u
in fact is a minor contribution to VDF +u+Vint. We con-
tinue the discussion of parameter variations with focus
on the mobility in Sec. IV B.

Similar to the single-particle case, we find oscillatory
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FIG. 5. (Color online) One-particle density %(x, t) on the
left axis (black lines) and the potentials VDF, u, and Vint on
the right axis. The parameters show (a) the case where u
is suppressed, (b) the decrease of barrier height by interac-
tion, and (c) the low-η/low-N regime. In detail, (a) shows
N = 10 hard particles forming a chain in a narrow trap
(η = 10kBTσ

−2, a= 2.5σ) at t= 28.9τB, (b) N = 4 hard par-
ticles forming a loose chain in an moderately narrow trap
(η= 0.7kBTσ

−2, a= 2.5σ) at t= 985τB, and (c) N = 4 ultra-
soft particles in a wide trap (η = 10−2kBTσ

−2, a = 2.5σ) at
t=105τB.

solutions in the range of intermediate to large η. For
a representative system (N = 4 hard particles), Fig. 6
summarises different characteristics of the oscillations in
terms of width w(t), velocity v(t), and plots of the density
for four times during one oscillation period. The oscilla-
tion period is of the order of τB which is much shorter
than the oscillation periods of several 103τB we observed
in the single-particle case [see Fig. 2(b)]. From Fig. 6 we
see that these oscillations are intimately related to con-
figurational changes while the particle chain moves over
a distance of about one wavelength a. Studying v(t) for
different η, see Fig. 7, we find that a couple of different
oscillation patterns emerge. Moreover, the oscillations’
frequency rises with the mean of the velocity itself. This
can be explained with the observation that the particles
move one wavelength a during one period. Note that the
maximal amplitude of oscillation neither coincides with
largest η nor largest mean velocity.

B. Mobility

We now turn to the mobility, as a measure of the effi-
ciency of feedback control. We define the mobility µ in
the same way as in the single-particle case via Eq. (23).
Figures 8 and 9 show µ in dependence of η for ultra-soft
and hard particles, respectively.
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FIG. 6. (a) One-particle density %(x, t) for N = 4 hard par-
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over time, respectively.
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FIG. 7. (Color online) Velocity v(t), Eq. (21), for N = 10
hard particles at a = 2.5σ for a broad range of η. The ve-
locity 3.7698σ/τB = F/γ corresponds to the velocity of free
motion under the force F . This value is reached at large η.
Oscillations occur for η ≥ 0.03kBTσ

−2.

For a > σ we observe an extreme growth of µ with η
and N over several orders of magnitude for both parti-
cle species. We explain this behaviour with the corre-
sponding decrease of the height of the energy barriers in
VDF + u + Vint, which results in a larger diffusion rate
and a faster transport. The same effect was observed in
a study of the transport of super-paramagnetic colloids
[56]. For certain η and N , µ increases even up to the max-
imal possible value µ = 1/γ, the mobility of free motion.
An example for this large mobility is the case of N = 10
hard particles at η = 10kBTσ

−2, shown in Fig. 5(a). In
this case, there are no hindering energy barriers (as we
have analyzed in Sec. IV A) which then results in the high
mobility. To achieve this suppression of u the well cre-
ated by the trap potential must be very deep, i.e. 300kBT
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FIG. 8. (Color online) Mobility µ for ultra-soft particles in
dependence of η. Given that enough particles contribute, the
mobility can rise to 1/γ, the mobility of free motion. The
thick line indicates the mobility in the uncontrolled case. Re-
sults from Fig. 3 are included with the notation N=1.
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FIG. 9. (Color online) Mobility µ for hard particles in de-
pendence of η. The mobility reaches 1/γ, the mobility of
free motion, if enough particles contribute. The thick line in-
dicates the mobility in the uncontrolled case. Results from
Fig. 3 are included with the notation N=1.

for the exemplary case shown in Fig. 5(a). This value ex-
ceeds those in typical experiments with light fields [1, 57].
However, the transport of N = 40 ultra-soft particles at
the mobility µ = 1/γ at a = 8σ needs a trap which is
only 40kBT deep.

Further, we see from Figs. 8, 9 that our feedback con-
trol does not lead to a significant speed up for a=σ. By
analysing the potential landscape for a = σ for a series of
η and N (not shown) we find that the effective potential
Vint develops peaks between the minima of VDF +u. This
means that the effective potential barrier encountered by
a moving particle increases when η or N is enlarged.
This is in contrast to the case a > σ where the peaks of
Vint are found at the minima of VDF + u [see Fig. 5(b)].
Our interpretation for the case a = σ therefore is that
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the particles “pin” each other to the potential minima of
u(x).

We now consider the behaviour of µ(η) for large η
(Figs. 8, 9). For small N we observe a breakdown of
motion, similar to the one observed in the single-particle
case (see Fig. 3). However, this breakdown is shifted to-
wards larger values of η. We recall that an increase of
N at fixed η (Sec. IV A) leads to a decrease of the bar-
riers of the potential VDF + u + Vint. This enhances the
mobility (relative to that at N = 1) in the first place.
However, upon increase of η (at fixed N) there can be
a situation where the diffusion rate is not sufficient any
more to populate the next local minimum of the potential
VDF+u. This is where transport breaks down. The com-
bination of these two effects leads to the observed shift of
the breakdown of mobility. Upon further increase of N
and η, there comes a point where the large energy scales
of VDF and Vint suppress any influence from u. There-
fore, we expect that the transport for high N exists for
arbitrarily large η.

In Fig. 9 we see that the increase of a at constant η
and N leads to an enhancement of mobility (as long as
there is transport at all). This can be explained with
the potential VDF +u, whose valleys become broader the
larger a. In a broader valley more particles accumulate
which strengthens the role of interaction for the barrier
crossing. However, this effect is limited by N : The parti-
cle number must be large enough to fill at least one valley
with particles, otherwise the transport breaks down.

C. Time delay

In a realistic set up with feedback control, a finite time
is required to perform the measurement required to de-
fine the control (In the present case, this measurement
process concerns the average particle position). Hence,
there is a certain time delay τDelay. To explore the sensi-
tivity of our results towards τDelay we change the control
potential given in Eq. (11) into the expression

V delay
DF (x, %) = η (x− 〈x〉(t− τDelay))2 . (25)

We now consider two special cases involving hard parti-
cles, where the non-delayed feedback control leads to a
particularly high mobility (see Fig. 9). Numerical results
are shown in Fig. 10. The delay causes a pronounced
decrease of mobility which appears to be linear in τDelay

for small delay times. Realistically, feedback mechanisms
can be implemented at the time scale of 10 ms [1, 11, 46]
whereas τB, the timescale of Brownian motion, is for µm-
sized particles in the order of 300 ms [1] or larger [58, 59].
Hence, we expect that the ratio τDelay/τB is rather small,
that is, of the order 10−1. For such situations, our results
in Fig. 10 predict only a small decrease of µ relative to
the non-delayed case. However, even for large delays the
mobility only decreases about one order of magnitude.
This implies that even the time delayed feedback con-
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FIG. 10. Effect of time delay on mobility µ for hard particles.
Even for very long delays the mobility is only reduced by one
order of magnitude.

trol can enhance the mobility by more than two orders
of magnitude with respect to the uncontrolled case.

V. CONCLUSION

Inspired by the physics of a moving optical tweezer,
we have proposed a feedback control strategy for the col-
lective transport of interacting colloids through a corru-
gated potential landscape. Our main goal was the theo-
retical demonstration of the working principle for a well-
defined model system. To this end we have considered
the one-dimensional, overdamped motion of colloids with
either hard or soft repulsive interactions in a tilted wash-
board potential. The feedback control enters into the
(Smoluchowski-like) equation of motion via a harmonic
potential centered at the mean particle position. Thus,
contrary to other studies [25, 26], the present feedback
control cannot induce motion on its own.

The main result of our study is that the interplay of the
feedback control, on one hand, and particle interactions,
on the other hand, can generate a drastic increase of the
average mobility by several orders of magnitude relative
to the uncontrolled, single-particle reference case. The
largest mobilities occur for rather stiff traps and high
densities (i.e., large N) inside the trap, yielding chain- or
cluster like packages of colloids. Here, the mobility rises
up to its limiting value defined by the mobility of a freely
moving, overdamped particle. Interestingly, this giant
increase does not occur for a single particle under the
same feedback control. This shows that the observed mo-
bility enhancement is indeed an interaction effect. The
enhancement can be explained by the fact that, in pres-
ence of particle interactions, these dominate the effective
“field” acting on an individual particle, while the impact
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of the external potential barriers vanishes. Thus, parti-
cles “help each other” to overcome the external barriers.
Another new feature is the emergence of oscillatory be-
havior of the mean velocity (and the width of the density
distribution) due to the feedback-controlled trap. The
latter effect occurs for both, single and interacting par-
ticles, with the period of oscillations being close to the
inverse of Kramers’ escape rate.

From an application point of view it is interesting that,
due to its coupling to the mean position, the feedback-
controlled trap implies a small risk to “lose” particles.
Indeed, the width of the distribution stays constant on
time-average, reflecting a “dynamical freezing”. This
is different from externally moved, “open-loop” traps,
where an inappropriate choice of the trap velocity eas-
ily lead to a broadening of the density distribution, and
thus, a spreading of particles out of the trap (see dis-
cussion in Sec III B). Another experimentally relevant is-
sue concerns the impact of time delay(s). Here we have
shown that time delay does indeed reduce the mobility,
similar to what has been observed in ratchet systems [3].
However, for realistic time delays the remaining mobility
is still enhanced by two orders of magnitude.

Concerning the methodology, we note that the DDFT
scheme employed here implies an “adiabatic” approxima-
tion of the time-dependent two-particle correlations. It is
now well established [48, 60, 61] that this approximation
may generate artefacts especially for densely packed par-

ticles, e.g., during the expansion of a cluster. Since we
are mainly focusing on steady transport conditions we ex-
pect our results to be at least qualitatively right. Still, it
would be very interesting and important to test our pre-
dictions against explicit Brownian Dynamic simulations
of the corresponding (overdamped) Langevin equation,
Eq. (2).

Finally, we would like to point out that the con-
cept behind dynamical freezing is not restricted to one-
dimensional washboard potentials. Indeed, the present
feedback control can easily be formulated in two or three
spatial dimensions. Further, the external potential hin-
dering the motion does not have to be static or even peri-
odic which enriches possible applications. An interesting
question is how well the present control strategy works
for other types of colloidal interactions, particularly at-
tractive ones. Another open question concerns the impli-
cations for the (non-equilibrium) thermodynamics of the
system, an area which currently receives much attention
[4, 62–64]. Work in these directions is in progress.
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